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The inverse problem

P We are concerned with computing the spectral N
density p(E) associated to a lattice correlator C(t) oz e
109 “‘\‘
10 “‘\\
P Tll-posed in presence of a finite set of noisy data lon ™

= / dE p(E) e tF

P There are ways to regularise the problem. Different
assumptions, but one way to express the result
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Difficulties

P Finite set of measurements vs function with
potentially continuous support
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Difficulties

P Finite set of measurements vs function with
potentially continuous support

P Target function is a distribution
P Information is suppressed by exp(—tE)

s We work we data that is affected by errors
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Smearing

P Smearing must be introduced to have a function
that is smooth even in a finite volume

pal) = [ 4B Sa(B,w) p(E)

P Linear combinations of correlators automatically
produce a smeared SD

po(@) = 3 auloiw) C(1)

=S o) [ B ()

» We can now take the infinite volume limit

lim p,(E)=Q©
L— oo

lim lim pp(o; E) = p(E)

oc—0 L—oo
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Bayesian Inference with Gaussian Processes

o Aim for a probability distribution over a functional space of possible spectral densities

o Consider the stochastic field R(E) Gaussian-distributed around the prior value pP*°* (E) with covariance
’Cpnor(E, E’)‘
g.P (pprior(E) ’Cprior(E E,))

o Similarly, assume that observational noise is Gaussian: 7(t)
G (n, Covy) = exp (—%ﬁT Cov;1 ﬁ)
o The stochastic variable associated to the correlator, C, is related to R and n via
et) = / dE e~ "PR(E) + n(1)

o Incomplete list of references:
FASTSUM collab. , Valentine, Sambridge 19 , Horak, Pawlowski, Rodriguez-Quintero, Turnwald, Urban 21
Del Debbio, Giani, Wilson 21
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Bayesian Inference with Gaussian Processes

o The joint, posterior distribution is again Gaussian,
centred around pP°s' centre and variance:

P = P )+ 32 5w (00 = [T ap e ) )
t=1

PO (w0, ) = (K:prior(w7 w) — f oS% () £,5F (w))

=1
o The coefficients can be written as
gcp(w) _ (EGP + ACovq) ™! For

o With the following ingredients:

neP, =/dE1/dE2 e B PrOT (B By) e ™2 i1l cond

5,5 (w) = / dE KP7 (w0, B) o= F

- Cond(®) o




Backus-Gilbert methods: ideal world

P (HLT) Fix and target an appropriate smearing kernel such that when o — 0 we recover S, (E,w) — §(E —w)

P We need to find the set of coefficients spanning S, (E, w):

oo

> g0, B) e = S, (B,w)

=1
> We can find the coefficients by minimising

o 2
Z gr(o,E)e” Y — S, (E,w)

T=1

oo
Algl =/ dE e*”
Eq

P Without errors on C(t) and infinitely many points, this is the solution.
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Backus-Gilbert methods: less ideal world

P In reality, the correlator is known at a finite number of points. This translates into a systematic error in the
reconstructed kernel and therefore in the reconstructed SD

Tmax

Z 9r (0" E) C(”'T) = pG(E) + T(Tmaxy a5 E)

=1
> The sum truncated to Tmax is however well-defined and define unambiguously a given smearing kernel

> 1In fact, let us look at an example for both HLT and GP. For the latter, we shall choose a prior:
e—(E—E/)2/252

’Cprior E, E/ — ,
P (B, ) A

PP —
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Backus-Gilbert methods: less ideal world CP

P Blue should be a Gaussian

P Orange should be what it should be

=

20
mearing kernel (HLT)
mearing kernel (Bayesian)
15

m I
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Backus-Gilbert methods: less ideal world CP

P Similarly for the reconstructed smeared density:

=

o RN

0.0005 } J\ J \7X

o T
\
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a7

—0.0010 4-—e— Smeared density (HLT)
—o— Smeared density (Bayesian)
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Backus-Gilbert methods: real world

P The main complication is that noisy data severely hinder this approach. Minimising A[g] amounts to solve a
massively ill-conditioned linear system
- —17
g=%""71

Sy = / dE, e P g7

P> Backus-Gilbert regularisation:

/ dE *P
0

2

tmax

Z gte_bE — S5 (w, E)

t=1

+AXg-Covg-g

> The linear system is now
G= (T4 ACova)™ '

ian & Backus




Comparing equations

» In both cases the coefficients that generate the solution are written as:

G(w) = (4 ACovaq) ' F

noP, _ /dE1 / By e B KPRt (B By) e~ SHLT _ / Ay e T

£, (w) = /dE KP™ (w, B) e 7 T (W) =/dE So(w, B) e P

P They can be mapped into one another only at o = 0.
P> They regularise the problem in the very same way.

> What about A?
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Unphysical parameters & physical results

P X introduces a bias. Recent application of BG methods perform a “stability analysis“ {Bulava et al. 21 }

> We could do the same with the Bayesian reconstruction. Let us pick a prior:

o= (B— E')?)2€?

By )

PP —

K:Srior(E, E/) —

E=1.13mg £=mg

0.030

0.029 P H + *

0.028 ¥

0.027 +
Yy

0.026

0.025 *

0.024 ¢ *

0.023

0.022 & Bayesian reconstruction ®
107t 10° 10!
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Unphysical parameters & physical results

P In the Bayesian literature, hyperparameters are determined by minimising the negative log likelihood (NLL)
— log P(data|parameters)

> The methods seem compatible

E=1.13mg E=mg E=1.13mg E=mg
0.030
BT 204 —e— NLL )4
0.029 /
< T T + & —40
0.028 /

b - A
0.026 /
-100

0.025 ) 120 /
0.024 ¢ @ 140 &
0.023 160 /
0,022 é Bayesian reconstruction é 150 h—o0 o
107 10° 10t 107t 10° 10t
A A
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Bayesian formulation of BG

» Compute the posterior probability distribution for a
spectral density smeared with a fixed kernel

Gy (E,E') = exp—()z—E’)z/my2
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Bayesian formulation of BG

» Compute the posterior probability distribution for a
spectral density smeared with a fixed kernel

Gy (E,E') = exp—(JZ—E’)z/w2

| Diagonal model covariance

ks, = 2EE)

»  The solution is now given by the same coefficients as
HLT
QGP(O';L«J) = g(o;w) even at finite o

»  The only difference is in the error (bootstrap for
Backus-Gilbert methods)

1
K (w, w)? = 5/dE (; gr(o,wye” " — Ga<E,w>> Go (B, w)

0.0118

0.0116

0.0114
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] ‘H 43
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Y min NLL
& Frequentist error
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10* 10? 10° 104
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More on the bias

P Generate toys for spectral densities / correlators

Tmax —

1
cWy= > wee M By <B <.,
n=0

> We are generating instances of w, with a GP, centred around zero, and covariance

_(En - En/)2>

Kweights(n7 ’I’L/) = Kk exp < 2¢2

P> with e smaller than the spacing between states

> For the corresponding correlators, we inject noise from a covariance matrix measured on the lattice.
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Preliminary results

PRELIMINARY

P> Results for p,(E) (true) - p,(E) (estimate)
E/ myp = 0.07

200

-4.0e-03 0.0e+00 4.0e-03 -1.5e-02 0.0e+00 1.5e-02
E/mgp =570 E/mp = 8.52
= BG

10 4 GP |
3
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1
E 0

-8.0e-02 0.0e+00 8.0e-02 -2.5e-01  0.0e+00 2.5e-01

Ptrue — Pestimate
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Preliminary results

PRELIMINARY

P> Results for p,(E) = P (B) o —pg e (E)

AT(E)
E/ my = 0.07 E/my =289
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» Do I have more time?




Abusing this talk: spectroscopy

P In a previous paper [2211.09581] we explored the possibility to perform finite-volume spectroscopy using
smeared spectral densities

P> Recent developments in [2405.01388]

Meson spectrum
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work with:
E. Bennett, L. Del Debbio, N. Forzano, R.C. Hill, D. K. Hong, H. Hsiao, J.-W. Lee, C.-J. D. Lin, B. Lucini, AL, M.
Piai, D. Vadacchino, F. Zierler




» Do I have even more time?
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Neural Networks CP

A. Barone
A. De Santis

A. Lupo
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Neural Networks

A. Barone
A. De Santis
A. Lupo

P> Non-linear algorithms: supervised deep-learning techniques

P The authors addressed the tasks of setting up a model independent training strategy and providing a reliable
estimate of systematic errors

Vv A functional-basis (Chebyshev) to parametrize the correlators and the smeared spectral densities of the
training sets in a model independent way

V/ the introduction of the ensemble of machines to estimate over the systematic error




Neural Networks

TRAINED
Neural Networks

n=

Alatt E, N Anet(E N)

(B, N) + A (B, N)<— ”“]] [| |]

PR E) £ APY(E)
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Neural Networks

prrel(B) — e (B)

po(E) = Atot ()

[Credits: Buzzicotti, De Santis, Tantalo]
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Neural Networks
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[Credits: De Santis, Tantalo, et al.]
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> Consider Gaussian probability density for the vector ¢ € RPT¢ with covariance %,

oy — ! S —
Gl 2] = \/det(27r2_1)e p( 21/) Ew) ’

P Block diagonal:
Y11 Y12 ¢>1>
= ) = )
Go =2) w=(2

P91 ERP, ¢y € RY. £, isa p X p matrix, ¥gs is d X d, and X2 and X2; are p X d and d X p respectively
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> We perform a LDU decomposition of the total covariance ¥. To this end, we introduce the matrices L and R,

1 —2122—1) ( 1 0)
L = P 22 s R = P ,
(0 14 —255 % 14

P such that W = LXR is diagonal,

W= 31— E1222721221 0 i
0 Yoo

> where the Schur complement of 317 appears in the top-left block. The inverse of the covariance can be now
written as
ST'=RWT'L. (1)
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> The previous equations can be used to evaluate the scalar product o Se:
TSy = (¢1 = d112)  EGh ) (D1 — b1jz) + b3 Toa ¢
Pa12) = 21255, ¢ (2)
Sa1)2) = 11 — Z12585, Dot
> as well as the determinant of £,
det £ = det (211 - 2122;21221) det (Sa2) . 3)
P then the joint probability can be rewritten as

G[; 2] =G [¢1 — d(1)2): D112y ] G [h2; Da2] - (4)

P Factorising the conditional probability G [¢1 — $(1)2); 2(11‘2)] as in the Eq in the main text.
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P In the context of GPs the hyperparameters (including A) are selected so that the resulting probability of
observing the data,

G [éobs _& prior; >+ Con] ’ ©

is maximised.

P Equivalently, one minimises the "negative logarithmic likelihood” (NLL)

1

Grobs _ & prior 6
SE Covd( ) (6)

1 1 = U
> Logdet (X + Covy) + 5 (C°Ps — ¢ Priery
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