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The inverse problem

I We are concerned with computing the spectral
density ρ(E) associated to a lattice correlator C(t)

I Ill-posed in presence of a finite set of noisy data

I There are ways to regularise the problem. Different
assumptions, but one way to express the result

ρσ(E) =
∑

t
gt(σ; E) C(t)

ρ(E) = lim
σ→0

ρσ(E)
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Difficulties

I Finite set of measurements vs function with
potentially continuous support

I Target function is a distribution

I Information is suppressed by exp(−tE)

We work we data that is affected by errors
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Smearing

I Smearing must be introduced to have a function
that is smooth even in a finite volume

ρσ(ω) =

∫
dE Sσ(E, ω) ρ(E)

I Linear combinations of correlators automatically
produce a smeared SD

ρσ(ω) =
∑

t
gt(σ;ω) C(t)

=
∑

t
gt(σ;ω)

∫
dE e−tE

ρ(E)

I We can now take the infinite volume limit

lim
L→∞

ρL(E) =

lim
σ→0

lim
L→∞

ρL(σ; E) = ρ(E)
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Bayesian Inference with Gaussian Processes
◦ Aim for a probability distribution over a functional space of possible spectral densities

◦ Consider the stochastic field R(E) Gaussian-distributed around the prior value ρprior(E) with covariance
Kprior(E,E′).

GP
(
ρ

prior
(E),Kprior

(E,E′
)
)

◦ Similarly, assume that observational noise is Gaussian: η(t)

G (η,Covd) = exp

(
−

1
2
~η

T Cov−1
d ~η

)

◦ The stochastic variable associated to the correlator, C, is related to R and η via

C(t) =

∫
dE e−tER(E) + η(t)

◦ Incomplete list of references:
FASTSUM collab. , Valentine, Sambridge 19 , Horak, Pawlowski, Rodríguez-Quintero, Turnwald, Urban 21
Del Debbio, Giani, Wilson 21
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Bayesian Inference with Gaussian Processes

◦ The joint, posterior distribution is again Gaussian,
centred around ρpost centre and variance:

ρ
post

(ω) = ρ
prior

(ω) +

tmax∑
t=1

gGP
t (ω)

(
C(t) −

∫ ∞

0
dE e−tE

ρ
prior

(E)

)

Kpost
(ω, ω) =

(
Kprior

(ω, ω) −
tmax∑
t=1

gGP
t (ω) f GP

t (ω)

)

◦ The coefficients can be written as

~gGP
(ω) = (Σ

GP
+ λCovd)

−1 ~f GP

◦ With the following ingredients:

Σ
GP

tr =

∫
dE1

∫
dE2 e−tE1 Kprior

(E1, E2) e−rE2 ill cond

f GP
t (ω) =

∫
dE Kprior

(ω, E) e−tE
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Backus-Gilbert methods: ideal world

I (HLT) Fix and target an appropriate smearing kernel such that when σ → 0 we recover Sσ(E, ω) → δ(E −ω)

I We need to find the set of coefficients spanning Sσ(E, ω):

∞∑
τ=1

gtrue
τ (σ,E) e−aτω

= Sσ(E, ω)

I We can find the coefficients by minimising

A[g] =
∫ ∞

E0

dE eαE

∣∣∣∣∣
∞∑

τ=1
gτ (σ,E) e−aτω − Sσ(E, ω)

∣∣∣∣∣
2

I Without errors on C(t) and infinitely many points, this is the solution.
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Backus-Gilbert methods: less ideal world

I In reality, the correlator is known at a finite number of points. This translates into a systematic error in the
reconstructed kernel and therefore in the reconstructed SD

τmax∑
τ=1

gτ (σ,E)C(aτ) = ρσ(E) + r(τmax, σ; E)

I The sum truncated to τmax is however well-defined and define unambiguously a given smearing kernel

I In fact, let us look at an example for both HLT and GP. For the latter, we shall choose a prior:

Kprior
ε (E,E′

) =
e−(E−E′)2/2ε2

λ
, ρ

prior
= 0
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Backus-Gilbert methods: less ideal world

I Blue should be a Gaussian
I Orange should be what it should be
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Backus-Gilbert methods: less ideal world

I Similarly for the reconstructed smeared density:
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Backus-Gilbert methods: real world

I The main complication is that noisy data severely hinder this approach. Minimising A[g] amounts to solve a
massively ill-conditioned linear system

~g = Σ
−1~f

Σtr =

∫
dE1 e−tE1 e−rE1

I Backus-Gilbert regularisation:

∫ ∞

0
dE eαE

∣∣∣∣∣
tmax∑
t=1

gte−tE − Sσ(ω,E)

∣∣∣∣∣
2

+ λ ~g · Covd ·~g

I The linear system is now
~g = (Σ + λCovd)

−1 ~f
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Comparing equations

I In both cases the coefficients that generate the solution are written as:

~g(ω) = (Σ + λCovd)
−1 ~f

Σ
GP

tr =

∫
dE1

∫
dE2 e−tE1 Kprior

(E1,E2) e−rE2

f GP
t (ω) =

∫
dE Kprior

(ω,E) e−tE

Σ
HLT
tr =

∫
dE1 e−tE1 e−rE1

f HLT
t (ω) =

∫
dE Sσ(ω,E) e−tE

I They can be mapped into one another only at σ = 0.

I They regularise the problem in the very same way.

I What about λ?
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Unphysical parameters & physical results
I λ introduces a bias. Recent application of BG methods perform a “stability analysis“ {Bulava et al. 21 }

I We could do the same with the Bayesian reconstruction. Let us pick a prior:

Kprior
ε (E,E′

) =
e−(E−E′)2/2ε2

λ
, ρ

prior
= 0
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Unphysical parameters & physical results

I In the Bayesian literature, hyperparameters are determined by minimising the negative log likelihood (NLL)

− log P(data|parameters)

I The methods seem compatible
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Bayesian formulation of BG
I Compute the posterior probability distribution for a

spectral density smeared with a fixed kernel
Gσ(E, E′) = exp−(E−E′

)
2/2σ2

Diagonal model covariance

K(E, E′
) =

δ(E − E′)

λ
,

I The solution is now given by the same coefficients as
HLT

gGP
(σ;ω) = g(σ;ω) even at finite σ

I The only difference is in the error (bootstrap for
Backus-Gilbert methods)

Kσ
post(ω, ω)

2
=

1
2

∫
dE
(∑

t
gt(σ, ω)e−tE − Gσ(E, ω)

)
Gσ(E, ω)
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More on the bias

I Generate toys for spectral densities / correlators

C(t) =

nmax−1∑
n=0

wne−|t|En , E0 < E1 ≤ . . . ,

I We are generating instances of wn with a GP, centred around zero, and covariance

Kweights(n,n′
) = κ exp

(
−

(En − En′ )
2

2ε2

)
,

I with ε smaller than the spacing between states

I For the corresponding correlators, we inject noise from a covariance matrix measured on the lattice.
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Preliminary results
PRELIMINARY

I Results for ρσ(E) (true) - ρσ(E) (estimate)
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Preliminary results
PRELIMINARY

I Results for pσ(E) =
ρtrue(E)σ−ρestimate

σ (E)

∆tot
σ (E)
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I Do I have more time?
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Abusing this talk: spectroscopy
I In a previous paper [2211.09581] we explored the possibility to perform finite-volume spectroscopy using

smeared spectral densities

I Recent developments in [2405.01388]

PS V T AV AT S ps v t av at s

1.0

1.5

2.0

2.5

3.0

3.5

m̂

Meson spectrum

M1

M2

M3

M4

M5

work with:
E. Bennett, L. Del Debbio, N. Forzano, R.C. Hill, D. K. Hong, H. Hsiao, J.-W. Lee, C.-J. D. Lin, B. Lucini, AL, M.

Piai, D. Vadacchino, F. Zierler
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I Do I have even more time?
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Neural Networks

̇  A. Barone
A. De Santis

A. Lupo



I Non-linear algorithms: supervised deep-learning techniques

I The authors addressed the tasks of setting up a model independent training strategy and providing a reliable
estimate of systematic errors

A functional-basis (Chebyshev) to parametrize the correlators and the smeared spectral densities of the
training sets in a model independent way

the introduction of the ensemble of machines to estimate over the systematic error
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Neural Networks

C(t)
∣∣∣ρ̂predσ (E,N , r)− ρ̂trueσ (E)

∣∣∣
r = 1

3
2

Tσ(Nb, Nρ)

N

SUPERVISED TRAINING

Cc(t) ρ̂predσ (E,N , c, r)

ρ̂predσ (E,N)±∆stat
σ (E,N)

ρ̂predσ (E)±∆tot
σ (E)

0 ∞
Nρ

0 ∞
Nn

0 ∞
Nb

+ +

r = 1

3
2

N
TRAINED

Neural Networks

1

2

3
c

+

∆latt
σ (E,N) ∆net

σ (E,N)

r

1
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Neural Networks

pσ(E) =
ρ̂pred
σ (E) − ρ̂true

σ (E)

∆tot
σ (E)

[Credits: Buzzicotti, De Santis, Tantalo]
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Neural Networks
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[Credits: De Santis, Tantalo, et al.]
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Backup
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I Consider Gaussian probability density for the vector ψ ∈ Rp+d with covariance Σ,

G[ψ; Σ] =
1√

det (2πΣ−1)
exp

(
−

1
2
ψ

T
Σψ

)
.

I Block diagonal:

Σ =

(
Σ11 Σ12
Σ21 Σ22

)
, ψ =

(
φ1
φ2

)
,

I φ1 ∈ Rp, φ2 ∈ Rd . Σ11 is a p × p matrix, Σ22 is d × d, and Σ12 and Σ21 are p × d and d × p respectively
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I We perform a LDU decomposition of the total covariance Σ. To this end, we introduce the matrices L and R,

L =

(
1p −Σ12Σ

−1
22

0 1d

)
, R =

(
1p 0

−Σ−1
22 Σ21 1d

)
,

I such that W ≡ LΣR is diagonal,

W =

(
Σ11 − Σ12Σ

−1
22 Σ21 0

0 Σ22

)
,

I where the Schur complement of Σ11 appears in the top-left block. The inverse of the covariance can be now
written as

Σ
−1

= R W−1 L . (1)
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I The previous equations can be used to evaluate the scalar product ψTΣψ:

ψ
T
Σψ = (φ1 − φ(1|2))

T
Σ

−1
(11|2) (φ1 − φ(1|2)) + φ

T
2 Σ22 φ2 ,

φ(1|2) ≡ Σ12Σ
−1
22 φ2 ,

Σ(11|2) ≡ Σ11 − Σ12Σ
−1
22 Σ21 ,

(2)

I as well as the determinant of Σ−1,

detΣ = det
(
Σ11 − Σ12Σ

−1
22 Σ21

)
det (Σ22) . (3)

I then the joint probability can be rewritten as

G [ψ; Σ] = G
[
φ1 − φ(1|2); Σ(11|2)

]
G [φ2; Σ22] . (4)

I Factorising the conditional probability G
[
φ1 − φ(1|2); Σ(11|2)

]
as in the Eq in the main text.
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I In the context of GPs the hyperparameters (including λ) are selected so that the resulting probability of
observing the data,

G
[
~C obs − ~C prior

; Σ + Covd

]
, (5)

is maximised.

I Equivalently, one minimises the ”negative logarithmic likelihood” (NLL)

1
2

Log det (Σ + Covd) +
1
2
(~C obs − ~C prior

)
1

Σ + Covd
(~C obs − ~C prior

) (6)
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	Appendix

