RTG 2575:
Rethinking
Quantum Field Theory

CERN, July 2024

Extracting scattering amplitudes from Euclidean correlators

work in collaboration with Nazario Tantalo based on arXiv:2407.02069

Agostino Patella
Humboldt-Universität zu Berlin, DESY Zeuthen

Introduction

- How do we calculate hadron scattering amplitude from Quantum Chromodynamics? In principle...

- Numerical lattice QCD is the only known tool which allows the calculation of observables in QCD at the nonperturbative level.
- Only Euclidean correlators are calculable in lattice QCD. Analytic continuation is needed to real time. Numerically ill-posed problem.
- Find another way...

Introduction

- Scattering amplitudes can be extracted from energy levels in large but finite volume. Energy levels can be calculated from Eucliden correlators. More theory needs to be developed every time a new multi-particle threshold is opened.
M. Luscher, Commun. Math. Phys. 105 (1986), 153-188
M. Luscher, Nucl. Phys. B 354 (1991), 531-578
C. h. Kim, C. T. Sachrajda and S. R. Sharpe, Nucl. Phys. B 727 (2005), 218-243
M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90 (2014) no.11, 116003
[...]
- Approximate scattering amplitudes as a linear combination of Euclidean correlators sampled at discrete times.
J. C. A. Barata and K. Fredenhagen, Commun. Math. Phys. 138 (1991), 507-520
J. Bulava and M. T. Hansen, Phys. Rev. D 100 (2019) no.3, 034521

Outlook

Theoretical background
 Haag-Ruelle scattering theory

- Black lines = classical trajectories.

- Pink line: $p^{2}=m^{2}$
- Black dots: energy-momentum of particle.

- Black lines = classical trajectories.
- Allow velocity indetermination.
- Gray regions $=$ cones of classical trajectories.

- Pink line: $p^{2}=m^{2}$
- Black dots: energy-momentum of particle.
- Allow momentum indetermination.
- Black lines: allowed values for energy-momentum.

- Black lines = classical trajectories.
- Allow velocity indetermination.
- Gray regions $=$ cones of classical trajectories.
- Green/blue regions $=$ position of particle at time t.

- Pink line: $p^{2}=m^{2}$
- Black dots: energy-momentum of particle.
- Allow momentum indetermination.
- Black lines: allowed values for energy-momentum.

$$
\left|\Psi_{\text {out }}(t)\right\rangle=\int d^{4} x_{N} f_{N}^{t}\left(x_{N}\right) \phi\left(x_{N}\right)^{\dagger} \quad \ldots \quad \int d^{4} x_{1} f_{1}^{t}\left(x_{1}\right) \phi\left(x_{1}\right)^{\dagger}
$$

- Gray regions $=$ cones of classical trajectories.
- Green/blue regions scale with t.
- $f_{A}^{t}(x)$ is localized in green/blue regions.

$$
\left|\Psi_{\text {out }}(t)\right\rangle=\int \frac{d^{4} p_{N}}{(2 \pi)^{4}} \tilde{f}_{N}^{t}\left(p_{N}\right) \tilde{\phi}\left(p_{N}\right)^{\dagger} \ldots \int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \tilde{f}_{1}^{t}\left(p_{1}\right) \tilde{\phi}\left(p_{1}\right)^{\dagger}
$$

- Gray regions $=$ cones of classical trajectories.
- Green/blue regions scale with t.
- $f_{A}^{t}(x)$ is localized in green/blue regions.

- Pink regions $=$ spectrum of P.
- Green/blue regions intersect spectrum of P on 1 -particle mass shell.
- $\tilde{f}_{A}^{t}(p)$ has support in green/blue regions.

$$
\left|\Psi_{\text {out }}(t)\right\rangle=\int \frac{d^{4} p_{N}}{(2 \pi)^{4}} \tilde{f}_{N}^{t}\left(p_{N}\right) \tilde{\phi}\left(p_{N}\right)^{\dagger} \ldots \int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \tilde{f}_{1}^{t}\left(p_{1}\right) \tilde{\phi}\left(p_{1}\right)^{\dagger}
$$

- Gray regions $=$ cones of classical trajectories.
- Green/blue regions scale with t.
- $f_{A}^{t}(x)$ is localized in green/blue regions.
- Interaction between particles decreases with t.

- Pink regions $=$ spectrum of P.
- Green/blue regions intersect spectrum of P on 1 -particle mass shell.
- $\tilde{f}_{A}^{t}(p)$ has support in green/blue regions.

$$
\left|\Psi_{\text {out }}(t)\right\rangle=\int \frac{d^{4} p_{N}}{(2 \pi)^{4}} \tilde{f}_{N}^{t}\left(p_{N}\right) \tilde{\phi}\left(p_{N}\right)^{\dagger} \ldots \int \frac{d^{4} p_{1}}{(2 \pi)^{4}} \tilde{f}_{1}^{t}\left(p_{1}\right) \tilde{\phi}\left(p_{1}\right)^{\dagger}
$$

$$
\tilde{f}_{A}^{t}(p)=e^{i t\left[p_{0}-E(\boldsymbol{p})\right]} \zeta_{A}\left(p_{0}-E(\boldsymbol{p})\right) \check{f}_{A}(\boldsymbol{p})
$$

- $\check{f}_{A}(\boldsymbol{p})=$ asymptotic particle wave function and $E(\boldsymbol{p})=\sqrt{m^{2}+\boldsymbol{p}^{2}}$.
- $\zeta_{A}(\omega)$ cuts off multi-particle states. $\zeta_{A}(\omega)$ smooth and compact support, $\zeta_{A}(0)=1$.
- Support of $\tilde{f}_{A}^{t}(p)$ intersects spectrum of P only on 1-particle mass shell.

Haag-Ruelle scattering theory

$$
\begin{aligned}
& \left|\Psi_{\text {out }}(t)\right\rangle=\prod_{A} \int \frac{d^{4} p_{A}}{(2 \pi)^{4}} \tilde{f}_{A}^{t}\left(p_{A}\right) \tilde{\phi}\left(p_{A}\right)^{\dagger}|\Omega\rangle \\
& \stackrel{t \rightarrow+\infty}{=} \prod_{A} \int \frac{d^{3} \boldsymbol{p}_{A}}{(2 \pi)^{3}} \check{f}_{A}\left(\boldsymbol{p}_{A}\right) a_{\text {out }}^{\dagger}\left(\boldsymbol{p}_{A}\right)|\Omega\rangle+O\left(|t|^{-\infty}\right)
\end{aligned}
$$

- $\tilde{f}_{A}^{t}(p)=e^{i t\left[p_{0}-E(\boldsymbol{p})\right]} \zeta_{A}\left(p_{0}-E(\boldsymbol{p})\right) \check{f}_{A}(\boldsymbol{p})$
- Error is $O\left(|t|^{-\infty}\right)$ for non-overlapping velocities, otherwise $O\left(|t|^{-1 / 2}\right)$.
- $a_{\text {out }}^{\dagger}(\boldsymbol{p})$ are standard creation operators:

$$
\begin{gathered}
{\left[\begin{array}{c}
\text { aut } \\
\left.(\boldsymbol{p}), a_{\text {out }}^{\dagger}\left(\boldsymbol{p}^{\prime}\right)\right]=(2 \pi)^{3} \delta^{3}\left(\boldsymbol{p}-\boldsymbol{p}^{\prime}\right) \quad\left[a_{\text {out }}(\boldsymbol{p}), \text { a out }\left(\boldsymbol{p}^{\prime}\right)\right]=0 \\
{\left[\boldsymbol{P}, a_{\text {out }}^{\dagger}(\boldsymbol{p})\right]=\boldsymbol{p} a_{\text {out }}^{\dagger}(\boldsymbol{p}) \quad\left[H, a_{\text {out }}^{\dagger}(\boldsymbol{p})\right]=E(\boldsymbol{p}) a_{\text {out }}^{\dagger}(\boldsymbol{p})}
\end{array}\right.}
\end{gathered}
$$

Approximation formula for scattering amplitudes Rough sketch of derivation

Scattering amplitude

Scattering amplitude

$$
\begin{aligned}
& \eta_{A}=+1 \quad \eta_{A}=-1 \\
& \breve{f}_{M+1} \breve{L}_{\substack{ }}^{\breve{f}_{M+N}} \\
& =\lim _{t \rightarrow+\infty} \int\left[\prod_{A} \frac{d^{4} p_{A}}{(2 \pi)^{4}} \check{f}_{A}^{(*)}\left(\boldsymbol{p}_{A}\right) \zeta_{A}^{(*)}\left(p_{A}^{0}-E\left(\boldsymbol{p}_{A}\right)\right)\right] e^{i t \sum_{A} \eta_{A}\left[p_{A}^{0}-E\left(\boldsymbol{p}_{A}\right)\right]} \\
& \times\langle\Omega| \tilde{\phi}\left(p_{M+1}\right) \cdots \tilde{\phi}\left(p_{M+N}\right) \tilde{\phi}\left(p_{M}\right)^{\dagger} \cdots \tilde{\phi}\left(p_{1}\right)^{\dagger}|\Omega\rangle
\end{aligned}
$$

Scattering amplitude

$$
\begin{aligned}
& \eta_{A}=+1 \quad \eta_{A}=-1
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{t \rightarrow+\infty} \int\left[\prod_{A} \frac{d^{4} p_{A}}{(2 \pi)^{4}} \check{f}_{A}^{(*)}\left(\boldsymbol{p}_{A}\right) \zeta_{A}^{(*)}\left(p_{A}^{0}-E\left(\boldsymbol{p}_{A}\right)\right)\right] e^{i t \sum_{A} \eta_{A}\left[p_{A}^{0}-E\left(\boldsymbol{p}_{A}\right)\right]} \\
& \times\langle\Omega| \tilde{\phi}\left(p_{M+1}\right) \cdots \tilde{\phi}\left(p_{M+N}\right) \tilde{\phi}\left(p_{M}\right)^{\dagger} \cdots \tilde{\phi}\left(p_{1}\right)^{\dagger}|\Omega\rangle
\end{aligned}
$$

- Wildly oscillating phase for $t \rightarrow+\infty$.
- Not good for numerics.
- Cancallation of regions with $\sum_{A} \eta_{A}\left[p_{A}^{0}-E\left(\boldsymbol{p}_{A}\right)\right] \neq 0$.
- Can we achieve the same effect in a different way? Some mathematical trickery...

Scattering amplitude

Introduce two auxiliary functions:

- $\Phi(t)$ Schwartz with unit integral and closed support in $(0,+\infty)$;
- $h(t)$ Schwartz with unit integral.

$$
\begin{aligned}
& \lim _{\sigma \rightarrow 0^{+}} \int d t d s \Phi(t) h(s)\left\langle\Psi_{\text {out }}\left(\frac{t}{2 \sigma}-s\right) \left\lvert\, \Psi_{\text {in }}\left(-\frac{t}{2 \sigma}-s\right)\right.\right\rangle \\
& =\int d s h(s) \int_{0}^{+\infty} d t \Phi(t) \lim _{\sigma \rightarrow 0^{+}}\left\langle\Psi_{\text {out }}\left(\frac{t}{2 \sigma}-s\right) \left\lvert\, \Psi_{\text {in }}\left(-\frac{t}{2 \sigma}-s\right)\right.\right\rangle=\left\langle\Psi_{\text {out }}(+\infty) \mid \Psi_{\text {in }}(-\infty)\right\rangle
\end{aligned}
$$

Scattering amplitude (2)

$$
\begin{gathered}
\check{\breve{C l}}_{M+1}^{\eta_{A}=+1} \\
=\lim _{\sigma \rightarrow 0^{+}} \int\left[\prod_{A} \frac{d^{4} p_{A}}{(2 \pi)^{4}} \breve{f}_{A}^{(*)}\left(\boldsymbol{p}_{A}\right) \zeta_{A}^{(*)}\left(p_{A}^{0}-E\left(\boldsymbol{p}_{A}\right)\right)\right] \tilde{h}\left(\sum_{A} \eta_{A} E\left(\boldsymbol{p}_{A}\right)\right) \tilde{\Phi}\left(\frac{1}{\sigma} \sum_{A} \eta_{A}\left[p_{A}^{0}-E\left(\boldsymbol{p}_{A}\right)\right]\right) \\
\\
\times\langle\Omega| \tilde{f_{1}}\left(p_{M+1}\right) \cdots \tilde{\phi}\left(p_{M+N}\right) \tilde{\phi}\left(p_{M}\right)^{\dagger} \cdots \tilde{\phi}\left(p_{1}\right)^{\dagger}|\Omega\rangle
\end{gathered}
$$

Scattering amplitude (2)

$$
\begin{aligned}
=\lim _{\sigma \rightarrow 0^{+}} \int\left[\prod_{A} \frac{d^{4} p_{A}}{(2 \pi)^{4}} \check{f}_{A}^{(*)}\left(\boldsymbol{p}_{A}\right) \zeta_{A}^{(*)}\left(p_{A}^{0}-E\left(\boldsymbol{p}_{A}\right)\right)\right] \tilde{h}\left(\sum_{\check{f}_{M+1}} \eta_{A} E\left(\boldsymbol{p}_{A}\right)\right) & \lim _{\sigma \rightarrow 0^{+}} \int d t d s \Phi(t) h(s)\left\langle\Psi_{\text {out }}\left(\frac{t}{2 \sigma}-s\right) \left\lvert\, \Psi_{\text {in }}\left(-\frac{t}{2 \sigma}-s\right)\right.\right\rangle \\
& \times\langle\Omega| \tilde{\phi}\left(p_{M+1}\right) \cdots \tilde{\phi}\left(p_{M}+N\right) \tilde{\phi}\left(p_{M}\right)^{\dagger} \cdots \tilde{\phi}\left(p_{A}^{0}-E\left(p_{1}\right)^{\dagger}|\Omega\rangle\right.
\end{aligned}
$$

$\square \tilde{\Phi}$ regularizes the wildly-oscillating phase factor and selects the desired timeordering. It must be complex!

- $\tilde{h}(\Delta)$ can be chosen with compact and arbitrarily narrow support around $\Delta=0$. It cuts away contributions characterized by non-zero violations of the asymptotic energy conservation.

Wightman function in momentum space \simeq spectral density.

Wightman function \simeq spectral density

$$
\begin{array}{llllllll}
\langle\Omega| \tilde{\phi}\left(p_{M+1}\right) & \tilde{\phi}\left(p_{M+2}\right) & \cdots & \tilde{\phi}\left(p_{M+N}\right) & \tilde{\phi}\left(p_{M}\right)^{\dagger} & \cdots & \tilde{\phi}\left(p_{2}\right)^{\dagger} & \tilde{\phi}\left(p_{1}\right)^{\dagger}|\Omega\rangle
\end{array}
$$

Wightman function \simeq spectral density

$$
\begin{aligned}
& \mathcal{E}_{M}=p_{1}^{0}+\cdots+p_{M}^{0}
\end{aligned}
$$

Wightman function \simeq spectral density

$$
\begin{aligned}
& \mathcal{E}_{M}=p_{1}^{0}+\cdots+p_{M}^{0}
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi \delta\left(\mathcal{E}_{M+N}-\mathcal{E}_{M}\right) \\
& \times\langle\Omega| \hat{\phi}\left(\boldsymbol{p}_{M+1}\right) 2 \pi \delta\left(H-\mathcal{E}_{M+1}\right) \cdots \hat{\phi}\left(\boldsymbol{p}_{M+N}\right) 2 \pi \delta\left(H-\mathcal{E}_{M}\right) \hat{\phi}\left(\boldsymbol{p}_{M}\right) \cdots 2 \pi \delta\left(H-\mathcal{E}_{1}\right) \hat{\phi}\left(\boldsymbol{p}_{1}\right)|\Omega\rangle \\
& \text { definitions: } \hat{\phi}(\boldsymbol{p})=\int d^{3} \boldsymbol{x} e^{-i \boldsymbol{p x}} \phi(0, \boldsymbol{x}) \\
& \omega_{A}=\mathcal{E}_{A}-\left[\mathcal{E}_{A}\right]_{\text {on-shell }} \\
& =2 \pi \delta\left(\mathcal{E}_{M+N}-\mathcal{E}_{M}\right) \rho(\omega, \boldsymbol{p})
\end{aligned}
$$

Approximation formula

Approximation formula

Haag-Ruelle kernel $K_{\sigma}(\omega, \Delta)$ smears the spectral density in the energy variable ω. The parameter σ plays the role of the smearing radius.

$$
\begin{aligned}
K_{\sigma}(\omega, \Delta)= & \tilde{\Phi}\left(\frac{2 \omega_{M}-\Delta}{2 \sigma}\right) \zeta_{1}\left(\omega_{1}\right)\left[\prod_{A=2}^{M-1} \zeta_{A}\left(\omega_{A}-\omega_{A-1}\right)\right] \zeta_{M}\left(\omega_{M}-\omega_{M-1}\right) \\
& \times \zeta_{M+1}^{*}\left(\omega_{M+1}\right)\left[\prod_{A=M+2}^{M+N-1} \zeta_{A}^{*}\left(\omega_{A}-\omega_{A-1}\right)\right] \zeta_{M+N}^{*}\left(\omega_{M}-\omega_{M+N-1}-\Delta\right)
\end{aligned}
$$

Violation of asymptotic energy conservation: $\Delta(\boldsymbol{p})=\sum_{A} \eta_{A} E\left(\boldsymbol{p}_{A}\right)$.

Approximation formula

Approximation is obtained by replacing the Haag-Ruelle kernel with a polynomial in the variables $e^{-\tau \omega}$ and Δ :

$$
K_{\sigma}(\omega, \Delta) \quad \longrightarrow \quad P_{\sigma, \epsilon}\left(e^{-\tau \omega}, \Delta\right)=\sum_{n_{1}, n_{2} \cdots \geq 1} \sum_{b \geq 0} w_{n, b}^{\sigma, \epsilon}\left[\prod_{A}\left(e^{-\tau \omega_{A}}\right)^{n_{A}}\right] \Delta^{b}
$$

$$
\left\|K_{\sigma}(\omega, \Delta)-P_{\sigma, \epsilon}\left(e^{-\tau \omega}, \Delta\right)\right\|_{? ? ?}<\epsilon
$$

Approximation formula

Approximation is obtained by replacing the Haag-Ruelle kernel with a polynomial in the variables $e^{-\tau \omega}$ and Δ :
$K_{\sigma}(\omega, \Delta) \longrightarrow P_{\sigma, \epsilon}\left(e^{-\tau \omega}, \Delta\right)=\sum_{n_{1}, n_{2} \cdots \geq 1} \sum_{b \geq 0} w_{n, b}^{\sigma, \epsilon}\left[\prod_{A}\left(e^{-\tau \omega_{A}}\right)^{n_{A}}\right] \Delta^{b}$
$\left\|K_{\sigma}(\omega, \Delta)-P_{\sigma, \epsilon}\left(e^{-\tau \omega}, \Delta\right)\right\|_{? ? ?}<\epsilon$

Integrating $P_{\sigma, \epsilon}\left(e^{-\tau \omega}, \Delta\right)$ against the spectral density yields the Euclidean correlator!

Approximation formula

$$
\begin{aligned}
& \times \sum_{n_{1}, n_{2} \cdots \geq 1} \sum_{b \geq 0} w_{n, b}^{\sigma, \epsilon}[\Delta(\boldsymbol{p})]^{b} \Upsilon_{h}(n \tau ; \boldsymbol{p}) \quad \hat{C}_{c}(n \tau ; \boldsymbol{p})
\end{aligned}
$$

Euclidean correlator:

$$
\hat{C}_{c}(s ; \boldsymbol{p})=\langle\Omega| \hat{\phi}\left(\boldsymbol{p}_{M+1}\right) e^{-s_{M+N} H} \cdots \hat{\phi}\left(\boldsymbol{p}_{M+N}\right) e^{-s_{M} H} \hat{\phi}\left(\boldsymbol{p}_{M}\right)^{\dagger} \cdots e^{-s_{1} H} \hat{\phi}\left(\boldsymbol{p}_{1}\right)^{\dagger}|\Omega\rangle_{C}
$$

- Kinematic function:

$$
\Upsilon_{h}(s ; \boldsymbol{p})=\tilde{h}(\Delta(\boldsymbol{p})) \exp \left\{\sum_{A=1}^{M} s_{A} \sum_{B=1}^{A} E\left(\boldsymbol{p}_{B}\right)+\sum_{A=M+1}^{M+N-1} s_{A} \sum_{B=M+1}^{A} E\left(\boldsymbol{p}_{B}\right)\right\}
$$

Which norm?

$$
\sum_{\substack{\|\alpha\|_{1}=\mathfrak{N}_{\omega} \\ 0 \leq b \leq \mathfrak{N}_{p}}} \bar{\Delta}^{b} \int_{\mathbb{K}}\left[\prod_{A=1}^{M+N-1} \frac{d \omega_{A}}{2 \pi}\right] d \Delta e^{\tau \sum_{A} \omega_{A}}\left|D_{\omega}^{\alpha} \partial_{\Delta}^{b}\left[K_{\sigma}(\omega, \Delta)-P_{\sigma, \epsilon}\left(e^{-\tau \omega}, \Delta\right)\right]\right|^{2}<\epsilon^{2}
$$

- One can choose some linear combinations of weighted L^{2} norm for various derivatives.
- The integration domain \mathbb{K} is completely determined by kinematics.
- The number of derivatives that one needs to control $\left(\mathfrak{N}_{\omega}, \mathfrak{N}_{\boldsymbol{p}}\right)$ depend on how singular the spectral density is.
- The I.h.s. is a quadratic function of the polynomial coefficients $w_{n, b}^{\sigma, \epsilon}$. Minimizing the I.h.s. can be done by solving a system of linear equations.
- Some speculative argument suggests $\mathfrak{N}_{\omega}=M+N$ and $\mathfrak{N}_{\boldsymbol{p}}=0$. We need to understand this better...

Summary

$$
\begin{aligned}
& \sum_{\substack{\|\alpha\|_{1}=\mathfrak{N}_{\omega} \\
0 \leq b \leq \mathfrak{N}_{\boldsymbol{p}}}} \bar{\Delta}^{b} \int_{\mathbb{K}}\left[\prod_{A=1}^{M+N-1} \frac{d \omega_{A}}{2 \pi}\right] d \Delta e^{\tau \sum_{A} \omega_{A}}\left|D_{\omega}^{\alpha} \partial_{\Delta}^{b}\left[K_{\sigma}(\omega, \Delta)-P_{\sigma, \epsilon}\left(e^{-\tau \omega}, \Delta\right)\right]\right|^{2}<\epsilon^{2} \\
& \left.\operatorname{approx}(\sigma, \epsilon)=\sum_{\substack{n_{1}, n_{2} \cdots \geq 1 \\
b \geq 0}} w_{n, b}^{\sigma, \epsilon}\right]\left[\prod_{A} \frac{d^{3} \boldsymbol{p}_{A}}{(2 \pi)^{3}} \breve{f}_{A}^{(*)}\left(\boldsymbol{p}_{A}\right)\right][\Delta(\boldsymbol{p})]^{b} \Upsilon_{h}(n \tau ; \boldsymbol{p}) \hat{C}_{c}(n \tau ; \boldsymbol{p})
\end{aligned}
$$

Theorem. For every $r>0$, two constants A, B_{r} (independent of ϵ and σ) exist such that

$$
|\varlimsup_{\vdots}^{<}<\underbrace{<}_{K}-\operatorname{approx}(\sigma, \epsilon)|<A \epsilon+B_{r} \sigma^{r}
$$

assuming that the wave functions have non-overlapping velocities [not essential].

Approximation formula for scattering amplitudes

How can we use it?

$$
\begin{aligned}
& \mathcal{C}_{n, b}=\int\left[\prod_{A} \frac{d^{3} \boldsymbol{p}_{A}}{(2 \pi)^{3}} \check{f}_{A}^{(*)}\left(\boldsymbol{p}_{A}\right)\right][\Delta(\boldsymbol{p})]^{b} \Upsilon_{h}(n \tau ; \boldsymbol{p}) \hat{C}_{c}(n \tau ; \boldsymbol{p})
\end{aligned}
$$

- Smaller $\epsilon \Rightarrow$ better approximation of Haag-Ruelle kernel \Rightarrow larger values of $n \Rightarrow$ larger statistical noise.
- Smaller $\sigma \Rightarrow$ Haag-Ruelle kernel more peaked \Rightarrow harder to approximate \Rightarrow larger values of $n \Rightarrow$ larger statistical noise.
- Also recall: $\Upsilon_{h}(n \tau ; \boldsymbol{p})$ increases exponentially with n.
- Optimization problem: smaller ϵ and σ means larger statistical errors, larger ϵ and σ means larger systematic error. One could design a strategy based on HLT to minimize total error:

$$
A[w]=\left\|K_{\sigma}(\omega, \Delta)-P_{\sigma, \epsilon}\left(e^{-\tau \omega}, \Delta\right)\right\|_{? ? ?}^{2} \quad B[w]=\sum_{n, b, n^{\prime}, b^{\prime}} w_{n, b}^{\sigma, \epsilon}\left\langle\left\langle\mathcal{C}_{n, b} \mathcal{C}_{n^{\prime}, b^{\prime}}\right\rangle\right\rangle_{c} w_{n^{\prime}, b^{\prime}}^{\sigma, \epsilon}
$$

$$
\begin{aligned}
& \left.\left[\begin{array}{c}
\check{f}_{M+2} \\
\vdots \\
\check{f}_{M+N} \\
\vdots \\
\check{f}_{M+2} \\
\check{f}_{M}
\end{array}\right]_{c}^{\check{f}_{1}}\right]_{\sigma \rightarrow 0^{+}} \lim _{\epsilon \rightarrow 0^{+}} \sum_{n_{1}, n_{2} \cdots \geq 1} \sum_{b \geq 0} w_{n, b}^{\sigma, \epsilon} \mathcal{C}_{n, b} \\
& \mathcal{C}_{n, b}=\int\left[\prod_{A} \frac{d^{3} \boldsymbol{p}_{A}}{(2 \pi)^{3}} \check{f}_{A}^{(*)}\left(\boldsymbol{p}_{A}\right)\right][\Delta(\boldsymbol{p})]^{b} \Upsilon_{h}(n \tau ; \boldsymbol{p}) \hat{C}_{c}(n \tau ; \boldsymbol{p})
\end{aligned}
$$

- A finite-volume estimator is obtained trivially by replacing $\int \frac{d^{3} \boldsymbol{p}_{A}}{(2 \pi)^{3}}$ with $\frac{1}{L^{3}} \sum_{\boldsymbol{p}_{A}}$. If coefficients $w_{n, b}$ are kept fixed as the volume is varied, then the $L \rightarrow+\infty$ limit is approached exponentially fast. Having Schwartz wave functions is essential for this step.
- The continuum limit of the estimator can be understood in terms of Symanzik effective theory.
- In this approach, the $L \rightarrow \infty$ and $a \rightarrow 0$ limits must be taken before the $\epsilon \rightarrow 0$ and $\sigma \rightarrow 0$ limits. In particular τ cannot be identified with the lattice spacing. For the opposit approach, see Barata and Fredenhagen.

Conclusions and outlook

- We have derived an approximation for scattering amplitudes as a linear combination of Euclidean correlators sampled at discrete times.
- This formula provides the blueprints for a potentially viable numerical strategy.
- Our approximation can be calculated from finite-volume correlators and the infinite-volume limit is approached exponentially fast.
- Whether statistical and systematic errors are under control in typical QCD simulations remains to be seen.
- Recent algorithmic methods (e.g. Hansen-Lupo-Tantalo), which have been successful in approximations of spectral densities, can be adapted to this problem.
- The class of operators used to approximate asymptotic states can be generalized by relaxing the constraint that $\tilde{f}^{t}(p)$ must have compact support. This may make the numerics easier.

