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Semileptonic decays: dictionary

Focus on weak semileptonic B(s)-meson decays
*All the techniques presented can be applied to similar semileptonic decay,
e.g. B(s) → Xc/u lνl or D(s) → Xd/s lνl

Bs

{ }
Xc

W +

b̄

s

νl

l+

c̄

s

mediated by the weak hamiltonian

HW =
4GF√

2
Vcb

[
b̄LγµcL

]
[ν̄lγµl]

▶ EXCLUSIVE: Bs → Ds lνl, with just one hadron in the final state
▶ INCLUSIVE: Bs → Xc lνl , with multi-particle states
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Introduction and motivations

[Aoki et al. (2021)1]

▶ ∼ 3σ discrepancy (in the plot) between
inclusive/exclusive determination;

▶ lattice QFT represents a fully
non-perturbative theoretical approach to
QCD;

▶ no current predictions from lattice QCD
for the inclusive decays.

This talk: Pilot study Bs → Xclνl [Barone et al.
(2023)2]
▶ status and strategies for inclusive decays

on the lattice;
▶ future directions.

,
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Outline of the talk

Inclusive decays for the decay rate:
▶ discussion of the strategy (∼ addressing the inverse problem)

▶ comparison of two methods for the analyisis
{

Chebyshev-polynomial approach
modified Backus-Gilbert (HLT)

▶ some technical details on the Chebyshev-polynomial approach

Steps towards studies to:
▶ understand the systematics (Chebyshey-polynomial approach)
▶ (address finite-volume effects)

Related directions:
▶ ground-state limit (and P-waves)
▶ kinematic moments and comparison with continuum approaches (e.g. OPE)

,
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Differential decay rate

Bs

{ }
Xc

W +

b̄

s

νl

l+

c̄

s

dΓ
dq2dq0dEl

= G2
F |Vcb|2

8π3 Lµν W µν ,

W µν =
∑
Xc

(2π)3δ(4)(p− q − r) 1
2EB

⟨Bs(p)| Jµ† |Xc(r)⟩ ⟨Xc(r)| Jν |Bs(p)⟩ .

Leptonic tensor Hadronic tensor

contains all the non-perturbative QCD
,
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Hadronic tensor

The Hadronic tensor can be decomposed into 5 Lorentz invariant structure functions

Wi(q2, v · q) = Wi(q2, ω) , ω = EXc ,

W µν = −gµν W1 + vµvν W2 − iϵµναβvαqβ W3 + qµqν W4 + (vµqν + vνqµ) W5 .

contribute to
total decay rate

disappear after
integration over El

(massless limit)
relevant only for τ

i.e. ml ̸= 0

,
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Total decay rate

Γ = G2
F |Vcb|2

24π3

∫ q2
max

0
dq2

√
q2 X̄(q)2 ,

X̄(q2) =
∫ ωmax

ωmin

dω kµν × W µν =
2∑

l=0

∫ ωmax

ωmin

dωX(l)(q, ω) , ω = EXc

X(0) = q2W00 +
∑

i

(q2
i − q2)Wii +

∑
i ̸=j

qiWijqj ,

X(1) = −q0
∑

i

qi(W0i + Wi0) ,

X(2) = q2
0
∑

i

Wii .

portal to compute the Γ/|Vcb|2 from lattice?

kinematics

,
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Inclusive decays on the lattice
[Hansen et al. (2017)3, Hashimoto (2017)4, Gambino and Hashimoto (2020)5]

We need the non-perturbative calculation of the hadronic tensor

W µν(q, ω) ∼
∑
Xc

⟨Bs| Jµ† |Xc⟩ ⟨Xc| Jν |Bs⟩ .

On the lattice, this is achieved with a 4pt correlation function:

b
c

b

s

tsrc tsnk

Jν(t1) J†
µ(t2) ▶ tsrc, t2, tsnk fixed

▶ tsrc ≤ t1 ≤ t2

▶ t = t2 − t1

▶ t small →
signal-to-noise ratio
deteriorate with t

Cµν(t) ≃
Cµν

4pt(tsnk, t2, t1, tsrc)
C2pt(tsnk, t2)C2pt(t1, tsrc) ↔ ⟨Bs|J̃µ†(q, 0) e−tĤ J̃ν(q, 0)|Bs⟩ .
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,
Towards inclusive semileptonic decays from Lattice QCD Alessandro Barone 7/37



Lattice data (Euclidean)

t/a|
0

|
1

|
2 . . .

|
T

finite/discrete number of
time-slices t = −iτ

C(t) =
∫ ∞

0
dω ρ(ω) e−ωt ρ(ω)

trivial
−−−−−−−−−−→←−−−−−−−−−−

ill-posed problem
C(t)

lattice data
(correlation function)

spectral function:∑
j ⟨0| O |j⟩ ⟨j| O† |0⟩ δ(ω − Ej)

Extracting the hadronic tensor is an ill-posed problem (inverse problem)

Cµν(t) =
∫ ∞

0
dω Wµν(q, ω) e−ωt

∑
Xc
⟨Bs| J†

µ |Xc⟩ ⟨Xc| Jν |Bs⟩ δ(ω − EXc)

lattice data
for inclusive
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Decay rate from lattice data

X̄(q2) =
∫ ωmax

ωmin

dω W µν kµν(q, ω)

=
∫ ∞

ω0

dω W µν kµν(q, ω)θ(ωmax − ω)

=
∫ ∞

ω0

dω W µνKµν(q, ω)

kinematics factors

kernel operator
0 ≤ ω0 ≤ ωmin

Here we are NOT extracting the hadronic tensor Wµν !
We are addressing directly the integral X̄ using techniques common to a typical inverse

problem.

To extract Wµν(q, ω̄) we would replace Kµν(q, ω) → δ(ω − ω̄)

Can we trade

∫ ∞

ω0

dω W µνKµν(q, ω) ← ? → Cµν(t) =
∫ ∞

ω0

dω W µνe−ωt

lattice data

We can approximate Kµν with a polynomial in e−ω (here lattice units a = 1)

Kµν ≃ cµν,0 + cµν,1e−ω + · · ·+ cµν,N e−ωN ,

⇒ X̄ ≃ cµν,0

∫ ∞

ω0

dω W µν︸ ︷︷ ︸
Cµν (0)

+cµν,1

∫ ∞

ω0

dω W µνe−ω︸ ︷︷ ︸
Cµν (1)

+ · · ·+ cµν,N

∫ ∞

ω0

dω W µνe−ωN︸ ︷︷ ︸
Cµν (N)

.
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Polynomial approximation strategies
K(ω) : [ ω0 ,∞)→ R, K(ω) ≃

N∑
j

cj Pj(ω) .

ω0 ∈ [0, ωmin) family of polynomials in e−ω

Chebyshev approach (1)
Standard Chebyshev polynomials Tk(ω) : [−1, 1]→ [−1, 1]

Shifted Chebyshev polynomials T̃k(ω) : [ω0,∞]→ [−1, 1]
⇒ T̃k(ω) = Tk( h(ω) )

h : [ω0,∞]→ [−1, 1] , h(ω) = Ae−ω + B ,

{
h(ω0) = −1
h(∞) = 1

K(ω) ≃ c̃0

2 +
N∑

k=1
c̃kT̃k(ω) , c̃k = ⟨K, T̃k⟩ =

∫ ∞

ω0

dω K(ω)T̃j(ω)Ω̃(ω) .

generic shifted Chebyshev
T̃k(ω) =

∑k

j=0 t̃
(k)
j e−jω

map between
domains

HLT-like approach (2)
We minimize the functional (L2-norm)

A[g] =
∫ ∞

ω0

dω

K(ω)−
N∑

j=1
gje−jω

2

,

gj ↔ δA

δgj
= 0 .
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Kernel: polynomial approximation

Kµν(q, ω; t0) = e2ωt0 kµν(q, ω) θσ (ωmax − ω)
smooth step-function (sigmoid):

cut the unphysical states above ωmax,
here we fix σ = 0.02

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
aω

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

a
2
K

(0
)

00

Kernel a2K
(0)
00 (q, ω) q2 =0.26 GeV2

CHEB N=9 ω0 = 0

CHEB N=9 ω0 = 0.9ωmin

BG N=9 ω0 = 0

BG N=9 ω0 = 0.9ωmin
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Analysis strategy

X̄naive(q2) =
∫ ∞

ω0

W µνKµν(q, ω) =
N∑
j

cµν,j

∫ ∞

ω0

W µν Pj(ω) ≃
N∑
j

c̄µν,jCµν(j)

Problems
▶ noise from the data adds up and error on X̄ explodes;
▶ time-slice t = 0 must be avoided (receives contribution from both b→ c and b→ c̄bb).

0 2 4 6 8 10 12 14
t

10−7

10−6

10−5

10−4

10−3

10−2

C
µ
ν
(t

)

GammaT-GammaT q2 =0.80 GeV2

=
∑

k p
(j)
k e−kω

,
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Analysis strategy (2)

X̄ =
∫ ∞

ω0

dω W µν Kµν(ω, q; t0) e−2t0ω ⇒ X̄ ≃
N∑

j=0
c̄µν,jCµν(j + 2t0)

contains e+2t0ω

degree of polynomial approximation
limited by the available time-slices j

▶ j ↔ t: degree corresponds to a certain time-slice, so N is limited by the available data
(i.e. the choice of tsnk − trsc and t2 − trsc) and the noise of the signal;

▶ we take 2t0 = 1, i.e. as small as possible.

To control the noise we have 2 options:

▶ act on the coefficients cµν,j (HLT);
▶ act on the data Cµν

(Chebyshev-polynomial approach).

,
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N∑

j=0
c̄µν,jCµν(j + 2t0)

contains e+2t0ω

degree of polynomial approximation
limited by the available time-slices j

▶ j ↔ t: degree corresponds to a certain time-slice, so N is limited by the available data
(i.e. the choice of tsnk − trsc and t2 − trsc) and the noise of the signal;

▶ we take 2t0 = 1, i.e. as small as possible.

To control the noise we have 2 options:
▶ act on the coefficients cµν,j (HLT);
▶ act on the data Cµν

(Chebyshev-polynomial approach).

,
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Analysis strategy: Chebyshev
[Barata and Fredenhagen (1991)6, Bailas et al. (2020)7]

We can expand the kernel Kµν(ω, q; t0) with shifted Chebyshev polynomials as

X̄(q2) =
∫ ∞

ω0

W µνKµν(q, ω; t0)e−2t0ω =
N∑
j

c̃µν,j

∫ ∞

ω0

W µν T̃j(ω) e−2t0ω

where ∫ ∞

ω0

dω W µν T̃k(ω)e−2ωt0 =
k∑

j=0
t̃
(k)
j Cµν(j + 2t0) .

Chebyshev polynomials are bounded, so we normalize∫ ∞

ω0

dω W µν T̃j(ω)e−2ωt0 → −1 ≤
∫∞

ω0
dω W µν T̃j(ω)e−2ωt0∫ ∞

ω0

dω W µν T̃0(ω)︸ ︷︷ ︸
≡1

e−2ωt0

≤ 1 .

=
∑

k t̃
(j)
k e−kω

Cµν(2t0)

,
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Analysis strategy: Chebyshev (2)
[Bailas et al. (2020)7, Gambino and Hashimoto (2020)5]

The new relation is

⟨T̃k⟩µν ≡
∫∞

ω0
dω W µν T̃j(ω)e−2ωt0∫∞

ω0
dω W µν T̃0(ω)e−2ωt0

=
k∑

j=0
t̃
(k)
j

Cµν(j + 2t0)
Cµν(2t0) , |⟨T̃j⟩µν | ≤ 1 ,

C̄µν(j)

Chebyshev matrix elements

and the value of X̄µν(q2) in each channel can be obtained as (no sum over µν) here

X̄µν(q2) = Cµν(2t0)
N∑
j

c̃µν,j

∫∞
ω0

dω W µν T̃j(ω)e−2ωt0∫∞
ω0

dω W µν T̃0(ω)e−2ωt0
≡ X̄C̄µν , depends on C̄µν

We can then calculate it through the Chebyshev matrix elements as

X̄C̄µν(q2) ≃ c̃µν,0

2 +
N∑

j=1
c̃µν,j ⟨T̃j⟩µν .

We need to determine these from the data
,
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Chebyshev fit
The relations between data and Chebyshev matrix elements are

⟨T̃k⟩µν =
k∑

j=0
t̃
(k)
j C̄µν(j) , C̄µν(k) =

k∑
j=0

ã
(k)
j ⟨T̃j⟩µν

So far this are related by a linear transformation
C̄µν(0)
C̄µν(1)

...

...
C̄µν(N)

 =



ã
(0)
0 0 · · · · · · 0

ã
(1)
0 ã

(1)
1 0 · · · 0

...
...

. . . . . .
...

...
...

. . . 0
ã

(N)
0 ã

(N)
1 · · · · · · ã

(N)
N




⟨T̃0⟩µν

⟨T̃1⟩µν

...

...
⟨T̃N ⟩µν


This is not taking into account the bounds on the Chebyshev matrix elements ⟨T̃k⟩µν .
⇒ We address it through a Bayesian fit with constraints.

,
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Chebyshev fit (2)

We address the extraction of the Chebyshev through a fit with the following steps
1. start from a frequentist fit
2. enforce the bounds
3. stabilise the fit augmenting the χ2 with some priors

The χ2 (Maximum Likelihood) looks like (we drop the indices µν for simplicity)

χ2 =
N∑

i,j=1

(
C̄(i)−

i∑
α=1

ã(i)
α ⟨T̃α⟩

)
Cov−1

ij

(
C̄(j)−

j∑
α=1

ã(j)
α ⟨T̃α⟩

)

We can enforce the bounds substituting ⟨T̃α⟩ = f(τα) with

f : (−∞, +∞)→ [−1, 1]

frequentist approach: ∂χ2

∂⟨T̃α⟩ = 0↔ solving the linear system

,
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Chebyshev fit (2)

We address the extraction of the Chebyshev through a fit with the following steps
1. start from a frequentist fit
2. enforce the bounds
3. stabilise the fit augmenting the χ2 with some priors

The χ2 (Maximum Likelihood) looks like (we drop the indices µν for simplicity)

χ2 =
N∑

i,j=1

(
C̄(i)−

i∑
α=1

ã(i)
α ⟨T̃α⟩

)
Cov−1

ij

(
C̄(j)−

j∑
α=1

ã(j)
α ⟨T̃α⟩

)

We can enforce the bounds substituting ⟨T̃α⟩ = f(τα) with

f : (−∞, +∞)→ [−1, 1]

≡ f(τα), τα are now fit parameters, τα ∈ (−∞,∞)
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Chebyshev fit (2)

We address the extraction of the Chebyshev through a fit with the following steps
1. start from a frequentist fit
2. enforce the bounds
3. stabilise the fit augmenting the χ2 with some priors

The χ2
aug (Maximum a Posteriori Probability) looks like

χ2
aug =

N∑
i,j=1

(
C̄(i)−

i∑
α=1

ã(i)
α f(τα)

)
Cov−1

ij

(
C̄(j)−

j∑
α=1

ã(j)
α f(τα)

)
+ χ2

prior

We can enforce the bounds substituting ⟨T̃α⟩ = f(τα) with

f : (−∞, +∞)→ [−1, 1]

−1 ≤ f(τα) ≤ 1

gaussian prior on τα ∼ N (τ̄α, σ̄α)
τα ∈ (−∞,∞)

which stabilizes the fit

,
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Chebyshev fit (3)
In practice we choose

χ2
aug =

N∑
i,j=1

(
C̄(i)−

i∑
α=1

ã(i)
α erf

(
τα√

2

))
Cov−1

ij

(
C̄(j)−

j∑
α=1

ã(j)
α erf

(
τα√

2

))
+ χ2

prior

χ2
prior =

N∑
α=1

(τα − τ̄α )2

σ̄2
α

, τα ∼ N (0, 1)

We are fitting under a bootstrap, so it’s important to resample the prior for every bootstrap bin!

sampled from N (0, 1) ∀ bootstrap bin

= 1 (weak prior)

−4 −2 0 2 4
τ̄α

0.0

0.1

0.2

0.3

0.4

Prior distribution of τα

−→ ⟨T̃α⟩ = erf
(

τα√
2

)
−→

N (µ, σ) erf−−→ U(a, b)
−1.0 −0.5 0.0 0.5 1.0

〈T̃α〉
0.0

0.1

0.2

0.3

0.4

0.5

Prior distribution of 〈T̃α〉

,
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Chebyshev fit: practical example
We consider the reconstruction of the correlator C̄µν for the channel AiAi at q2 = 0

0 2 4 6 8
t/a

10−4

10−3

10−2

10−1

100

C̄
µ
ν
(t

)

AiAi q2 =0.00 GeV2

original data

C̄µν(q, t) → C̄fit
µν(q, t) =

k∑
j=0

ã
(k)
j ⟨T̃j⟩µν

,
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Chebyshev fit: practical example
We consider the reconstruction of the correlator C̄µν for the channel AiAi at q2 = 0
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)

Fit reconstruction, AiAi q2 =0.00 GeV2

original data

Chebyshev fit N=0

Fit N = 0 (i.e. just priors)

C̄µν(0) = ⟨T̃0⟩µν ≡ 1

In practice we are trading our original data for a refitted version

C̄µν(q, t) → C̄fit
µν(q, t) = C̄µν(q, t) + δC̄µν(q, t) correction that accounts for

the Chebyshev bounds
,
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Chebyshev fit: practical example
We consider the reconstruction of the correlator C̄µν for the channel AiAi at q2 = 0
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Fit reconstruction, AiAi q2 =0.00 GeV2

original data

Chebyshev fit N=1

Fit N = 1

C̄µν(k) =
k∑

j=0

ã
(k)
j ⟨T̃j⟩µν , 0 ≤ k ≤ 1

In practice we are trading our original data for a refitted version

C̄µν(q, t) → C̄fit
µν(q, t) = C̄µν(q, t) + δC̄µν(q, t) correction that accounts for

the Chebyshev bounds
,
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Chebyshev fit: practical example
We consider the reconstruction of the correlator C̄µν for the channel AiAi at q2 = 0
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Fit reconstruction, AiAi q2 =0.00 GeV2

original data

Chebyshev fit N=3

Fit N = 3

C̄µν(k) =
k∑

j=0

ã
(k)
j ⟨T̃j⟩µν , 0 ≤ k ≤ 3

In practice we are trading our original data for a refitted version

C̄µν(q, t) → C̄fit
µν(q, t) = C̄µν(q, t) + δC̄µν(q, t) correction that accounts for

the Chebyshev bounds
,
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Chebyshev fit: practical example
We consider the reconstruction of the correlator C̄µν for the channel AiAi at q2 = 0
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original data

Chebyshev fit N=9

Fit N = 9

C̄µν(k) =
k∑

j=0

ã
(k)
j ⟨T̃j⟩µν , 0 ≤ k ≤ 9

In practice we are trading our original data for a refitted version

C̄µν(q, t) → C̄fit
µν(q, t) = C̄µν(q, t) + δC̄µν(q, t) correction that accounts for

the Chebyshev bounds
,
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Analysis strategy: modified Backus-Gilbert (HLT)
[Backus and Gilbert (1968)8, Hansen et al. (2019)9, Bulava et al. (2021)10]

Aside from the functional A[g], which approximates the target function (kernel), we include
some information on the data

A[g] =
∫ ∞

ω0

dω

Kµν(q, ω; t0)−
N∑

j=1
gj e−jω

2

B[g] = σ2
X̄

=
N∑

i,j=1
giCov

[
C̄µν(i), C̄µν(j)

]
gj , C̄µν(i) = Cµν(i + 2t0)

Cµν(2t0)

exponential basis

We minimise

Wλ[g] = (1− λ)A[g]
A[0] + λB[g] .

The parameter λ control the interplay between the 2 functionals, i.e. the balance between
statistical and systematic errors.

,
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Analysis strategy: modified Backus-Gilbert more in general
[Alexandrou et al. (2022)11]

We can generalise to allow the use of an arbitrary basis of polynomials P̃k(ω) in e−ω

P̃k(ω) =
k∑

j=0
p̃

(k)
j e−jω , ω ∈ [ω0,∞)

such that the functionals read

A[g] =
∫ ∞

ω0

dω Ω̃(ω)

Kµν(q, ω; t0)−
N∑

j=0
gj P̃j(ω)

2

B[g] =
N∑

k,l=1
gkCov

[
C̄P

µν(k) , C̄P
µν(l)

]
gl

smooth weight function

C̄P
µν(k) =

∑k
j=0 p̃

(k)
j C̄µν(j)

arbitrary basis

,
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Analysis strategy: Backus-Gilbert generalised (2)

Why generalising? The solution of the Backus-Gilbert problem with λ = 0 is given by

A · g = K ↔ g = A−1 ·K

with

Aij =
∫ ∞

ω0

dω Ω̃(ω)P̃i(ω)P̃j(ω) ,

Ki =
∫ ∞

ω0

dω Ω̃(ω)P̃i(ω)K(ω)

In general the the matrix A is ill-conditioned and its inverse requires arbitrary precision. If we
choose the Ω̃ and P̃j = T̃j from the Chebyshev we can take advantage of their orthogonality
property such that A is diagonal! The solution for λ ̸= 0 is

gλ = W−1
λ ·K , Wλ = (1− λ)A + λA[0]B

,
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Inclusive decays on the lattice: setup
Simulations carried out on the DiRAC Extreme Scaling service at the University of Edinburgh
using the Grid [Boyle et al.12] and Hadrons [Portelli et al.13] software packages

Pilot study with RBC/UKQCD ensembles
[Allton et al. (2008)14]:
▶ lattice 243 × 64;
▶ lattice spacing a−1 = 1.79 GeV;
▶ Mπ ≃ 330 MeV;
▶ 120 gauge configurations, 8 sources;
▶ 8+2 momenta (Twisted BC).

Simulation:
▶ RHQ action for b quark [El-Khadra et al. (1997)15, Christ et al. (2007)16, Lin and Christ (2007)17]:

▶ based on clover action with anisotropic terms;
▶ 3 parameters non-perturbatively tuned to remove higher order discretization errors;
▶ b quark simulated at its physical mass;

▶ DWF action for s, c quarks with near-to-physical mass.
,

Towards inclusive semileptonic decays from Lattice QCD Alessandro Barone 23/37



Results and comparison
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X̄ , q2
max=5.860 GeV2
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BGcheb N=9 ω0 = 0

BGcheb N=9 ω0 = 0.9ωmin

Key points:
▶ Chebyshev and Backus-Gilbert approaches are fully compatible;
▶ pilot study:

▶ values are in the right ballpark (compared to B decay rate, based on SU(3) flavour
symmetry);

▶ low statistics, roughly 5 − 10% error.
,
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First interpretation of the two methods
Recalling X̄(q2) = Cµν(2t0)X̄C̄µν we can interpret the two methods as

X̄C̄µν = X̄naive
C̄µν

+ δX̄C̄µν ,

{
δX̄CHEB

C̄µν
=
∑N

k=0 c̃µν,kδC̄µν(k) ,

δX̄BG
C̄µν

=
∑N

k=0 δgµν,kC̄µν(k)

i.e. a “naive” piece, where we just blindely apply the polynomial approximation, and a
correction term, which is essentially a noisy zero that takes care of the variance reduction.
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−40000
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Systematic errors: polynomial approximation (1)
1) Truncation error of the polynomial approximation

X̄(q2) =Cµν(2t0)
[ N∑

j=0
c̃µν,j⟨T̃j⟩µν

+
∞∑

j=N+1
c̃µν,j⟨T̃j⟩µν

]
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2
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2
)

X̄(q2) with extra uniform Chebyshev

N=9 ω0 = 0

N=50 ω0 = 0

N=9 ω0 = 0.9ωmin

N=50 ω0 = 0.9ωmin

Limited by the available time-
slices of Cµν , here N = 9

We add extra term assuming
⟨T̃j⟩µν ∼ U(−1, 1)

⇒ plot suggests that the truncation error is mild (with the current statistical precision).
,
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Systematic errors: polynomial approximation (1)
1) Truncation error of the polynomial approximation (more aggressive)

X̄(q2) =Cµν(2t0)
[ N∑

j=0
c̃µν,j⟨T̃j⟩µν

+
∞∑

j=N+1
c̃µν,j⟨T̃j⟩µν

]
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)

X̄(q2) with extra +1/-1 Chebyshev

N=9 ω0 = 0

N=50 ω0 = 0

N=9 ω0 = 0.9ωmin

N=50 ω0 = 0.9ωmin

Limited by the available time-
slices of Cµν , here N = 9

We add extra term assuming
⟨T̃j⟩µν ∈ {−1, 1}

⇒ plot suggests that the truncation error is mild (with the current statistical precision)
,
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Systematic errors: polynomial approximation (1)
To understand the saturation:
▶ we take a priori all the (N=9) Chebyshev to be uniform (result is expected to be correct,

but noisy);
▶ we introduce the actual Chebyshev determined from the fit step by step (starting from the

lowest degrees) to see how the situation changes.
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Systematic errors: polynomial approximation (2)
2) Limit σ → 0 of the sigmoid Kσ,µν(q, ω; t0) ∝ θσ(ωmax − ω)

X̄(q2) = lim
σ→0

( lim
V →∞

)X̄σ(q2)

The order of the limit does not commute. Here only one volume, so the second limit is
neglected.
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BGexp ω0 = 0

BGcheb ω0 = 0

CHEB ω0 = 0.9ωmin

BGexp ω0 = 0.9ωmin

BGcheb ω0 = 0.9ωmin

upper: q2 = 0.26GeV2

lower: q2 = 4.77GeV2

⇒ here very mild σ dependence for larger q2

(N = 9 is small, hence the quality of the
reconstruction for different σ is not strongly
affected)
NB: limit must be taken with care together
with N →∞
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A glimpse at possible finite-volume effects
To address the volume limit we need to take into account finite volume effects. Here, we
address those directly repeating the computation on a set ensemble L3 × 64 differring only by
the volume L = 16, 20, 24, 32
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45
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2
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C1M16

C1M20

C1M

C1M32

The data suggests mild dependence, BUT we cannot really resolve it with the current
statistical precision. We can also try to model them analytically (case Ds → X lν ⇒ Ryan
Kellermann’s talk @Lattice2024)

,
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Ground-state limit

We can consider the limit where only the ground state dominates, i.e.

Wµν → δ(ω − E
D

(∗)
s

) 1
4MBs

E
D

(∗)
s

⟨Bs| J†
µ|D(∗)

s ⟩⟨D(∗)
s |Jν |Bs⟩

If we decompose
X̄ = X̄∥ + X̄⊥

and restrict to the vector currents (VV) the matrix element can be decomposed as

⟨Ds|Vµ |Bs⟩ = f+(q2)(pBs + pDs)µ + f−(q2)(pBs − pDs)µ

and we can show that

X̄
∥
V V → MBs

EDs

q2|f+(q2)|2

⇒ cross-check for the analysis
,
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Ground-state limit: exclusive decay
The matrix element and form factors can be extracted from 3pt-correlation functions. From
that we can generate mock data for the 4pt functions (where only the ground state contributes)

CG
µν = 1

4MBs
EDs

⟨Bs|V †
µ |Ds⟩⟨Ds|Vν |Bs⟩ e−EDs t

and run the analysis!
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q2 (GeV2)
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X̄
‖ V
V

(G
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2
)

exclusive expected

exclusive ω0 = 0.9ωmin

inclusive ω0 = 0.9ωmin

A good control over the ground states
(S-waves, Ds, D∗

s) will allow us to
subtract it from the 4pt correlator
and then address the study of the
P-wave contributions (⇒ Zhi Hu’s
talk @Lattice2024)

,
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Moments: continuum
[with @Matteo Fael]

So far we focused on the decay rate, but we can consider other observables for inclusive decays.
We consider q2 kinematical moments

Qn(q2
cut) =

∫ q2
max

q2
cut

(q2)n

[
dΓ

dq2 dq0 dEl

]
dq2 dq0 dEl

It is usual to compare centralized moments qn(q2
cut) of the differential distributions, since

they are more sensitive to the power corrections and independent from the value of |Vcb|:

q1(q2
cut) =

〈
q2〉

q2≥q2
cut

, for n = 1,

qn(q2
cut) =

〈
(q2 − ⟨q2⟩)n

〉
q2≥q2

cut
, for n ≥ 2.

with
⟨(q2)n⟩q2≥q2

cut
= Qn

Q0
,

,
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Moments: lattice
[Gambino et al. (2022)28, Barone et al. (2024)29]

On the lattice we need to change the kinematic variables (q0, q2)→ (ω, q2)

Qn(q2
cut) =

∫ q2
max

q2
cut

(q2)n

[
dΓ

dq2 dω dEl

]
dq2dωdEl ,

{
q2 = (MBs

− ω)2 − q2

ω = MBs
− q0

And repeat the same steps as for the decay rate

Qn(q2
cut) =

∫ q2
max

q2
cut

dq2
√

q2X̄Qn
(q2) , X̄Qn

(q2) =
∫ ωmax

ωmin

dω kQn,µν ×W µν

kinematics (→ kernel K
(n)
Q,µν)

,
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Moments: lattice “VS” continuum
Continuum predictions for B → D lνl, we assume SU(3)-flavour symmetry. Lattice data come
from only one ensemble with only close-to-physical hadrons masses:

MPDG
Bs

= 5.367 GeV , M lat
Bs

= 5.3670(20) GeV
MPDG

Ds
= 1.968 GeV , M lat

Ds
= 1.6994(11) GeV
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inary
n=0

mc = mphys
c RPI
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c RPI

mc < mphys
c PERP

ω0 = 0

ω0 = 0.9ωmin

We rescale the charm mass using relations
between heavy meson and heavy quarks in
HQET:

MDs
= mc + Λ + µ2

π − dH/2µ2
G

2mc
+ O

(
1

m2
c

)
We consider two basis for the HQET
parameters, RPI [Bernlochner et al. (2022)27] and
PERP [Finauri and Gambino (2024)30]

,
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Moments: lattice “VS” continuum
The agreement gets worse as we increase n for both RPI/PERP and lattice, but incertainty on
the determination of the rescaled mc not included.
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NB: on the lattice side, small q2
cut contains large q2, hence larger cut-off effects .

⇒ better agreement expected on the tails
,
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Centralized moments: lattice “VS” continuum
Preliminary results - feasibility study.
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Lattice data (after extrapolation to the physical world) can be used to extract HQET
parameters used in the OPE expansion

,
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Summary and outlook
Summary:
▶ promising prospects for inclusive decays on the lattice;
▶ solid approach for the analysis: Chebyshev and Backus-Gilbert approaches compatible

within error.

Coming next:
▶ continue to work towards understanding the systematics involved in solving the inverse

problem;
▶ dedicated simulations to address the systematics for polynomial approximation, finite

volume effects, continuum limit,...;
▶ understand better the ground state limit (compare with form factors) and address the

excited states (P-waves);
▶ compute more observables (kinematic moments) to compare with experiments (LHCb,

Belle II) and continuum approaches.
⇒ prepare for a full study Bs/B (and in parallel also Ds/D).

THANK YOU!

,
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Chebyshev polynomial approximation: more
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Kernels
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Kernels Backus-Gilbert
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Chebyshev fit: example

True chebyshev distribution → data → data + noise → analysis

,
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Chebyshev data reconstruction - distribution
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Chebyshev data reconstruction - data
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Analysis strategy: Backus-Gilbert - a different perspective
With the previous idea we can put things in a equivalent but different perspective. We can
write the coefficients as

gi = ci + ϵi case λ = 0
and require that the correction ϵi approximate the null function through the minimisation of

Wλ[ϵ]

Wλ[ϵ] = (1− λ)A[ϵ] + λB[ϵ]

A[ϵ] =
∫ ∞

ω0

dω Ω̃(ω)

 N∑
j=0

ϵjP̃j(ω)

2

,

B[ϵ] =
N∑

i,j=1

[
2ϵiσ

P
ijcj + ϵiσ

P
ijϵj

]
, σP

ij = Cov
[
C̄P

µν(i), C̄P
µν(j)

]
NB: this is equivalent to the previous case! It’s just a different perspective which may give
more insight in particular with the comparison with the Chebyshev case.

,
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Analysis strategy: Backus-Gilbert constraints
[Bulava et al. (2021)10]

On top of that, we also include a constraint on the area:∫ ∞

ω0

dω Ω̃(ω)
N∑

j=0
gjP̃j(ω) =

∫ ∞

ω0

dω Ω̃(ω)Kµν(q, ω) .

The value of λ can be in principle tuned arbitrarily. In practice, we choose the value of optimal
balance λ∗ between statistical and systematic errors with

W (λ) = Wλ[gλ] ,
dW (λ)

dλ

∣∣∣∣
λ∗

= 0

⇒ A[gλ∗ ]
A[0] = B[gλ∗

]

,
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First interpretation of the two methods
Recalling X̄(q2) = Cµν(2t0)X̄C̄µν we can interpret the two methods as

X̄C̄µν = X̄naive
C̄µν

+ δX̄C̄µν ,

{
δX̄CHEB

C̄µν
=
∑N

k=0 cµν,kδCµν(k) ,

δX̄BG
C̄µν

=
∑N

k=0 δgµν,kCµν(k)

i.e. a “naive” piece, where we just blindely apply the polynomial approximation, and a
correction term, which is essentially a noisy zero that takes care of the variance reduction.
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X̄ contributions
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Scan over λ (Backus-Gilbert)
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Systematics errors: finite-volume effects in Ds → Xs lνl (1)
[Kellermann et al. (2024)18]

Digression on the study of a parallel project for Ds → Xs lνl

We address finite-volume effects combining lattice data and analytical model by:
▶ consider 2-body final states (KK̄ → dominant contribution)
▶ vary the limit of the energy integral ω, with a treshold ωth > ωmax to include higher

energy states

We model the spectral function (here for the case J = 0)

ρJ=0
L

(ω) = π
V

∑
qqq

1
4(qqq2+m2)

δ

(
ω − 2

√
qqq2 + m2

)
V →∞

−−−−−→

,
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Systematics errors: finite-volume effects in Ds → Xs lνl (2)

Given the assumption, we model the correlator to be

C̄(t) = A0e−E0t + s(L)
∑

i

Aie
−Eit 1

E2
i −m2

J

,

⇒ good agreement with data ✓ (here q2 = 0)!

We test on X̄
(2)
AA(q2 = 0)

Heaviside → smeared sigmoid

X̄
(2)
σ =

∫ ωth

ω0

dω

( Wµν

ρL

)
Kσ,µν ⇒

lattice data

model

,
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P-wave and “1/2 versus 3/2 puzzle”
[Bigi et al. (2007)22]

From the study of four-point correlation function we can address the decay

Bs → D∗∗
s lνl , D∗∗

s = {Ds,1, D∗
s,2, D∗

s,0, D∗
s,1}

D∗∗
s ≡ P-wave →

{
jP

c = (1/2)+ + jP
b ⇒ JP = (0+, 1+)

jP
c = (3/2)+ + jP

b ⇒ JP = (1+, 2+)

Motivation: the composition of B semileptonic decay is [Aubert et al. (2008)19, Liventsev et al.
(2008)20]

B → Xc lνl ⇒ Xc =


D(∗) ∼ 70% (S-wave)
D1, D∗

2 ∼ 15% (jP
c = (3/2)+)

? ∼ 15% natural candidate is jP
c = (1/2)+)

BUT the proposal is in contrast with predictions from sum rules [Uraltsev (2001)21] → puzzle!
,
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P-wave from inclusive data
[Becirevic et al. (2005)24, Atoui et al. (2015)25, Bailas et al. (2019)26]

How do we extract the P-wave contribution from the lattice data?

Cµν(q, t) =
∑
X

1
4MBsEX

⟨Bs| J†
µ |X⟩ ⟨X| Jν |Bs⟩ e−EX t

▶ control the ground-state Ds, D∗
s (S-wave) from three-point functions

▶ subtract this ground state from the four-point functions

CP−wave
µν (q, t) =

∑
X=D

(∗)
s,i

1
4MBsEX

⟨Bs| J†
µ |X⟩ ⟨X| Jν |Bs⟩ e−EX t

▶ combine different channel to disantangle as much as possible the underlying form factors
(using HQET formalism) [Bernlochner and Ligeti (2017)23]

⟨D(∗)
s,i (v′, ε)|Jµ |Bs(v)⟩ =

⟨D(∗)
s,i (pDs

, ε)|Jµ |Bs(pBs
)⟩√

MDsMBs ,
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P-wave: zero recoil example
“Easy” case: at q2 = 0 some channels contains only contributions from specific states.

1) EFFECTIVE MASS

S-wave

CV0V0(0, t) = |h+|2e−MDs t

CAkAk
(0, t) = 1

4(1 + w)2|hA1 |2e−MD∗
s

t

P-wave

CA0A0(0, t) = |g+|2e
−MD∗

s,0
t

CVkVk
(0, t) ≃ 1

4 |gV1 |2e
−MD∗

s,1
t

2) EFFECTIVE FF

S-wave

CV0V0(0, t) = |h+|2e−MDs t

CAkAk
(0, t) = 1

4(1 + w)2|hA1 |2e−MD∗
s

t

P-wave

CA0A0(0, t) = |g+|2e
−MD∗

s,0
t

CVkVk
(0, t) ≃ 1

4 |gV1 |2e
−MD∗

s,1
t

,
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Moments

Hadronic mass and lepton energy moments.
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Reference values for numerical evaluation of the HQE (1)

RPI basis from [Bernlochner et al. (2022)27]
For the evaluation using the RPI basis utilized in [Bernlochner et al. (2022)27] we have the
following setup:
▶ We include power corrections up to 1/m4

b with r4
E ̸= 0 and r4

G ̸= 0. We have
sB = sE = sqB = 0 as in the default fit of [Bernlochner et al. (2022)27].
We use central values and uncertainties from Tab. 4 and the correlations from Fig. 9.

▶ We include the NNLO corrections in the free quark approximation and the NLO
corrections to µG and ρD. This is at variance with Ref. [Bernlochner et al. (2022)27] where
only the NLO correction in the free quark approximation were included for the moments.

▶ We adopt as reference values for the quark masses

mkin
b (1 GeV) = 4.562 GeV, mc(2 GeV) = 1.094 GeV.

,
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Reference values for numerical evaluation of the HQE (1)

Historical basis (PERP basis) from [Finauri and Gambino (2024)30]
For the evaluation using the PERP basis utilized in [Finauri and Gambino (2024)30] we have the
following setup:
▶ We include power corrections up to 1/m3

b as in the default fit of [Finauri and Gambino
(2024)30].
We use central values, uncertainties and the correlations from Tab. 4.

▶ We include the NNLO corrections in the free quark approximation and the NLO
corrections to µG and ρD. In [Finauri and Gambino (2024)30] it was included only the NNLO
corrections proportional to α2

sβ0. It included the NLO corrections to µG and ρD.
▶ We adopt as reference values for the quark masses

mkin
b (1 GeV) = 4.562 GeV, mc(2 GeV) = 1.094 GeV.

,
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