

Towards inclusive semileptonic decays from Lattice QCD

Alessandro Barone

in collaboration with

Ahmed Elgaziari, Andreas Jüttner, Shoji Hashimoto, Hu Zhi, Takashi Kaneko, Ryan Kellermann

> Lattice@CERN 2024 11 July 2024, Geneva

Semileptonic decays: dictionary

Focus on weak semileptonic $B_{(s)}$ -meson decays *All the techniques presented can be applied to similar semileptonic decay, e.g. $B_{(s)} \rightarrow X_{c/u} \, l\nu_l$ or $D_{(s)} \rightarrow X_{d/s} \, l\nu_l$

mediated by the weak hamiltonian

$$H_W = \frac{4G_F}{\sqrt{2}} V_{cb} \left[\bar{b}_L \gamma^\mu c_L \right] \left[\bar{\nu}_l \gamma_\mu l \right]$$

- **EXCLUSIVE**: $B_s \rightarrow D_s \, l \nu_l$, with just one hadron in the final state
- ▶ INCLUSIVE: $B_s \rightarrow X_c \, l\nu_l$, with multi-particle states

Introduction and motivations

- ► $\sim 3\sigma$ discrepancy (in the plot) between inclusive/exclusive determination;
- lattice QFT represents a fully non-perturbative theoretical approach to QCD;
- no current predictions from lattice QCD for the inclusive decays.

This talk: Pilot study $B_s \rightarrow X_c l \nu_l$ [Barone et al. $(2023)^2$]

- status and strategies for inclusive decays on the lattice;
- future directions.

Outline of the talk

Inclusive decays for the decay rate:

- \blacktriangleright discussion of the strategy (\sim addressing the inverse problem)

comparison of two methods for the analysis modified Backus-Gilbert (HLT)

some technical details on the Chebyshev-polynomial approach

Steps towards studies to:

- understand the systematics (Chebyshey-polynomial approach)
- (address finite-volume effects)

Related directions:

- ground-state limit (and P-waves)
- kinematic moments and comparison with continuum approaches (e.g. OPE)

Differential decay rate

Hadronic tensor

The Hadronic tensor can be decomposed into 5 Lorentz invariant structure functions

$$W_i(q^2, v \cdot q) = W_i(q^2, \omega), \qquad \omega = E_{X_c},$$

Total decay rate

$$\begin{split} \Gamma &= \frac{G_F^2 |V_{cb}|^2}{24\pi^3} \int_0^{q_{\max}^2} \mathrm{d}q^2 \sqrt{q^2} \,\bar{X}(q)^2 \,, \\ & \text{kinematics} \\ \hline & \bar{X}(q^2) = \int_{\omega_{\min}}^{\omega_{\max}} \mathrm{d}\omega \underbrace{\stackrel{\uparrow}{k_{\mu\nu}}}_{k_{\mu\nu}} \times \underbrace{W^{\mu\nu}}_{\downarrow} = \sum_{l=0}^2 \int_{\omega_{\min}}^{\omega_{\max}} \mathrm{d}\omega X^{(l)}(q,\omega) \,, \quad \omega = E_{X_c} \end{split}$$
portal to compute the $\Gamma/|V_{cb}|^2$ from lattice?

$$\begin{split} X^{(0)} &= \boldsymbol{q}^2 W_{00} + \sum_i (q_i^2 - \boldsymbol{q}^2) W_{ii} + \sum_{i \neq j} q^i W_{ij} q^j ,\\ X^{(1)} &= -q_0 \sum_i q^i (W_{0i} + W_{i0}) ,\\ X^{(2)} &= q_0^2 \sum_i W_{ii} . \end{split}$$

Inclusive decays on the lattice

[Hansen et al. (2017)³, Hashimoto (2017)⁴, Gambino and Hashimoto (2020)⁵]

We need the non-perturbative calculation of the hadronic tensor

$$W^{\mu
u}(\boldsymbol{q},\omega) \sim \sum_{X_c} \left\langle B_s \right| J^{\mu\dagger} \left| X_c \right\rangle \left\langle X_c \right| J^{
u} \left| B_s \right\rangle.$$

Inclusive decays on the lattice

[Hansen et al. (2017)³, Hashimoto (2017)⁴, Gambino and Hashimoto (2020)⁵]

We need the non-perturbative calculation of the hadronic tensor

$$W^{\mu
u}(\boldsymbol{q},\omega) \sim \sum_{X_c} \left\langle B_s \right| J^{\mu\dagger} \left| X_c \right\rangle \left\langle X_c \right| J^{\nu} \left| B_s \right\rangle.$$

On the lattice, this is achieved with a **4pt correlation function**:

Lattice data (Euclidean)

$$\begin{array}{c|c} & & & & \\ \hline 0 & 1 & 2 & \cdots & T \\ & & & \\ 1 &$$

finite/discrete number of time-slices $t=-i\tau$

Lattice data (Euclidean)

finite/discrete number of $\mapsto t/a$ time-slices $t = -i\tau$ 0 2 T. . . lattice data (correlation function) $C(t) = \int_0^\infty \mathrm{d}\omega \,\rho(\omega) \,e^{-\omega t}$ trivial C(t) $\rho(\omega)$ ill-posed problem spectral function: $\sum_{i} \langle 0 | \mathcal{O} | j \rangle \langle j | \mathcal{O}^{\dagger} | 0 \rangle \delta(\omega - E_{j})$

Extracting the hadronic tensor is an ill-posed problem (inverse problem)

Decay rate from lattice data

$$\bar{X}(\boldsymbol{q}^{2}) = \int_{\omega_{\min}}^{\omega_{\max}} \mathrm{d}\omega \, W^{\mu\nu} \underbrace{k_{\mu\nu}(\boldsymbol{q},\omega)}_{\boldsymbol{k}_{\mu\nu}(\boldsymbol{q},\omega)} \\ = \int_{\omega_{0}}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} \underbrace{k_{\mu\nu}(\boldsymbol{q},\omega)\theta(\omega_{\max}-\omega)}_{\boldsymbol{\omega}_{0}} \rightarrow \text{ kernel operator} \\ = \int_{\omega_{0}}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} K_{\mu\nu}(\boldsymbol{q},\omega)$$

Here we are NOT extracting the hadronic tensor $W_{\mu\nu}!$ We are addressing directly the integral \bar{X} using techniques common to a typical inverse problem.

To extract $W_{\mu\nu}(\boldsymbol{q},\bar{\omega})$ we would replace $K_{\mu\nu}(\boldsymbol{q},\omega) \rightarrow \delta(\omega-\bar{\omega})$

Decay rate from lattice data

$$\bar{X}(\boldsymbol{q}^{2}) = \int_{\omega_{\min}}^{\omega_{\max}} \mathrm{d}\omega \, W^{\mu\nu} \underbrace{k_{\mu\nu}(\boldsymbol{q},\omega)}_{\boldsymbol{k}_{\mu\nu}(\boldsymbol{q},\omega)} \\ = \int_{\omega_{0}}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} \underbrace{k_{\mu\nu}(\boldsymbol{q},\omega)\theta(\omega_{\max}-\omega)}_{\boldsymbol{\omega}_{0}} \rightarrow \text{ kernel operator} \\ = \int_{\omega_{0}}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} K_{\mu\nu}(\boldsymbol{q},\omega)$$

Can we trade

$$\int_{\omega_0}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} K_{\mu\nu}(q,\omega) \quad \leftarrow \begin{array}{c} \mathbf{?} \\ \rightarrow \\ \downarrow \\ \\ \mathsf{lattice \ data} \end{array} = \int_{\omega_0}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} e^{-\omega t}$$

Decay rate from lattice data

$$\bar{X}(\boldsymbol{q}^{2}) = \int_{\omega_{\min}}^{\omega_{\max}} \mathrm{d}\omega \, W^{\mu\nu} \underbrace{k_{\mu\nu}(\boldsymbol{q},\omega)}_{\boldsymbol{k}_{\mu\nu}(\boldsymbol{q},\omega)} \\ 0 \leq \omega_{0} \leq \omega_{\min} \xleftarrow{=} \int_{\omega_{0}}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} \underbrace{k_{\mu\nu}(\boldsymbol{q},\omega)\theta(\omega_{\max}-\omega)}_{\boldsymbol{\omega}_{0}} \rightarrow \text{kernel operator} \\ = \int_{\omega_{0}}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} K_{\mu\nu}(\boldsymbol{q},\omega)$$

We can approximate $K_{\mu\nu}$ with a polynomial in $e^{-\omega}$ (here lattice units a = 1)

$$K_{\mu\nu} \simeq c_{\mu\nu,0} + c_{\mu\nu,1}e^{-\omega} + \dots + c_{\mu\nu,N}e^{-\omega N}$$

Polynomial approximation strategies

ъr

Polynomial approximation strategies

$$\begin{split} K(\omega): \llbracket \omega_0, \infty) &\to \mathbb{R}, \quad K(\omega) \simeq \sum_j^N c_j \boxed{P_j(\omega)}, \\ &\downarrow \\ \omega_0 \in [0, \omega_{\min}) & \text{family of polynomials in } e^{-\omega} \end{split}$$

λT

Chebyshev approach (1)

Standard Chebyshev polynomials $T_k(\omega) : [-1,1] \to [-1,1]$ Shifted Chebyshev polynomials $\tilde{T}_k(\omega) : [\omega_0, \infty] \to [-1,1]$ $h : [\omega_0, \infty] \to [-1,1], \quad h(\omega) = Ae^{-\omega} + B,$ $h : [\omega_0, \infty] \to [-1,1], \quad h(\omega) = Ae^{-\omega} + B,$ $h(\omega) = 1$ $h(\omega) = 1$ $h(\omega) = 1$ $\tilde{T}_k(\omega) = T_k(h(\omega))$ \downarrow $\tilde{T}_k(\omega) = T_k(h(\omega))$ $\tilde{T}_k(\omega) = T_k(h(\omega))$ $\tilde{T}_k(\omega) = T_k(h(\omega))$

$$K(\omega) \simeq \frac{\tilde{c}_0}{2} + \sum_{k=1}^N \tilde{c}_k \tilde{T}_k(\omega), \qquad \tilde{c}_k = \langle K, \tilde{T}_k \rangle = \int_{\omega_0}^\infty \mathrm{d}\omega \, K(\omega) \tilde{T}_j(\omega) \tilde{\Omega}(\omega).$$

Polynomial approximation strategies

ъr

HLT-like approach (2)

We minimize the functional $(L_2$ -norm)

$$A[g] = \int_{\omega_0}^{\infty} \mathrm{d}\omega \left[K(\omega) - \sum_{j=1}^{N} g_j e^{-j\omega} \right]^2,$$

$$g_j \quad \leftrightarrow \quad \frac{\delta A}{\delta g_j} = 0 \,.$$

Kernel: polynomial approximation

$$K_{\mu
u}(\boldsymbol{q},\omega;t_0) = e^{2\omega t_0} k_{\mu
u}(\boldsymbol{q},\omega) \left[\theta_{\sigma} \left(\omega_{\max} - \omega \right) \right] \longrightarrow$$

smooth step-function (sigmoid): cut the unphysical states above ω_{\max} , here we fix $\sigma = 0.02$

Kernel: polynomial approximation

$$K_{\mu\nu}(\boldsymbol{q},\omega;t_0) = e^{2\omega t_0} k_{\mu\nu}(\boldsymbol{q},\omega) \theta_{\sigma} (\omega_{\max} - \omega) \longrightarrow$$

smooth step-function (sigmoid): cut the unphysical states above ω_{max} , here we fix $\sigma = 0.02$

Kernel: polynomial approximation

$$K_{\mu
u}(\boldsymbol{q},\omega;t_0) = e^{2\omega t_0} k_{\mu
u}(\boldsymbol{q},\omega) \left[\theta_{\sigma} \left(\omega_{\max} - \omega \right) \right] \longrightarrow$$

smooth step-function (sigmoid): cut the unphysical states above ω_{\max} , here we fix $\sigma = 0.02$

Analysis strategy

$$= \sum_{k} p_{k}^{(j)} e^{-k\omega}$$
$$\bar{X}^{\text{naive}}(\boldsymbol{q}^{2}) = \int_{\omega_{0}}^{\infty} \boldsymbol{W}^{\mu\nu} K_{\mu\nu}(\boldsymbol{q},\omega) = \sum_{j}^{N} c_{\mu\nu,j} \int_{\omega_{0}}^{\infty} \boldsymbol{W}^{\mu\nu} P_{j}(\omega) \simeq \sum_{j}^{N} \bar{c}_{\mu\nu,j} C^{\mu\nu}(j)$$

Problems

- \blacktriangleright noise from the data adds up and error on \bar{X} explodes;
- time-slice t = 0 must be avoided (receives contribution from both $b \to c$ and $b \to \overline{c}bb$).

degree of polynomial approximation limited by the available time-slices j

$$\bar{X} = \int_{\omega_0}^{\infty} d\omega W^{\mu\nu} \underbrace{K_{\mu\nu}(\omega, \boldsymbol{q}; t_0)}_{K_{\mu\nu}(\omega, \boldsymbol{q}; t_0)} e^{-2t_0\omega} \quad \Rightarrow \quad \bar{X} \simeq \sum_{j=0}^{N} \bar{c}_{\mu\nu,j} C^{\mu\nu}(j+2t_0)$$

- ▶ $j \leftrightarrow t$: degree corresponds to a certain time-slice, so N is limited by the available data (i.e. the choice of $t_{snk} t_{rsc}$ and $t_2 t_{rsc}$) and the noise of the signal;
- we take $2t_0 = 1$, i.e. as small as possible.

degree of polynomial approximation limited by the available time-slices j

$$\bar{X} = \int_{\omega_0}^{\infty} d\omega W^{\mu\nu} \underbrace{K_{\mu\nu}(\omega, \boldsymbol{q}; t_0)}_{K_{\mu\nu}(\omega, \boldsymbol{q}; t_0)} e^{-2t_0\omega} \quad \Rightarrow \quad \bar{X} \simeq \sum_{j=0}^{N} \bar{c}_{\mu\nu,j} C^{\mu\nu}(j+2t_0)$$

- ▶ $j \leftrightarrow t$: degree corresponds to a certain time-slice, so N is limited by the available data (i.e. the choice of $t_{snk} t_{rsc}$ and $t_2 t_{rsc}$) and the noise of the signal;
- we take $2t_0 = 1$, i.e. as small as possible.

To control the noise we have 2 options:

degree of polynomial approximation limited by the available time-slices j

$$\bar{X} = \int_{\omega_0}^{\infty} d\omega W^{\mu\nu} \underbrace{K_{\mu\nu}(\omega, \boldsymbol{q}; t_0)}_{K_{\mu\nu}(\omega, \boldsymbol{q}; t_0)} e^{-2t_0\omega} \quad \Rightarrow \quad \overline{\bar{X}} \simeq \sum_{j=0}^{N} \bar{c}_{\mu\nu,j} C^{\mu\nu}(j+2t_0)$$

▶ $j \leftrightarrow t$: degree corresponds to a certain time-slice, so N is limited by the available data (i.e. the choice of $t_{snk} - t_{rsc}$ and $t_2 - t_{rsc}$) and the noise of the signal;

• we take $2t_0 = 1$, i.e. as small as possible.

To control the noise we have 2 options:

• act on the **coefficients** $c_{\mu\nu,j}$ (HLT);

degree of polynomial approximation limited by the available time-slices j

$$\bar{X} = \int_{\omega_0}^{\infty} d\omega W^{\mu\nu} \underbrace{K_{\mu\nu}(\omega, \boldsymbol{q}; t_0)}_{K_{\mu\nu}(\omega, \boldsymbol{q}; t_0)} e^{-2t_0\omega} \quad \Rightarrow \quad \overline{\bar{X}} \simeq \sum_{j=0}^{N} \bar{c}_{\mu\nu,j} C^{\mu\nu}(j+2t_0)$$

- ▶ $j \leftrightarrow t$: degree corresponds to a certain time-slice, so N is limited by the available data (i.e. the choice of $t_{snk} t_{rsc}$ and $t_2 t_{rsc}$) and the noise of the signal;
- we take $2t_0 = 1$, i.e. as small as possible.

To **control the noise** we have 2 options:

- act on the **coefficients** $c_{\mu\nu,j}$ (HLT);
- act on the data C^{μν} (Chebyshev-polynomial approach).

Analysis strategy: Chebyshev

[Barata and Fredenhagen (1991)⁶, Bailas et al. (2020)⁷]

We can expand the kernel $K_{\mu\nu}(\omega, \boldsymbol{q}; t_0)$ with shifted Chebyshev polynomials as $-\sum_{\boldsymbol{x}} \tilde{\boldsymbol{x}}^{(j)} e^{-k\omega}$

$$\bar{X}(\boldsymbol{q}^2) = \int_{\omega_0}^{\infty} \boldsymbol{W}^{\mu\nu} K_{\mu\nu}(\boldsymbol{q},\omega;t_0) \boldsymbol{e}^{-2t_0\omega} = \sum_{j}^{N} \tilde{c}_{\mu\nu,j} \int_{\omega_0}^{\infty} \boldsymbol{W}^{\mu\nu} \underbrace{\tilde{T}_j(\omega)}_{\boldsymbol{I}_j(\omega)} \boldsymbol{e}^{-2t_0\omega}$$

where

$$\int_{\omega_0}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} \tilde{T}_k(\omega) e^{-2\omega t_0} = \sum_{j=0}^k \tilde{t}_j^{(k)} C^{\mu\nu}(j+2t_0) \,.$$

Chebyshev polynomials are **bounded**, so we normalize

$$\int_{\omega_0}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} \tilde{T}_j(\omega) e^{-2\omega t_0} \qquad \to \qquad -1 \leq \underbrace{\int_{\omega_0}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} \tilde{T}_j(\omega) e^{-2\omega t_0}}_{\equiv 1} \leq 1 \, .$$

Analysis strategy: Chebyshev (2)

[Bailas et al. (2020)⁷, Gambino and Hashimoto (2020)⁵]

The new relation is

$$\begin{split} \hline \langle \tilde{T}_k \rangle_{\mu\nu} &\equiv \frac{\int_{\omega_0}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} \tilde{T}_j(\omega) e^{-2\omega t_0}}{\int_{\omega_0}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} \tilde{T}_0(\omega) e^{-2\omega t_0}} = \sum_{j=0}^k \tilde{t}_j^{(k)} \boxed{\frac{C_{\mu\nu}(j+2t_0)}{C_{\mu\nu}(2t_0)}}, \qquad |\langle \tilde{T}_j \rangle_{\mu\nu}| \leq 1, \end{split}$$

$$\to \text{Chebyshev matrix elements}$$

and the value of $ar{X}_{\mu
u}({m q}^2)$ in each channel can be obtained as (no sum over $\mu
u$) here

$$\bar{X}_{\mu\nu}(\boldsymbol{q}^2) = C_{\mu\nu}(2t_0) \sum_{j}^{N} \tilde{c}_{\mu\nu,j} \frac{\int_{\omega_0}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} \tilde{T}_j(\omega) e^{-2\omega t_0}}{\int_{\omega_0}^{\infty} \mathrm{d}\omega \, W^{\mu\nu} \tilde{T}_0(\omega) e^{-2\omega t_0}} \to \equiv \bar{X}_{\bar{C}\mu\nu}, \text{ depends on } \bar{C}_{\mu\nu}$$

We can then calculate it through the Chebyshev matrix elements as

$$\bar{X}_{\bar{C}\mu\nu}(\boldsymbol{q}^2) \simeq \frac{\tilde{c}_{\mu\nu,0}}{2} + \sum_{j=1}^{N} \tilde{c}_{\mu\nu,j} \checkmark \tilde{\langle \tilde{T}_j \rangle_{\mu\nu}}.$$

We need to determine these from the data

Chebyshev fit

The relations between data and Chebyshev matrix elements are

$$\langle \tilde{T}_k \rangle_{\mu\nu} = \sum_{j=0}^k \tilde{t}_j^{(k)} \bar{C}_{\mu\nu}(j) , \qquad \bar{C}_{\mu\nu}(k) = \sum_{j=0}^k \tilde{a}_j^{(k)} \langle \tilde{T}_j \rangle_{\mu\nu}$$

So far this are related by a linear transformation

$$\begin{pmatrix} \bar{C}_{\mu\nu}(0) \\ \bar{C}_{\mu\nu}(1) \\ \vdots \\ \vdots \\ \bar{C}_{\mu\nu}(N) \end{pmatrix} = \begin{pmatrix} \tilde{a}_{0}^{(0)} & 0 & \cdots & \cdots & 0 \\ \tilde{a}_{0}^{(1)} & \tilde{a}_{1}^{(1)} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & 0 \\ \tilde{a}_{0}^{(N)} & \tilde{a}_{1}^{(N)} & \cdots & \cdots & \tilde{a}_{N}^{(N)} \end{pmatrix} \begin{pmatrix} \langle \tilde{T}_{0} \rangle_{\mu\nu} \\ \langle \tilde{T}_{1} \rangle_{\mu\nu} \\ \vdots \\ \vdots \\ \langle \tilde{T}_{N} \rangle_{\mu\nu} \end{pmatrix}$$

This is not taking into account the bounds on the Chebyshev matrix elements $\langle \tilde{T}_k \rangle_{\mu\nu}$. \Rightarrow We address it through a **Bayesian fit with constraints**.

Chebyshev fit (2)

We address the extraction of the Chebyshev through a fit with the following steps

- 1. start from a frequentist fit
- 2. enforce the bounds
- 3. stabilise the fit augmenting the χ^2 with some priors

The χ^2 (Maximum Likelihood) looks like (we drop the indices $\mu\nu$ for simplicity)

$$\begin{split} \underline{\chi^2} &= \sum_{i,j=1}^N \left(\bar{C}(i) - \sum_{\alpha=1}^i \tilde{a}_{\alpha}^{(i)} \langle \tilde{T}_{\alpha} \rangle \right) \operatorname{Cov}_{ij}^{-1} \left(\bar{C}(j) - \sum_{\alpha=1}^j \tilde{a}_{\alpha}^{(j)} \langle \tilde{T}_{\alpha} \rangle \right) \\ & \longrightarrow \text{frequentist approach: } \frac{\partial \chi^2}{\partial \langle \tilde{T}_{\alpha} \rangle} = 0 \leftrightarrow \text{solving the linear system} \end{split}$$

Chebyshev fit (2)

We address the extraction of the Chebyshev through a fit with the following steps

- 1. start from a frequentist fit
- 2. enforce the bounds
- 3. stabilise the fit augmenting the χ^2 with some priors

The χ^2 (Maximum Likelihood) looks like (we drop the indices $\mu\nu$ for simplicity)

$$\chi^{2} = \sum_{i,j=1}^{N} \left(\bar{C}(i) - \sum_{\alpha=1}^{i} \tilde{a}_{\alpha}^{(i)} \boxed{\langle \tilde{T}_{\alpha} \rangle} \right) \operatorname{Cov}_{ij}^{-1} \left(\bar{C}(j) - \sum_{\alpha=1}^{j} \tilde{a}_{\alpha}^{(j)} \boxed{\langle \tilde{T}_{\alpha} \rangle} \right) \xrightarrow{} = f(\tau_{\alpha}), \ \tau_{\alpha} \text{ are now fit parameters, } \tau_{\alpha} \in (-\infty, \infty)$$

We can enforce the bounds substituting $\langle \tilde{T}_{\alpha} \rangle = f(\tau_{\alpha})$ with

$$f:(-\infty,+\infty)\to [-1,1]$$

Chebyshev fit (2)

We address the extraction of the Chebyshev through a fit with the following steps

- 1. start from a frequentist fit
- 2. enforce the bounds
- 3. stabilise the fit augmenting the χ^2 with some priors

The $\chi^2_{\rm aug}$ (Maximum a Posteriori Probability) looks like

$$\chi^{2}_{\mathrm{aug}} = \sum_{i,j=1}^{N} \left(\bar{C}(i) - \sum_{\alpha=1}^{i} \tilde{a}_{\alpha}^{(i)} f(\tau_{\alpha}) \right) \operatorname{Cov}_{ij}^{-1} \left(\bar{C}(j) - \sum_{\alpha=1}^{j} \tilde{a}_{\alpha}^{(j)} f(\tau_{\alpha}) \right) + \chi^{2}_{\mathrm{prior}}$$

$$\rightarrow -1 \leq f(\tau_{\alpha}) \leq 1 \leftarrow$$
gaussian prior on $\tau_{\alpha} \sim \mathcal{N}(\bar{\tau}_{\alpha}, \bar{\sigma}_{\alpha})$

$$\tau_{\alpha} \in (-\infty, \infty)$$
which stabilizes the fit

Chebyshev fit (3)

In practice we choose

$$\chi^2_{\rm aug} = \sum_{i,j=1}^N \left(\bar{C}(i) - \sum_{\alpha=1}^i \tilde{a}^{(i)}_{\alpha} \mathrm{erf}\left(\frac{\tau_{\alpha}}{\sqrt{2}}\right) \right) \operatorname{Cov}_{ij}^{-1}\left(\bar{C}(j) - \sum_{\alpha=1}^j \tilde{a}^{(j)}_{\alpha} \mathrm{erf}\left(\frac{\tau_{\alpha}}{\sqrt{2}}\right) \right) + \chi^2_{\rm prior}$$

$$\chi^2_{\text{prior}} = \sum_{\alpha=1}^{N} \frac{(\tau_{\alpha} - \overline{\bar{\tau}_{\alpha}})^2}{\overline{\bar{\sigma}_{\alpha}^2}}, \quad \tau_{\alpha} \sim \mathcal{N}(0, 1) \forall \text{ bootstrap bin} \\ = 1 \text{ (weak prior)}$$

We are fitting under a bootstrap, so it's important to resample the prior for every bootstrap bin!

We consider the reconstruction of the correlator $ar{C}_{\mu
u}$ for the channel A_iA_i at $q^2=0$

We consider the reconstruction of the correlator $\bar{C}_{\mu\nu}$ for the channel A_iA_i at $q^2=0$

In practice we are trading our original data for a refitted version

$$ar{C}_{\mu
u}(oldsymbol{q},t)
ightarrow ar{C}^{ ext{fit}}_{\mu
u}(oldsymbol{q},t) = ar{C}_{\mu
u}(oldsymbol{q},t) + egin{array}{c} \deltaar{C}_{\mu
u}(oldsymbol{q},t) \ \hline \end{array}$$

correction that accounts for the Chebyshev bounds

We consider the reconstruction of the correlator $\bar{C}_{\mu\nu}$ for the channel A_iA_i at $q^2=0$

In practice we are trading our original data for a refitted version

$$ar{C}_{\mu
u}(oldsymbol{q},t)
ightarrow ar{C}^{ ext{fit}}_{\mu
u}(oldsymbol{q},t) = ar{C}_{\mu
u}(oldsymbol{q},t) + ar{\deltaar{C}_{\mu
u}(oldsymbol{q},t)}$$

correction that accounts for the Chebyshev bounds

We consider the reconstruction of the correlator $\bar{C}_{\mu\nu}$ for the channel A_iA_i at $q^2=0$

In practice we are trading our original data for a refitted version

$$ar{C}_{\mu
u}(oldsymbol{q},t)
ightarrow ar{C}^{ ext{fit}}_{\mu
u}(oldsymbol{q},t) = ar{C}_{\mu
u}(oldsymbol{q},t) + egin{array}{c} \deltaar{C}_{\mu
u}(oldsymbol{q},t) & \deltaar{C}_{\mu
u}(oldsymbol{q},t) & egin{array}{c} \deltaar{C}_{\mu
u}(oldsymbol{q},t) & egin{array}{c} \deltaar{C}_{\mu
u}(oldsymbol{q},t) & \deltaar{C}_{\mu
u}(oldsymbol{q},t) & egin{array}{c} \deltaar{C}_{\mu
u}(oldsymbol{q},t)$$

correction that accounts for the Chebyshev bounds
Chebyshev fit: practical example

We consider the reconstruction of the correlator $\bar{C}_{\mu\nu}$ for the channel A_iA_i at $q^2=0$

In practice we are trading our original data for a refitted version

$$ar{C}_{\mu
u}(oldsymbol{q},t)
ightarrow ar{C}^{ ext{fit}}_{\mu
u}(oldsymbol{q},t) = ar{C}_{\mu
u}(oldsymbol{q},t) + egin{array}{c} \deltaar{C}_{\mu
u}(oldsymbol{q},t) & \deltaar{C}_{\mu
u}(oldsymbol{q},t) & egin{array}{c} \deltaar{C}_{\mu
u}(oldsymbol{q},t) & egin{array}{c} \deltaar{C}_{\mu
u}(oldsymbol{q},t) & \deltaar{C}_{\mu
u}(oldsymbol{q},t) & egin{array}{c} \deltaar{C}_{\mu
u}(oldsymbol{q},t)$$

correction that accounts for the Chebyshev bounds

Analysis strategy: modified Backus-Gilbert (HLT)

[Backus and Gilbert (1968)⁸, Hansen et al. (2019)⁹, Bulava et al. (2021)¹⁰]

Aside from the functional A[g], which approximates the target function (kernel), we include some information on the data

$$\begin{split} A[g] &= \int_{\omega_0}^{\infty} \mathrm{d}\omega \left[K_{\mu\nu}(\boldsymbol{q},\omega;t_0) - \sum_{j=1}^{N} g_j \underbrace{\boldsymbol{e}^{-j\omega}} \right]^2 \to \text{exponential basis} \\ B[g] &= \sigma_{\bar{X}}^2 = \sum_{i,j=1}^{N} g_i \text{Cov} \left[\bar{C}_{\mu\nu}(i), \bar{C}_{\mu\nu}(j) \right] g_j \,, \quad \bar{C}_{\mu\nu}(i) = \frac{C_{\mu\nu}(i+2t_0)}{C_{\mu\nu}(2t_0)} \end{split}$$

We minimise

$$W_{\lambda}[g] = (1 - \boldsymbol{\lambda}) \frac{A[g]}{A[0]} + \boldsymbol{\lambda} B[g] \,.$$

The parameter λ control the interplay between the 2 functionals, i.e. the balance between **statistical** and **systematic** errors.

Analysis strategy: modified Backus-Gilbert more in general [Alexandrou et al. (2022)¹¹]

We can generalise to allow the use of an arbitrary basis of polynomials $\tilde{P}_k(\omega)$ in $e^{-\omega}$

$$\tilde{P}_k(\omega) = \sum_{j=0}^k \tilde{p}_j^{(k)} e^{-j\omega}, \quad \omega \in [\omega_0, \infty)$$

such that the functionals read

$$A[g] = \int_{\omega_0}^{\infty} d\omega \underbrace{\tilde{\Omega}(\omega)}_{k,l=1} \left[K_{\mu\nu}(\boldsymbol{q},\omega;t_0) - \sum_{j=0}^{N} g_j \underbrace{\tilde{P}_j(\omega)}_{j} \right]^2 \rightarrow \text{arbitrary basis}$$
$$B[g] = \sum_{k,l=1}^{N} g_k \text{Cov} \left[\underbrace{\bar{C}_{\mu\nu}^P(k)}_{\mu\nu}(k), \overline{C}_{\mu\nu}^P(l) \right] g_l$$
$$\downarrow \underbrace{\bar{C}_{\mu\nu}^P(k)}_{k,\mu\nu}(k) = \sum_{j=0}^{k} \tilde{p}_j^{(k)} \overline{C}_{\mu\nu}(j)$$

Analysis strategy: Backus-Gilbert generalised (2)

Why generalising? The solution of the Backus-Gilbert problem with $\lambda = 0$ is given by

$$oldsymbol{A} \cdot oldsymbol{g} = oldsymbol{K} \quad \leftrightarrow \quad oldsymbol{g} = oldsymbol{A}^{-1} \cdot oldsymbol{K}$$

with

$$A_{ij} = \int_{\omega_0}^{\infty} \mathrm{d}\omega \,\tilde{\Omega}(\omega) \tilde{P}_i(\omega) \tilde{P}_j(\omega) \,,$$
$$K_i = \int_{\omega_0}^{\infty} \mathrm{d}\omega \,\tilde{\Omega}(\omega) \tilde{P}_i(\omega) K(\omega)$$

In general the the matrix A is ill-conditioned and its inverse requires arbitrary precision. If we choose the $\tilde{\Omega}$ and $\tilde{P}_j = \tilde{T}_j$ from the Chebyshev we can take advantage of their orthogonality property such that A is diagonal! The solution for $\lambda \neq 0$ is

$$\boldsymbol{g}_{\lambda} = \boldsymbol{W}_{\lambda}^{-1} \cdot \boldsymbol{K}, \quad \boldsymbol{W}_{\lambda} = (1-\lambda)\boldsymbol{A} + \lambda A[0]\boldsymbol{B}$$

Inclusive decays on the lattice: setup

Simulations carried out on the DiRAC Extreme Scaling service at the University of Edinburgh using the Grid [Boyle et al.¹²] and Hadrons [Portelli et al.¹³] software packages

Pilot study with RBC/UKQCD ensembles [Allton et al. $(2008)^{14}$]:

- lattice $24^3 \times 64$;
- lattice spacing $a^{-1} = 1.79 \text{ GeV}$;
- $M_{\pi} \simeq 330$ MeV;
- ▶ 120 gauge configurations, 8 sources;
- ▶ 8+2 momenta (Twisted BC).

Simulation:

- ▶ RHQ action for b quark [El-Khadra et al. (1997)¹⁵, Christ et al. (2007)¹⁶, Lin and Christ (2007)¹⁷]:
 - based on clover action with anisotropic terms;
 - ▶ 3 parameters non-perturbatively tuned to remove higher order discretization errors;
 - b quark simulated at its physical mass;
- DWF action for s, c quarks with **near-to-physical** mass.

Results and comparison

Key points:

- Chebyshev and Backus-Gilbert approaches are fully compatible;
- ▶ pilot study:
 - ▶ values are in the right ballpark (compared to *B* decay rate, based on *SU*(3) flavour symmetry);
 - \blacktriangleright low statistics, roughly 5-10% error.

First interpretation of the two methods

Recalling $\bar{X}(q^2) = C^{\mu\nu}(2t_0) \bar{X}_{\bar{C}\mu\nu}$ we can interpret the two methods as

$$\bar{X}_{\bar{C}\mu\nu} = \bar{X}_{\bar{C}\mu\nu}^{\text{naive}} + \delta \bar{X}_{\bar{C}\mu\nu}, \quad \begin{cases} \delta \bar{X}_{\bar{C}\mu\nu}^{CHEB} &= \sum_{k=0}^{N} \tilde{c}_{\mu\nu,k} \delta \bar{C}_{\mu\nu}(k) \\ \delta \bar{X}_{\bar{C}\mu\nu}^{BG} &= \sum_{k=0}^{N} \delta g_{\mu\nu,k} \bar{C}_{\mu\nu}(k) \end{cases}$$

i.e. a "naive" piece, where we just blindely apply the polynomial approximation, and a correction term, which is essentially a noisy zero that takes care of the variance reduction.

Towards inclusive semileptonic decays from Lattice QCD

Systematic errors: polynomial approximation (1)

1) Truncation error of the polynomial approximation

 \Rightarrow plot suggests that the truncation error is mild (with the current statistical precision).

Systematic errors: polynomial approximation (1)

1) Truncation error of the polynomial approximation (more aggressive)

 \Rightarrow plot suggests that the truncation error is mild (with the current statistical precision)

Systematic errors: polynomial approximation (1)

To understand the saturation:

- we take a priori all the (N=9) Chebyshev to be uniform (result is expected to be correct, but noisy);
- we introduce the actual Chebyshev determined from the fit step by step (starting from the lowest degrees) to see how the situation changes.

Systematic errors: polynomial approximation (2)

2) Limit $\sigma \to 0$ of the sigmoid $K_{\sigma,\mu\nu}(q,\omega;t_0) \propto \theta_{\sigma}(\omega_{\max}-\omega)$

$$\bar{X}(q^2) = \lim_{\sigma \to 0} (\lim_{V \to \infty}) \bar{X}_{\sigma}(q^2)$$

The order of the limit does not commute. Here only one volume, so the second limit is neglected.

upper:
$$q^2 = 0.26 \text{GeV}^2$$

lower: $q^2 = 4.77 \text{GeV}^2$

 \Rightarrow here very mild σ dependence for larger q^2 (N=9 is small, hence the quality of the reconstruction for different σ is not strongly affected) NB: limit must be taken with care together with $N \rightarrow \infty$

A glimpse at possible finite-volume effects

To address the volume limit we need to take into account finite volume effects. Here, we address those directly repeating the computation on a set ensemble $L^3 \times 64$ differring only by the volume L = 16, 20, 24, 32

The data suggests mild dependence, BUT we cannot really resolve it with the current statistical precision. We can also try to model them analytically (case $D_s \rightarrow X \, l\nu \Rightarrow$ Ryan Kellermann's talk @Lattice2024)

Ground-state limit

We can consider the limit where only the ground state dominates, i.e.

$$W_{\mu\nu} \quad \rightarrow \quad \delta(\omega - E_{D_s^{(*)}}) \frac{1}{4M_{B_s} E_{D_s^{(*)}}} \langle B_s | J_{\mu}^{\dagger} | D_s^{(*)} \rangle \langle D_s^{(*)} | J_{\nu} | B_s \rangle$$

If we decompose

$$\bar{X} = \bar{X}^{\parallel} + \bar{X}^{\perp}$$

and restrict to the vector currents (VV) the matrix element can be decomposed as

$$\langle D_s | V_\mu | B_s \rangle = f_+(q^2)(p_{B_s} + p_{D_s})_\mu + f_-(q^2)(p_{B_s} - p_{D_s})_\mu$$

and we can show that

$$\bar{X}_{VV}^{\parallel} \rightarrow \frac{M_{B_s}}{E_{D_s}} q^2 |f_+(q^2)|^2$$

 \Rightarrow cross-check for the analysis

Ground-state limit: exclusive decay

The matrix element and form factors can be extracted from **3pt-correlation functions**. From that we can generate mock data for the 4pt functions (where only the ground state contributes)

$$C_{\mu\nu}^{G} = \frac{1}{4M_{B_{s}}E_{D_{s}}} \langle B_{s} | V_{\mu}^{\dagger} | \mathbf{D}_{s} \rangle \langle \mathbf{D}_{s} | V_{\nu} | B_{s} \rangle e^{-E_{D_{s}}t}$$

and run the analysis!

A good control over the ground states (S-waves, D_s , D_s^*) will allow us to subtract it from the 4pt correlator and then address the study of the P-wave contributions (\Rightarrow Zhi Hu's talk @Lattice2024)

Moments: continuum

[with @Matteo Fael]

So far we focused on the decay rate, but we can consider other observables for inclusive decays. We consider q^2 kinematical moments

$$Q_n(q_{\text{cut}}^2) = \int_{q_{\text{cut}}^2}^{q_{\text{max}}^2} (q^2)^n \left[\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2 \,\mathrm{d}q_0 \,\mathrm{d}E_l} \right] \,\mathrm{d}q^2 \,\mathrm{d}q_0 \,\mathrm{d}E_l$$

It is usual to compare **centralized moments** $q_n(q_{cut}^2)$ of the differential distributions, since they are more sensitive to the power corrections and independent from the value of $|V_{cb}|$:

$$\begin{split} q_1(q_{\rm cut}^2) &= \left\langle q^2 \right\rangle_{q^2 \ge q_{\rm cut}^2}, & \text{for } n = 1, \\ q_n(q_{\rm cut}^2) &= \left\langle (q^2 - \langle q^2 \rangle)^n \right\rangle_{q^2 \ge q_{\rm cut}^2}, & \text{for } n \ge 2. \end{split}$$

with

$$\langle (q^2)^n \rangle_{q^2 \ge q_{\rm cut}^2} = \frac{Q_n}{Q_0},$$

Moments: lattice

0

[Gambino et al. (2022)²⁸, Barone et al. (2024)²⁹]

On the lattice we need to change the kinematic variables $(q_0, q^2) \rightarrow (\omega, q^2)$

$$Q_n(q_{\text{cut}}^2) = \int_{q_{\text{cut}}}^{q_{\text{max}}^2} (q^2)^n \left[\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2 \,\mathrm{d}\omega \,\mathrm{d}E_l} \right] \mathrm{d}q^2 \mathrm{d}\omega \mathrm{d}E_l ,$$

$$\begin{cases} q^2 = (M_{B_s} - \omega)^2 - q^2 \\ \omega = M_{B_s} - q_0 \end{cases}$$

$$\overset{5}{}_{q_{\text{cut}}}^{4} \overset{5}{}_{q_{\text{cut}}}^{4} \overset{6}{}_{q_{\text{cut}}}^{4} \overset{6}{}_{q_{\text{cut}}$$

full phase space $q_{cut}^2 = 4.00 \text{ GeV}^2$

Moments: lattice "VS" continuum

Continuum predictions for $B \to D \, l \nu_l$, we assume SU(3)-flavour symmetry. Lattice data come from only one ensemble with only close-to-physical hadrons masses:

$$\begin{split} M_{B_s}^{\rm PDG} &= 5.367 \, {\rm GeV} \,, \quad M_{B_s}^{\rm lat} = 5.3670(20) \, {\rm GeV} \\ M_{D_s}^{\rm PDG} &= 1.968 \, {\rm GeV} \,, \quad M_{D_s}^{\rm lat} = 1.6994(11) \, {\rm GeV} \end{split}$$

We rescale the charm mass using relations between heavy meson and heavy quarks in HQET:

$$M_{D_s} = m_c + \overline{\Lambda} + \frac{\mu_{\pi}^2 - d_H/2\mu_G^2}{2m_c} + O\left(\frac{1}{m_c^2}\right)$$

We consider two basis for the HQET parameters, RPI [Bernlochner et al. $(2022)^{27}$] and PERP [Finauri and Gambino $(2024)^{30}$]

Moments: lattice "VS" continuum

The agreement gets worse as we increase n for both RPI/PERP and lattice, but incertainty on the determination of the rescaled m_c not included.

NB: on the lattice side, small $q_{\rm cut}^2$ contains large q^2 , hence larger cut-off effects . \Rightarrow better agreement expected on the tails

Centralized moments: lattice "VS" continuum

Preliminary results - feasibility study.

Lattice data (after extrapolation to the physical world) can be used to extract HQET parameters used in the OPE expansion

Towards inclusive semileptonic decays from Lattice QCD

Summary and outlook

Summary:

- promising prospects for inclusive decays on the lattice;
- solid approach for the analysis: Chebyshev and Backus-Gilbert approaches compatible within error.

Coming next:

- continue to work towards understanding the systematics involved in solving the inverse problem;
- dedicated simulations to address the systematics for polynomial approximation, finite volume effects, continuum limit,...;
- understand better the ground state limit (compare with form factors) and address the excited states (P-waves);
- compute more observables (kinematic moments) to compare with experiments (LHCb, Belle II) and continuum approaches.
- \Rightarrow prepare for a full study B_s/B (and in parallel also D_s/D).

Summary and outlook

Summary:

- promising prospects for inclusive decays on the lattice;
- solid approach for the analysis: Chebyshev and Backus-Gilbert approaches compatible within error.

Coming next:

- continue to work towards understanding the systematics involved in solving the inverse problem;
- dedicated simulations to address the systematics for polynomial approximation, finite volume effects, continuum limit,...;
- understand better the ground state limit (compare with form factors) and address the excited states (P-waves);
- compute more observables (kinematic moments) to compare with experiments (LHCb, Belle II) and continuum approaches.
- \Rightarrow prepare for a full study B_s/B (and in parallel also D_s/D).

THANK YOU!

References I

- Y. Aoki et al., "FLAG Review 2021", Chapter of the Flag Review 2021 10, 9849 (2021), arXiv:2111.09849.
- [2] A. Barone et al., "Approaches to inclusive semileptonic B_(s)-meson decays from Lattice QCD", JHEP 07, 145 (2023), arXiv:2305.14092 [hep-lat].
- [3] M. T. Hansen et al., "From deep inelastic scattering to heavy-flavor semileptonic decays: Total rates into multihadron final states from lattice QCD", Phys. Rev. D 96, 094513 (2017), arXiv:1704.08993 [hep-lat].
- [4] S. Hashimoto, "Inclusive semi-leptonic B meson decay structure functions from lattice QCD", Progress of Theoretical and Experimental Physics 2017, 53–56 (2017), arXiv:1703.01881.
- P. Gambino and S. Hashimoto, "Inclusive Semileptonic Decays from Lattice QCD", PHYSICAL REVIEW LETTERS 125, 32001 (2020).
- [6] J. C. A. Barata and K. Fredenhagen, "Particle scattering in Euclidean lattice field theories", Commun. Math. Phys. 138, 507–520 (1991).
- [7] G. Bailas et al., "Reconstruction of smeared spectral functions from Euclidean correlation functions", Progress of Theoretical and Experimental Physics 2020, 43–50 (2020), arXiv:2001.11779.
- [8] G. Backus and F. Gilbert, "The Resolving Power of Gross Earth Data", Geophysical Journal of the Royal Astronomical Society 16, 169–205 (1968).
- M. Hansen et al., "Extraction of spectral densities from lattice correlators", Physical Review D 99, 10.1103/PhysRevD.99.094508 (2019).

Towards inclusive semileptonic decays from Lattice QCD

References II

- [10] J. Bulava et al., "Inclusive rates from smeared spectral densities in the two-dimensional O(3) non-linear σ-model", https://doi.org/10.48550/arXiv.2111.12774 (2021), arXiv:2111.12774v1.
- [11] C. Alexandrou et al., "Probing the *R*-ratio on the lattice", (2022), arXiv:2212.08467 [hep-lat].
- [12] P. Boyle et al., Grid: Data parallel C++ mathematical object library, https://github.com/paboyle/Grid.
- [13] A. Portelli et al., Hadrons: Grid-based workflow management system for lattice field theory simulations, https://github.com/aportelli/Hadrons.
- [14] C. Allton et al., "Physical results from 2+1 flavor domain wall QCD and SU(2) chiral perturbation theory", Physical Review D - Particles, Fields, Gravitation and Cosmology 78, 10.1103/PhysRevD.78.114509 (2008), arXiv:0804.0473.
- [15] A. X. El-Khadra et al., "Massive fermions in lattice gauge theory", Physical Review D Particles, Fields, Gravitation and Cosmology 55, 3933–3957 (1997), arXiv:9604004 [hep-lat].
- [16] N. H. Christ et al., "Relativistic heavy quark effective action", 10.1103/PhysRevD.76.074505 (2007).
- [17] H. W. Lin and N. Christ, "Nonperturbatively determined relativistic heavy quark action", Physical Review D - Particles, Fields, Gravitation and Cosmology 76, 10.1103/PhysRevD.76.074506 (2007), arXiv:0608005 [hep-lat].
- [18] R. Kellermann et al., "Studies on finite-volume effects in the inclusive semileptonic decays of charmed mesons", PoS LATTICE2023, 272 (2024), arXiv:2312.16442 [hep-lat].

References III

- [19] B. Aubert et al., "Measurement of the Branching Fractions of anti-B —> D** I- anti-nu(I) Decays in Events Tagged by a Fully Reconstructed B Meson", Phys. Rev. Lett. 101, 261802 (2008), arXiv:0808.0528 [hep-ex].
- [20] D. Liventsev et al., "Study of B -> D**lnu with full reconstruction tagging", Phys. Rev. D 77, 091503 (2008), arXiv:0711.3252 [hep-ex].
- [21] N. Uraltsev, "New exact heavy quark sum rules", Phys. Lett. B 501, edited by I. I. Bigi et al., 86–91 (2001), arXiv:hep-ph/0011124.
- [22] I. I. Bigi et al., "Memorino on the '1/2 versus 3/2 puzzle' in $\overline{B} \rightarrow l\overline{\nu}X_c$ a year later and a bit wiser", Eur. Phys. J. C **52**, 975–985 (2007), arXiv:0708.1621 [hep-ph].
- [23] F. U. Bernlochner and Z. Ligeti, "Semileptonic $B_{(s)}$ decays to excited charmed mesons with e, μ, τ and searching for new physics with $R(D^{**})$ ", Phys. Rev. D **95**, 014022 (2017), arXiv:1606.09300 [hep-ph].
- [24] D. Becirevic et al., "Lattice measurement of the Isgur-Wise functions tau(1/2) and tau(3/2)", Phys. Lett. B 609, 298–308 (2005), arXiv:hep-lat/0406031.
- [25] M. Atoui et al., "Semileptonic $B \rightarrow D^{**}$ decays in Lattice QCD : a feasibility study and first results", Eur. Phys. J. C **75**, 376 (2015), arXiv:1312.2914 [hep-lat].
- [26] G. Bailas et al., "Study of intermediate states in the inclusive semi-leptonic $B \rightarrow X_c \ell \nu$ decay structure functions", PoS LATTICE2019, 148 (2019), arXiv:2001.11678 [hep-lat].

[27] F. Bernlochner et al., "First extraction of inclusive V_{cb} from q² moments", JHEP 10, 068 (2022), arXiv:2205.10274 [hep-ph].

Towards inclusive semileptonic decays from Lattice QCD

References IV

- [28] P. Gambino et al., "Lattice QCD study of inclusive semileptonic decays of heavy mesons", (2022), arXiv:2203.11762.
- [29] A. Barone et al., "Chebyshev and Backus-Gilbert reconstruction for inclusive semileptonic B_(s)-meson decays from Lattice QCD", PoS LATTICE2023, 236 (2024), arXiv:2312.17401 [hep-lat].
- [30] G. Finauri and P. Gambino, "The q² moments in inclusive semileptonic B decays", JHEP 02, 206 (2024), arXiv:2310.20324 [hep-ph].

Backup

BACKUP

Chebyshev polynomial approximation: more

Kernels

Kernels Backus-Gilbert

Chebyshev fit: example

True chebyshev distribution \rightarrow data \rightarrow data + noise \rightarrow analysis

Chebyshev data reconstruction - distribution

Chebyshev matrix elements N=9 for GammaXYZGamma5-GammaXYZGamma5 and q²=0.26 GeV²

Chebyshev data reconstruction - data

Analysis strategy: Backus-Gilbert - a different perspective

With the previous idea we can put things in a equivalent but different perspective. We can write the coefficients as

$$g_i = \boxed{c_i} + \epsilon_i \quad \text{case } \lambda = 0$$

and require that the correction ϵ_i approximate the null function through the minimisation of $W_\lambda[\epsilon]$

$$\begin{split} W_{\lambda}[\epsilon] &= (1-\lambda)A[\epsilon] + \lambda B[\epsilon] \\ A[\epsilon] &= \int_{\omega_0}^{\infty} \mathrm{d}\omega \, \tilde{\Omega}(\omega) \left[\sum_{j=0}^{N} \epsilon_j \tilde{P}_j(\omega) \right]^2 \,, \\ B[\epsilon] &= \sum_{i,j=1}^{N} \left[2\epsilon_i \sigma_{ij}^P c_j + \epsilon_i \sigma_{ij}^P \epsilon_j \right] \,, \quad \sigma_{ij}^P = \operatorname{Cov} \left[\bar{C}_{\mu\nu}^P(i), \bar{C}_{\mu\nu}^P(j) \right] \end{split}$$

NB: this is equivalent to the previous case! It's just a different perspective which may give more insight in particular with the comparison with the Chebyshev case.

Analysis strategy: Backus-Gilbert constraints

[Bulava et al. (2021)¹⁰]

On top of that, we also include a constraint on the area:

$$\int_{\omega_0}^{\infty} \mathrm{d}\omega \,\tilde{\Omega}(\omega) \sum_{j=0}^{N} g_j \tilde{P}_j(\omega) = \int_{\omega_0}^{\infty} \mathrm{d}\omega \,\tilde{\Omega}(\omega) K_{\mu\nu}(\boldsymbol{q},\omega) \,.$$

The value of λ can be in principle tuned arbitrarily. In practice, we choose the value of optimal balance λ^* between statistical and systematic errors with

$$W(\lambda) = W_{\lambda}[g^{\lambda}], \qquad \left. \frac{\mathrm{d}W(\lambda)}{\mathrm{d}\lambda} \right|_{\lambda^*} = 0$$

$$\Rightarrow \frac{A[g^{\lambda^*}]}{A[0]} = B[g^{\lambda^*}]$$

First interpretation of the two methods

Recalling $\bar{X}(q^2) = C^{\mu\nu}(2t_0) \bar{X}_{\bar{C}\mu\nu}$ we can interpret the two methods as

$$\bar{X}_{\bar{C}\mu\nu} = \bar{X}_{\bar{C}\mu\nu}^{\text{naive}} + \delta \bar{X}_{\bar{C}\mu\nu}, \quad \begin{cases} \delta \bar{X}_{\bar{C}\mu\nu}^{CHEB} &= \sum_{k=0}^{N} c_{\mu\nu,k} \delta C_{\mu\nu}(k) \\ \delta \bar{X}_{\bar{C}\mu\nu}^{BG} &= \sum_{k=0}^{N} \delta g_{\mu\nu,k} C_{\mu\nu}(k) \end{cases}$$

i.e. a "naive" piece, where we just blindely apply the polynomial approximation, and a correction term, which is essentially a noisy zero that takes care of the variance reduction.

\bar{X} contributions

Scan over λ (Backus-Gilbert)

Systematics errors: finite-volume effects in $D_s \to X_s \, l \nu_l$ (1)

[Kellermann et al. (2024)¹⁸]

igstarrow Digression on the study of a parallel project for $D_s o X_s \, l u_l$

We address finite-volume effects combining lattice data and analytical model by:

- consider 2-body final states ($K\bar{K} \rightarrow$ dominant contribution)
- ▶ vary the limit of the energy integral ω , with a treshold $\omega_{th} > \omega_{max}$ to include higher energy states

We model the spectral function (here for the case J = 0)

Systematics errors: finite-volume effects in $D_s \rightarrow X_s l\nu_l$ (2)

Given the assumption, we model the correlator to be

$$\bar{C}(t) = A_0 e^{-E_0 t} + s(L) \sum_i A_i e^{-E_i t} \frac{1}{E_i^2 - m_J^2},$$

 \Rightarrow good agreement with data \checkmark (here $oldsymbol{q}^2=0)!$

Systematics errors: finite-volume effects in $D_s \rightarrow X_s l\nu_l$ (2)

Given the assumption, we model the correlator to be

$$\bar{C}(t) = A_0 e^{-E_0 t} + s(L) \sum_i A_i e^{-E_i t} \frac{1}{E_i^2 - m_J^2},$$

 \Rightarrow good agreement with data \checkmark (here $q^2=0)!$

Towards inclusive semileptonic decays from Lattice QCD

P-wave and "1/2 versus 3/2 puzzle" [Bigi et al. (2007)²²]

From the study of four-point correlation function we can address the decay

$$B_s \to D_s^{**} l\nu_l, \quad D_s^{**} = \{D_{s,1}, D_{s,2}^*, D_{s,0}^*, D_{s,1}^*\}$$

$$D_s^{**} \equiv \mathsf{P}\text{-wave} \to \begin{cases} j_c^P = (1/2)^+ + j_b^P \Rightarrow J^P = (0^+, 1^+) \\ j_c^P = (3/2)^+ + j_b^P \Rightarrow J^P = (1^+, 2^+) \end{cases}$$

Motivation: the composition of B semileptonic decay is [Aubert et al. (2008)¹⁹, Liventsev et al. (2008)²⁰]

$$B \to X_c \, l\nu_l \Rightarrow X_c = \begin{cases} D^{(*)} \sim 70\% & (\text{S-wave}) \\ D_1, D_2^* \sim 15\% & (j_c^P = (3/2)^+) \\ \hline ? \sim 15\% & \text{natural candidate is } j_c^P = (1/2)^+) \end{cases}$$

BUT the proposal is in contrast with predictions from sum rules [Uraltsev $(2001)^{21}$] \rightarrow puzzle!

P-wave from inclusive data

 $[Becirevic et al. (2005)^{24}, Atoui et al. (2015)^{25}, Bailas et al. (2019)^{26}]$

How do we extract the P-wave contribution from the lattice data?

$$C_{\mu\nu}(\boldsymbol{q},t) = \sum_{X} \frac{1}{4M_{B_s}E_X} \left\langle B_s \right| J^{\dagger}_{\mu} \left| X \right\rangle \left\langle X \right| J_{\nu} \left| B_s \right\rangle e^{-E_X t}$$

• control the ground-state D_s, D_s^* (S-wave) from three-point functions

subtract this ground state from the four-point functions

$$C_{\mu\nu}^{\mathrm{P-wave}}(\boldsymbol{q},t) = \sum_{X=D_{s,i}^{(*)}} \frac{1}{4M_{B_s}E_X} \langle B_s | J_{\mu}^{\dagger} | X \rangle \langle X | J_{\nu} | B_s \rangle e^{-E_X t}$$

 combine different channel to disantangle as much as possible the underlying form factors (using HQET formalism) [Bernlochner and Ligeti (2017)²³]

$$\langle D_{s,i}^{(*)}(v',\varepsilon) | J^{\mu} | B_{s}(v) \rangle = \frac{\langle D_{s,i}^{(*)}(p_{D_{s}},\varepsilon) | J^{\mu} | B_{s}(p_{B_{s}}) \rangle}{\sqrt{M_{D_{s}}M_{B_{s}}}}$$

P-wave: zero recoil example

"Easy" case: at $q^2 = 0$ some channels contains only contributions from specific states.

1) EFFECTIVE MASS

S-wave

$$C_{V_0V_0}(\mathbf{0},t) = |h_+|^2 e^{-M_{D_s}t}$$

$$C_{A_kA_k}(\mathbf{0},t) = \frac{1}{4}(1+w)^2 |h_{A_1}|^2 e^{-M_{D_s}t}$$

P-wave

$$C_{A_0A_0}(\mathbf{0},t) = |g_+|^2 e^{-M_{D_{s,0}^*}t}$$
$$C_{V_kV_k}(\mathbf{0},t) \simeq \frac{1}{4}|g_{V_1}|^2 e^{-M_{D_{s,1}^*}t}$$

P-wave: zero recoil example

"Easy" case: at $q^2 = 0$ some channels contains only contributions from specific states.

2) EFFECTIVE FF

S-wave

$$C_{V_0V_0}(\mathbf{0},t) = |h_+|^2 e^{-M_{D_s}t}$$

$$C_{A_kA_k}(\mathbf{0},t) = \frac{1}{4}(1+w)^2 |h_{A_1}|^2 e^{-M_{D_s}t}$$

P-wave

$$C_{A_0A_0}(\mathbf{0},t) = |g_+|^2 e^{-M_{D_{s,0}^*}t}$$
$$C_{V_kV_k}(\mathbf{0},t) \simeq \frac{1}{4}|g_{V_1}|^2 e^{-M_{D_{s,1}^*}t}$$

Moments

Hadronic mass and lepton energy moments.

Reference values for numerical evaluation of the HQE (1)

RPI basis from [Bernlochner et al. (2022)²⁷]

For the evaluation using the RPI basis utilized in $[Bernlochner et al. (2022)^{27}]$ we have the following setup:

- We include power corrections up to $1/m_b^4$ with $r_E^4 \neq 0$ and $r_G^4 \neq 0$. We have $s_B = s_E = s_{qB} = 0$ as in the default fit of [Bernlochner et al. (2022)²⁷]. We use central values and uncertainties from Tab. 4 and the correlations from Fig. 9.
- ▶ We include the NNLO corrections in the free quark approximation and the NLO corrections to μ_G and ρ_D . This is at variance with Ref. [Bernlochner et al. (2022)²⁷] where only the NLO correction in the free quark approximation were included for the moments.
- We adopt as reference values for the quark masses

$$m_b^{\text{kin}}(1 \text{ GeV}) = 4.562 \text{ GeV},$$
 $\overline{m}_c(2 \text{ GeV}) = 1.094 \text{ GeV}.$

Reference values for numerical evaluation of the HQE (1)

Historical basis (PERP basis) from [Finauri and Gambino (2024)³⁰] For the evaluation using the PERP basis utilized in [Finauri and Gambino (2024)³⁰] we have the following setup:

- We include power corrections up to 1/m³_b as in the default fit of [Finauri and Gambino (2024)³⁰].
 We use central values, uncertainties and the correlations from Tab. 4.
- ▶ We include the NNLO corrections in the free quark approximation and the NLO corrections to μ_G and ρ_D . In [Finauri and Gambino (2024)³⁰] it was included only the NNLO corrections proportional to $\alpha_s^2\beta_0$. It included the NLO corrections to μ_G and ρ_D .
- We adopt as reference values for the quark masses

$$m_b^{\text{kin}}(1 \text{ GeV}) = 4.562 \text{ GeV},$$
 $\overline{m}_c(2 \text{ GeV}) = 1.094 \text{ GeV}.$