Discussion about the lattice EM quark current-current correlator and the R-ratio in the context of the muon g - 2

Laurent Lellouch

CNRS & Aix-Marseille U.

Lattice \leftrightarrow R-ratio

[Bernecker et al '11]

(PDG compilation)

- R-ratio lattice: "straightforward"
 - \rightarrow integrate R-ratio
- Lattice \longrightarrow R-ratio: inverse Laplace transform on limited data
 - \rightarrow ill-posed problem

Windows [RBC-UKQCD'18]

Why solve inverse problem?

Don't need inverse methods to show disagreement between lattice and data-driven approaches

Situation before CMD-3 $e^+e^- \rightarrow \pi^+\pi^-$ measurement

- BMW'20 computation of a^{LO-HVP}_{μ,win} confirmed by 3 other groups (8 other calculations for a^{LO-HVP}_{μ,win,ud})
- unacceptable discrepancy
- ~ 60% of $a_{\mu,\text{win}}^{\text{LO-HVP}}$ (~ 70% of $a_{\mu}^{\text{LO-HVP}}$) comes from ρ peak
- already suggests that ρ peak could be the culprit in R-ratio measurements

Aside (results in ×10⁻¹⁰ units from [BMW'20, Colangelo et al '22, BMW/DMZ'23, Mainz'24, ETM'22, ...])

 $[a_{\mu,10-\infty}^{\text{LO-HVP}}]_{\text{lat-R}} \equiv [a_{\mu}^{\text{LO-HVP}} - a_{\mu,\text{win}}^{\text{LO-HVP}} - a_{\mu,00-04}^{\text{LO-HVP}}]_{\text{lat-R}} \simeq 13.5(6.2) - 9.4(1.9) - 0.45(67) = 6.2(7.0)$ (naive combination of errors)

Why solve inverse problem?

 $a_{\mu}^{\text{LO-HVP}}$ and $a_{\mu,\text{win}}^{\text{LO-HVP}}$ can already help "eliminate" measurements

(Problems w/ radiative corrections in KLOE (& BES III) not covered by systematic uncertainties ? [BaBar '23])

```
Aside (now CMD-3 alone, ...)
```

 $[a^{ ext{LO-HVP}}_{\mu,10-\infty}]_{ ext{lat-R}}\simeq -5.5(7.5)-2.5(2.1)-0.45(67)=-8.5(7.8)$

(naive combination of errors)

CMD-3 agrees w/ lattice for $a_{\mu}^{\text{LO-HVP}}$ and $a_{\mu,\text{win}}^{\text{LO-HVP}}$

To agree w/ R-ratio prediction, lattice LD window > or < than R-ratio one (see previous page)?

Want to see more specifically what problem may be w/ measured R(s)

HLT'19 by ETMC'22 (cf. Nazario)

- Can't get R-ratio point-by-point
 - \Rightarrow get smeared R-ratio in model-independent way from C(t)
- Work w/ fixed smearing fn for all simulations: Gaussian in \sqrt{s} w/ fixed σ centered around same set of \sqrt{s}
 - \rightarrow get same *physical* quantities for all simulations
 - → can take $m_q \rightarrow m_q^{\text{phys}}$, $a \rightarrow 0$ (and $L \rightarrow \infty$) of those quantities instead of C(t) which is more complicated

Beautiful methods and results

Limitations:

- QED effects not included → challenging at large t
- Limited # of t available in lattice computation of C(t) and significant correlations in $\delta C(t)$

 \Rightarrow large correlations and limited information in reconstructed smeared R(s)

- e.g. there is a $\leq 3\sigma$ tension in $\pm 600 \text{ MeV}$ around $\sqrt{s} = 800 \text{MeV}$ $(M_{\rho} \simeq 775 \text{ MeV} \text{ w/ } \Gamma_{\rho} \simeq 150 \text{ MeV})$
- very challenging to reduce σ

Mattia: how must C(t) be improved to move forward?

Answer a more simple and targeted question [BMW/DMZ '23]:

What part of the experimentally measured spectrum may have to be modified to resolve disagreement with the lattice and how?

Present situation:

- Very few HVP quantities computed on lattice w/:
 - all contributions to C(t): flavors, quark Wick contractions, QED and SIB corrections
 - all limits taken: $a \to 0, L \to \infty, m_q \to m_q^{\phi}, \ldots$
 - typically $a_{\mu}^{\text{LO-HVP}}$ windows, the hadronic running of α and other quantities of phenomenological importance

Want approach that:

- makes use of available results (generically called *a_i* here)
- provides useful information w/ limited lattice input
- can be systematically improved w/ more lattice input
- can incorporate theoretical constraints [e.g. Colangelo et al '20]
- includes measure of agreement of lattice & data-driven results w/ comparison hypothesis
- accounts for all correlations in lattice and data-driven observables ... including uncertainties on these
 - \rightarrow needed for quantitative comparison

Testing R-ratio: methodology

• Chop a_i^{R} into contributions a_{ib}^{R} from same \sqrt{s} -intervals l_b for all j

$$a_j^{\mathsf{R}} = \sum_b a_{jk}^{\mathsf{R}}$$

To accommodate lattice results a^{lat}_j, allow common rescaling of a^R_{jb}, for all j, in certain I_b

$$a_j^{ ext{lat}} = \sum_b \gamma_b a_{jb}^{ ext{R}} = \sum_b (1+\delta_b) a_{jb}^{ ext{R}}$$

- \rightarrow can take some $\gamma_b = 1$
- \rightarrow simplest interpretation: R-ratio rescaled by γ_b in I_b
- \rightarrow however, constrains shape of R-ratio modification in limited way
- $\rightarrow \Phi$ deformation may be allowed
- Minimize w.r.t. parameters γ_b & a_{jb}

$$\chi^{2}(\boldsymbol{a}_{jb},\gamma_{b}) = \sum_{j,k} \left[\boldsymbol{a}_{j}^{\text{lat}} - \sum_{b} \gamma_{b} \boldsymbol{a}_{jb} \right] \left[\boldsymbol{C}_{\text{lat}}^{-1} \right]_{jk} \left[\boldsymbol{a}_{k}^{\text{lat}} - \sum_{c} \gamma_{c} \boldsymbol{a}_{kc} \right] \\ + \sum_{(jb)(kc)} \left[\boldsymbol{a}_{jb}^{\text{R}} - \boldsymbol{a}_{jb} \right] \left[\boldsymbol{C}_{\text{R}}^{-1} \right]_{(jb)(kc)} \left[\boldsymbol{a}_{kc}^{\text{R}} - \boldsymbol{a}_{kc} \right]$$

Testing R-ratio: results

Consider $a_1 = a_{\mu}^{\text{LO-HVP}}$, $a_2 = a_{\mu,\text{win}}^{\text{LO-HVP}}$ (2 obs.) w(/out) $a_3 = \delta(\Delta_{\text{had}}^{(5)}\alpha)$ (3 obs.)

 Stat and syst uncertainties on lattice covariance matrices do not change overall picture

Conclusions / Questions

- No inverse methods needed to show disagreement between lattice and data-driven approaches
- Nor for discriminating measurements
- However needed to more clearly identify possible problems with measurements
- Many solutions to inverse problem: Backus-Gilbert/HLT, NN, Bayesian approaches, MEM, ...
- Certainly less good methods ...
- ... but no "best" or "one-size-fits-all" solution
- "Model-independent" solutions are not the holy grail: we know a lot about the R-ratio
 - ightarrow additional knowledge should be used
 - \rightarrow will help mitigate the fact of limited independent lattice information

- Only go for "full" R(s) vs s if needed (e.g. LHC needs x dependence of PDFs)
- Often better to focus on more specific quantities
- Important to carefully formulate question(s) to be answered ...
- ... and develop methods to best answer it
- If lattice and data-driven methods end up agreeing, important to combine to gain in precision (will need 0.2% on $a_{\mu}^{\text{LO-HVP}}$ in 2025!)
 - ⇒ methods described in [BMW/DMZ '23] can be used to do so effectively

BACKUP