Pheno overview of $B \to D^*$

Marzia Bordone

Lattice@CERN 2024 15.07.2024

Long-standing puzzles in semileptonic decays

Two extraction methods:

- From inclusive $B \to X_c \ell \bar{\nu}$ decays
- From exclusive decays

$$
\Rightarrow B \to D^{(*)} \ell \bar{\nu} \Rightarrow \Lambda_b \to \Lambda_c \mu \bar{\nu} / \Lambda_b \to p \mu \nu
$$

$$
\Rightarrow B_s \to D_s^{(*)} \ell \bar{\nu}
$$

$$
\Rightarrow B_s \to K \mu \nu / B_s \to D_s \mu \nu
$$

Lepton flavour universality

$$
R_{D^{(*)}}=\frac{\mathcal{B}(B\to D^{(*)}\tau\bar\nu)}{\mathcal{B}(B\to D^{(*)}\ell\bar\nu)}
$$

- Current discrepancy at the order of 3.3σ
- Theory prediction is the arithmetic average of before 2021 estimates

Why we need a better determination of V_{cb} ?

- The value of V_{cb} has a major impact on flavour observables like $\mathcal{B}(B_s \to \mu^+ \mu^-)$ or ϵ_K
- A resolution of the puzzle is central given the perspective sensitivities at Belle II and LHCb

The theory drawback

Fundamental challenge to match partonic and hadronic descriptions

Exclusive matrix elements

$$
\langle H_c | J_\mu | H_b \rangle = \sum_i S_\mu^i \mathcal{F}_i
$$

Exclusive matrix elements

 $\langle H_c|J_\mu|H_b\rangle = \sum$ i $S^i_\mu \mathcal{F}_i$ \longleftarrow form factor scale Λ _{OCD} independent Lorentz structures

Exclusive matrix elements

Form factors determinations

- Lattice QCD
- QCD SR, LCSR

Form factors parametrisations

- HQET (CLN + improvements) \Rightarrow reduce independent degrees of freedom
- Analytic properties \rightarrow BGL

only points at specific kinematic points

data points needed to fix the coefficients of the expansion

The z**-expansion and unitarity**

[Boyd, Grinstein, Lebed, '95, Caprini, Lellouch, Neubert, '98]

- in the complex plane form factors are real analytic functions
- q^2 is mapped onto the conformal complex variable z

$$
z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}
$$

• q^2 is mapped onto a disk in the complex z plane, where $|z(q^2,t_0)| < 1$

$$
F_i = \frac{1}{P_i(z)\phi_i(z)} \sum_{k=0}^{n_i} a_k^i z^k
$$

$$
\sum_{k=0}^{n_i} |a_k^i|^2 < 1
$$

How to apply unitarity

• Penalty function in the χ^2

[P. Gambino, M. Jung, S. Schacht, '19]

$$
\chi^2 \to \chi^2(a_k^i, a_k^i |_{\text{data}}) + w_i \theta\left(\sum_{k=0}^{n_i} |a_k^i|^2 - 1\right)
$$

How to apply unitarity

• Penalty function in the χ^2 or B ing function in the χ -or

[P. Gambino, M. Jung, S. Schacht, '19]

ality function in the
$$
\chi^2
$$
 or likelihood

\n
$$
\chi^2 \to \chi^2(a_k^i, a_k^i |_{\text{data}}) + w_i \theta \left(\sum_{k=0}^{n_i} |a_k^i|^2 - 1 \right)
$$

can be experienced in a simpler with the Equipper simpler way the Equipper simpler was the Equipper simpler was

[M. Di Carlo, G. Martinelli, M. Naviglio, F. Sanfilippo, S. Simula, L. Vittorio, '21] [G. Martinelli, S. Simula, L. Vittorio, '21,'23]

$$
\text{det} \mathbf{M} > 0 \Rightarrow \beta - \sqrt{\gamma} \le f_0 \le \beta + \sqrt{\gamma}
$$

How to apply unitarity

• Penalty function in the χ^2 or B ing function in the χ -or

IP. Gambino, M. Jung, S. Schacht, '19]

ality function in the
$$
\chi^2
$$
 or likelihood

\n
$$
\chi^2 \to \chi^2(a_k^i, a_k^i |_{\text{data}}) + w_i \theta \left(\sum_{k=0}^{n_i} |a_k^i|^2 - 1 \right)
$$

 \bullet Dispersive Matrix Method

 $\int \chi \phi f \phi_1 f_1 \phi_2 f_2 \dots \phi_N f_N$

 ϕf $\frac{1}{1-z^2}$ $\frac{1}{1-zz_1}$ $\frac{1}{1-zz_2}$... $\frac{1}{1-zz_N}$ $\phi_1 f_1 \quad \frac{1}{1-z_1z} \quad \frac{1}{1-z_1^2} \quad \frac{1}{1-z_1z_2} \quad \cdots \quad \frac{1}{1-z_1z_N}$ $\phi_2 f_2 \quad \frac{1}{1-z_2z} \quad \frac{1}{1-z_2z_1} \quad \frac{1}{1-z_2^2} \quad \cdots \quad \frac{1}{1-z_2z_N}$ $\phi_N f_N \frac{1}{1-z_N z} \frac{1}{1-z_N z_1} \frac{1}{1-z_N z_2} \dots \frac{1}{1-z_N^2}$

1

CCCCCCCCCCCCCCCCCA

[M. Di Carlo, G. Martinelli, M. Naviglio, F. Sanfilippo, S. Simula, L. Vittorio, '21] [G. Martinelli, S. Simula, L. Vittorio, '21,'23]

$$
det \mathbf{M} > 0 \Rightarrow \beta - \sqrt{\gamma} \le f_0 \le \beta +
$$

• Bayesian inference **Expression** indicates of the superscript $[J.$ Flynn, A. Jüttner, T. Tsang, '23] $\mathcal{L}_{\text{trans}}$ t the music t and t and

 $M =$

BBBBBBBBBBBBBBBBB@

 $\sqrt{\gamma}$

$$
\langle g(\mathbf{a}) \rangle = \mathcal{N} \int d\mathbf{a} \, g(\mathbf{a}) \, \pi(\mathbf{a}|\mathbf{f}, C_{\mathbf{f}}) \pi_{\mathbf{a}} \qquad \theta(1 - |\mathbf{a}|^2)
$$

contains the lattice χ^2

 $\frac{1}{1-z_1x_1} \frac{1}{1-z_1x_2} \cdots \frac{1}{1-z_N}$

The Heavy Quark Expansion in a nutshell

The HQE exploits the fact that the b and c quarks are heavy

- Double expansion in $1/m_{b,c}$ and α_s
- The HQE symmetries relate $B^{(*)} \to D^{(*)}$ form factors
- At $1/m_{b,c}$ drastic reduction of independent degrees of freedom

With current precision we know we have to go beyond the $1/m_b c$ order and we use the following form

$$
F_i = \left(a_i + b_i \frac{\alpha_s}{\pi}\right)\xi + \frac{\Lambda_{\text{QCD}}}{2m_b}\sum_j c_{ij}\xi_{\text{SL}}^j + \frac{\Lambda_{\text{QCD}}}{2m_c}\sum_j d_{ij}\xi_{\text{SL}}^j + \left(\frac{\Lambda_{\text{QCD}}}{2m_c}\right)^2 \sum_j g_{ij}\xi_{\text{SSL}}^j
$$

- Total of 10 independent structures to be extracted from data
- We use the conformal mapping $q^2 \mapsto z(q^2)$ to include bounds and have a well-behaved series

B → D[∗] **before 2021**

Recent developments

$B \to D^*$ after 2021

- In 2021, FNAL/MILC came out with the first, away from zero-recoil calculation of $B \to D^*$ form factors [2105.14019]
- In 2023, HPQCD and JLQCD released also $B\to D^*$ form factors away from **zero-recoil and a series and a series of the series of the series and a series of the series**
- For the first time, a lattice-only determination of $B \to D^*$ form factors is possible without using any assumption
- The three computations rely on different lattice actions, and different ensembles, so they are in principle independent

- each other? • Are these results compatible with
- °4 experimental data? • Are they compatible with

Compatiblity of lattice data

- Similar results with HPQCD
- There are some differences in the slopes
- How good is the compatibility?
- Do the differences yield significant pheno consequences?

The HQET ratios Compatible. Slope? **masses reproduced by the continuum and chiral extrapolation of form factors (19).**

- FNAL/MILC '21 \mathbf{F}
- HQE@1/ m_c^2
- Exp data (BGL)
- \bullet JLQCD 23
- HPQCD '23

$$
R_2(w) = \frac{rh_{A_2}(w) + h_{A_3}(w)}{h_{A_1}(w)}
$$

- What's the source of the discrepancy With HQET? [MB, Harrison, Jung, ongoing] $\frac{1}{\ln 2}$, $\frac{1}{\ln 2}$, $\frac{1}{\ln 2}$, $\frac{1}{\ln 2}$, $\frac{1}{\ln 2}$
- $h_{A_1}(w)$ which the Lie manufacture of the stream of $h_{A_1}(w)$. Why are experimental data (Belle $E_{\rm OLO}$ order are expected to be particle to be partic 2018) so different from LQCD data?

New $B\to D^*\ell\bar\nu$ Belle and Belle II data

$$
\frac{d\Gamma}{dwd\cos(\theta_{\ell})d\cos(\theta_{\nu})d\chi} = \frac{3G_F^2}{1024\pi^4}|V_{ab}|^2n_{EW}M_{B}r^2\sqrt{w^2-1}q^2
$$
\n
$$
+ \{(\frac{1-\cos(\theta_{\ell})}{8})^2\sin^2(\theta_{\nu})H_+^2(w) + (1+\cos(\theta_{\ell}))^2\sin^2(\theta_{\nu})H_-^2(w) \}
$$
\n
$$
+ 4\sin^2(\theta_{\ell})\cos^2(\theta_{\nu})H_0^2(w) - 2\sin^2(\theta_{\ell})\sin^2(\theta_{\nu})\cos(2\chi)H_+(w)H_-(w) \}
$$
\n
$$
- 4\sin(\theta_{\ell})(1+\cos(\theta_{\ell}))\sin(\theta_{\nu})\cos(\theta_{\nu})\cos(\chi)H_+(w)H_0(w)
$$
\n
$$
+ 4\sin(\theta_{\ell})(1+\cos(\theta_{\ell}))\sin(\theta_{\nu})\cos(\theta_{\nu})\cos(\chi)H_-(w)H_0(w)
$$
\n
$$
= \text{analysis}
$$

- Between 7 to 10 bins per kinematic variable
- Available on HEPData with correlations
- Angular observables analysis are available, data 2 anarysis are avaliable
just newly released \bullet

Fitting Strategies

Strategy A

- Fit BGL parametrisation to lattice data
- Compute theory predictions for $d\Gamma/dq^2/|V_{cb}|^2$
- Combine with experimental data
- "Final" extraction of $|V_{cb}|$ from a correlated weighted average of all binned-results

Strategy B

- Fit BGL parametrisation to lattice + experimental data at the same time
- Determine V_{cb} from such global fit

If the SM reproduces experimental data well, there should be no tensions between A and B

Strategy A

Strategy A

Frequentist fit 3 3 3 3 3 0.0490 4 3 0.0490 4 3 0.0490 4 3 0.0490 4 3 0.0490 4 3 0.0490 4 3 0.0490 4 3 0.1(1.3) -0.1(1.3) -0.1

- good fit quality y
- \bullet lattice data are compatible 3 3 3 3 3 3 $-$ 0011 μ 0.005 μ
- no unitarity

Bayesian Fit

- unitarity regulates higher orders
- truncation dependent

Comparison with DM

Strategy B

- Good fit quality for Strategy B (*p*-value $\sim 18\%$)
- Adding experimental data reduces the uncertainties, especially at large w
- Especially for \mathcal{F}_1 and \mathcal{F}_2 , the shape changes between Strategy A and B

Strategy B

- Fit to HPQCD and FNAL/MILC misses experimental points
- BGL fit to experimental and lattice data has *p*−value $\sim 18\%$
- BGL coefficients shift of a few σ between Strategy A and B

Posterior distribution

- Small shifts between lattice only and lattice + data
- Higher order coefficients well constrained by unitarity
- $a_{\mathcal{F}_2,2}$ has a strange behaviour, maybe kinematic constraints?

Differential observables

- The combined lattice + experimental precision makes it possible to study the differences in the shane \mathbb{Z}^n /Nm` , (4.3) differences in the shape
	- It is clear that there is a distinct difference between JLQCD and FNAL/MILC+HPQCD lat fit
	- Difficult to understand what is going on, JLQCD errors are also a bit larger

Integrated observables

- Significant scatter between various combinations of lattice results
- ϵ . We analyze our to protein the second for the only experimental data (circles) by ϵ • We apply a systematic error to account for the spread
- where available or visible with the shown range along the shown range and other with the shown range • Consistent scatter of the experimental results independently of the lattice
information T ndicates our central results presented in \Rightarrow see also: Fedele et al, '23 • Significant scatter between various combinations of lattice results
• We apply a systematic error to account for the spread
• Consistent scatter of the experimental results independently of the information
 \Rightarrow see also information

 $\frac{1}{\sqrt{2}}$ the dash-dotted grey lines indicate the range for the range for the range for the results in $\frac{1}{\sqrt{2}}$

$|V_{cb}|$ **- Strategy A** $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ could be defined by $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

\mathbf{v}_i , i.e. in property in that such finds that such finds that such finds that such finds \mathbf{v}_i α after dropping bins, or, the fit result does not appear to represent the data well, and appear to r $\mathsf{q}_\mathbf{d}$ Blue band $\mathsf d$ and then combining them weighted by the Akaike-information criterion (AIC) [? ?] (see

- $\bullet\,$ Frequentist fit $p-$ value $\sim 0\%$ \bullet Frequentist fit $p-$ value $\sim 0\%$
- Affected by d'Agostini Bias • Affected by d'Agostini Bias in [?], no PDG inflation [?] of the error at intermediate steps of the analysis is required

possible (in terms of fit quality, such that 0.05 p 0.95) Red band

- ed band
• Frequentist fit $p-$ value $\sim 0\%$ $\lim_{n \to \infty}$ for $\frac{n}{2}$.
- Akaike-Information-Criterion analysis: average over all possible fits with at least two data points and then weighted average [?????] for other recent uses or discussions of the AIC). Contrary to the analysis

$$
w_{\{\alpha,i\}} = \mathcal{N}^{-1} \exp\left(-\frac{1}{2}(\chi^2_{\{\alpha,i\}} - 2N_{\text{dof},\{\alpha,i\}})\right) \quad \text{where} \quad \mathcal{N} = \sum_{\text{sets } \{\alpha,i\}} w_{\text{set}}
$$

$$
|V_{cb}| = \langle |V_{cb}|\rangle \equiv \sum_{\text{sets } \{\alpha,i\}} w_{\text{set}} |V_{cb}|_{\text{set}}
$$

- Analysis based on Strategy A
- The AIC nicely reduces the d'Agostini bias
- Some lattice data behave strangely
- Would it be safer to discard the angular distributions?
- Combining the three lattice datasets doesn't help, shape driven by FNAL/MILC and HPQCD
- Good compatibility with Strategy B

Results from the DM method

⇒ similar behaviour as we observe

|Vcb| **- Summary**

- Residual 2σ difference with inclusive
- The AIC produces slightly larger uncertainties, overall all results are quite consistent analysis based on the AIC analysis based on the w division of the water are shown in \mathcal{L}_{in} as in Eq. (5.1), where we employ the sult as in Eq. (5.1), where we employ the weight of \mathcal{L}_{in}

- If for V and A_1 everything aligns well, for A_{12} and A_0 there is an evident shift in slopes
- In the combination difference is milder

Combining with other LQCD results

[MB, J. Harrison, M. Jung, in preparation]

- All LQCD $B \to D^*$ results can be described in a global fit to the HQE
- R_D is in tension with $B \to D$ LQCD w/o LCSRs

Fitting HPQCD lattice data at multiple m_h with HQE

Lattice data includes $m_h = 1.5m_c$, $m_h = 0.9m_b$

- need to add $1/m_h^2$ terms to continuum HQE parameterisation.
- Also add generic α_s and α_s^2 contributions

$$
F_i = \left(a_i + b_i \frac{\alpha_s}{\pi} + k_i \frac{\alpha_s^2}{\pi^2}\right) \xi + \frac{\Lambda_{\text{QCD}}}{2m_h} \sum_j c_{ij} \xi_{\text{SL}}^j + \frac{\Lambda_{\text{QCD}}}{2m_c} \sum_j d_{ij} \xi_{\text{SL}}^j
$$

$$
+ \left(\frac{\Lambda_{\text{QCD}}}{2m_c}\right)^2 \sum_j g_{ij} \xi_{\text{SSL}}^j + \left(\frac{\Lambda_{\text{QCD}}}{2m_h}\right)^2 \sum_j h_{ij} \xi_{\text{SSL}}^j
$$

$$
+ \sum_{\substack{n,m=1,2\\q=h,c}} \left(\frac{\Lambda_{\text{QCD}}}{2m_q}\right)^n \left(\frac{\alpha_s}{\pi}\right)^m \zeta_i^{n,m,q}
$$

with $\zeta = \zeta(1) + \zeta'(1)(w-1)$

- Use the same uniform prior widths for ξ, ξ^j_SL and ξ^j_SSL , use gaussian priors of 0 ± 10 for $\zeta_i^{n,m,q(\prime)}(1)$, h_{ij} , k_i
- discretisation and chiral effects added analogously to 2304.03137

Isgur-Wise function: ξ

- Discrepancies arise in ξ at higher order in $(w 1)$, reflects difference seen in slope
- Similar situation comparing to combined fit posteriors

Sub-leading Isgur-Wise functions: χ_2 , χ_3

Sub-leading Isgur-Wise functions: η

• From QCDSR, $\eta(1)$ should be positive and different from zero

Sub-sub-leading Isgur-Wise functions: $l_i(1)$

Combining $B \to D$ and $B \to D^*$

- HQET allows to determine $B \to D$ and $B \to D^*$ form factors with a unique parametrisation
- Can $B \to D$ lattice data help?

- The inclusion of $B \to D$ data helps changing slightly the slope
- Motivated a correlated $B \to D$ and $B \to D^*$ lattice analysis

What else?

Measurements of angular observables:

 $\frac{\mathrm{d}\Gamma(\bar{B}\to D^*\ell\bar{\nu}_\ell)}{\mathrm{d}w\,\mathrm{d}\cos\theta_V\,\mathrm{d}\chi} = \frac{2G_{\rm F}^2\eta_{\rm EW}^2|V_{\rm cb}|^2m_B^4m_{\rm D^*}}{2\pi^4}\times\bigg(J_{1s}\sin^2\theta_{\rm V}+J_{1c}\cos^2\theta_{\rm V}$ $+$ $(J_{2s} \sin^2 \theta_V + J_{2c} \cos^2 \theta_V) \cos 2\theta_{\ell} + J_3 \sin^2 \theta_V \sin^2 \theta_{\ell} \cos 2\chi$ $+ J_4 \sin 2\theta_V \sin 2\theta_\ell \cos \chi + J_5 \sin 2\theta_V \sin \theta_\ell \cos \chi + (J_{6s} \sin^2 \theta_V + J_{6c} \cos^2 \theta_V) \cos \theta_\ell$ $+ J_7 \sin 2\theta_V \sin \theta_\ell \sin \chi + J_8 \sin 2\theta_V \sin 2\theta_\ell \sin \chi + J_9 \sin^2 \theta_V \sin^2 \theta_\ell \sin 2\chi$

- Angular observables are a complete base
- \bullet • It is not redundant

[2310.20286]

Conclusions

- $B \to D^*$ form factor are a crucial inputs to extract V_{cb} and ultimately in the search for new physics
- New Lattice results are a step forward
- Nevertheless, we notice a difference that have large impact on phenomenology
- Belle and Belle II have precise results for angular distributions and angular observables
- Belle II has the same precision of the untagged 2018 Belle analysis due to the inclusive tagging
- Angular distribution data still to be analysed
- Are all these experimental datasets consistent?

[Appendix](#page-42-0)

Unitarity Bounds

$$
= i \int d^4x e^{iqx} \langle 0|T\left\{j_\mu(x), j_\nu^\dagger(0)\right\}|0\rangle = (g_{\mu\nu} - q_\mu q_\nu)\Pi(q^2)
$$

- If $q^2 \ll m_b^2$ we can calculate $\Pi(q^2)$ via perturbative techniques $\Rightarrow \chi(0)$
- $\bullet\,$ Dispersion relations link Im $(\Pi(q^2))$ to sum over matrix elements

$$
\sum_{i} |F_i(0)|^2 < \chi(0)
$$

[Boyd, Grinstein,Lebed, '95 Caprini, Lellouch, Neubert, '97]

- The sum runs over **all** possible states hadronic decays mediated by a current $\bar{c}\Gamma_\mu b$
	- The unitarity bounds are more effective the most states are included in the sum
	- The unitarity bounds introduce correlations between FFs of different decays
	- $\bullet~~B_s\rightarrow D_s^{(*)}$ decays are expected to be of the same order of $B_{u,d}\rightarrow D_{u,d}^{(*)}$ decays due to $SU(3)_F$ simmetry