Interpolating to the B-scale

Simon Kuberski based on work with A. Conigli, J. Frison, P. Fritzsch, A. Gérardin, J. Heitger, G. Herdoíza, C. Pena, H. Simma, R. Sommer

LATTICE@CERN 2024 July 16, 2024

Why should we do B-physics on the lattice?

- Search for BSM physics at the high-precision frontier: Deviations between Standard Model predictions and experiment in flavor physics observables.
- Several *B-anomalies*, e.g.,
	- \blacktriangleright Ratios testing lepton flavor universality.
	- ▶ Branching fractions of rare decays.
	- **Example 1** Tension between inclusive and exclusive determinations of $|V_{ub}|$ and $|V_{cb}|$.
- Need precise determinations of hadronic matrix elements and quark masses.
- \rightarrow Ab initio Standard Model predictions from lattice QCD.

Multi-scale problems in lattice QCD

- \blacksquare By discretizing QCD in a finite volume, we introduce two cutoffs:
	- ▶ Infrared cutoff: $\Lambda_{\text{ID}} \sim 1/L$
	- ► Ultraviolet cutoff: $\Lambda_{\text{UV}} \sim 1/a$
- **■** Finite-volume effects vanish exponentially $\propto \exp(-m_{\pi}L)$ \rightarrow require $m_{\pi}L > 4$.
- Cutoff effects vanish polynomially $\propto c_1 a + c_2 a^2 + c_3 a^3 + c_4 a^4 \dots$ with logarithmic corrections [\[Husung et al., 1912.08498\]](https://inspirehep.net/literature/1771515)!

 \rightarrow For heavy quarks h: fulfill $am_b \ll 1$ for reliable continuum extrapolations.

 $L^{-1} \ll m_{\pi} \approx 135 \text{ MeV} \ll am_h \ll a^{-1}$

Multi-scale problems in lattice QCD

 $L^{-1} \ll m_{\pi} \approx 135 \text{ MeV} \ll am_h \ll a^{-1}$

The cost to generate ensembles scales at least with $(L/a)^5...$

Multi-scale problems in lattice QCD

 $L^{-1} \ll m_{\pi} \approx 135 \text{ MeV} \ll am_h \ll a^{-1}$

- The cost to generate ensembles scales at least with $(L/a)^5...$
- \blacksquare ... and there is critical slowing down towards the continuum limit. Here: 2+1 flavor CLS ensembles, no topology freezing!

 $L^{-1} \ll m_{\pi} \approx 135 \text{ MeV} \ll am_h \ll a^{-1}$

- The cost to generate ensembles scales at least with $(L/a)^5...$
- \blacksquare ... and there is critical slowing down towards the continuum limit. Here: 2+1 flavor CLS ensembles, no topology freezing!
- What are the energy scales that can be reached at physical pion mass?
	- ▶ $m_{\pi}^{\text{phys}} L \geq 4$ implies $L \geq 6$ fm (assume $T \gg L$ here).
	- ▶ State of the art: $L/a = 96$ at $a = 0.06$ fm $\rightarrow a^{-1} \sim 3.3$ GeV⁻¹.
	- ▶ Largest on the market: $L/a = 144$ at $a = 0.04 \,\text{fm} \rightarrow a^{-1} \sim 4.9 \,\text{GeV}^{-1}$.

Simulating a relativistic b on the finest large-volume ensembles: am_b is of $O(1)$.

Quark mass dependent cutoff effects

■ Consider (finer than) conventional lattice spacings

 0.031 fm $\le a \le 0.083$ fm

in finite-volume.

Continuum extrapolation of the pseudoscalar heavy-light decay constant at fixed (renormalized) quark masses.

■ For illustration: Use three finest resolutions ≤ 0.05 fm to extrapolate with

$$
f_{\rm hl}(a) = p_0 + p_1 \cdot a^2
$$

Simulating relativistic bottom quarks at several resolutions is not possible in large volumes in the near future!

Extrapolation to the B scale is difficult, possibly mixing extra-/interpolations in a , $1/m_h$ and q^2 for semi-leptonic form factors.

Simulating relativistic bottom quarks at several resolutions is not possible in large volumes in the near future!

Employ effective field theories for low-energy physics

 $a|\vec{p}| \ll 1$, $|\vec{p}| \ll m_{\rm b}$

- here: Heavy Quark Effective Theory (HQET)
- Renormalizable effective theory \leftrightarrow continuum limit.

Heavy Quark Effective Theory

Heavy Quark Effective Theory

Integrate out heavy degrees of freedom of QCD Lagrangian for one heavy quark.

Expand the Lagrangian in powers of $1/m_b$.

 \rightarrow Possible to describe bottom physics at next-to-leading order in HQET.

$$
\mathcal{L}_{\text{heavy}} = \bar{h}_{v} D_{0} h_{v} - \omega_{\text{kin}} \mathcal{O}_{\text{kin}} - \omega_{\text{spin}} \mathcal{O}_{\text{spin}} , \qquad \mathcal{O}_{\text{kin}} = \bar{h}_{v} \mathbf{D}^{2} h_{v} , \quad \mathcal{O}_{\text{spin}} = \bar{h}_{v} \sigma \cdot \mathbf{B} h_{v}
$$

Perturbative matching at order g_0^{2l} leads to power divergences in the coefficients [\[Nucl.Phys.B 368 \(1992\) 281-292, Maiani et al.\]](https://inspirehep.net/literature/30843)

$$
\Delta c_k \sim g_0^{2(l+1)} a^{-p} \sim a^{-p} \left[\ln(a\Lambda) \right]^{-(l+1)} \stackrel{a \to 0}{\to} \infty
$$

due to mixing of operators differing in dimensions by p .

(Non-perturbative) HQET

■ Can we just perform an interpolation between results in static HQET and results in relativistic QCD below m_b where $am_b \ll 1$?

(Non-perturbative) HQET

- Can we just perform an interpolation between results in static HQET and results in relativistic QCD below m_b where $am_b \ll 1$?
- \rightarrow No! Even the static approximation requires non-trivial renormalisation and matching that would have to be **computed non-perturbatively**.
- Existing strategy to renormalize HQET non-perturbatively via step-scaling techniques [\[Heitger and Sommer, hep-lat/0310035\]](https://inspirehep.net/literature/630410). \rightarrow Quite challenging since $1/m_b$ effects are needed for precision.

THE STATIC THEORY

- Given the static action $\mathcal{L}^{\text{stat}} = \overline{\psi}_h D_0 \psi_h$, we have $E^{\text{stat}} \sim \frac{1}{a}$ $rac{1}{a}g_0^2$. $\rightarrow E^{\text{stat}}$ divergent as $a \rightarrow 0$
- Renormalization $\rightarrow \delta m \sim \frac{1}{a}$ $\frac{1}{a} g_0^2$ and matching $\rightarrow m_b^{\rm finite}$. $\rightarrow E = E^{\text{stat}} + \delta m + m_b^{\text{finite}}$
- \blacksquare Heavy-light currents

$$
V_k^{\text{stat}} = C_{V_k}(m_b) Z^{\text{stat}}(g_0) \overline{\psi}_h \gamma_k \psi_l
$$

$$
V_0^{\text{stat}} = C_{V_0}(m_b) Z^{\text{stat}}(g_0) \overline{\psi}_h \gamma_0 \psi_l
$$

 \rightarrow Matching coefficients $C_{V_{k(0)}}(m_b)$ log-divergent as $m_b \rightarrow \infty$ [\[Sommer, 1008.0710\]](https://inspirehep.net/literature/864434).

Our strategy, based on [\[Guazzini et al., 0710.2229\]](https://inspirehep.net/literature/763911):

Cancel renormalization and matching [\[Sommer et al., 2312.09811\]](https://inspirehep.net/literature/2737639).

- Phenomenologically relevant: the q^2 dependence of semi-leptonic form factors.
- Form factor decomposition in the B -meson rest frame

 $(\sqrt{2}p_k^{\pi})^{-1} \langle \pi(p^{\pi}) | V_k(0) | B(\vec{p} = 0) \rangle = h_{\perp}(E_{\pi}) = h_{\perp}^{\text{stat}}(E_{\pi}) + O(1/m_b)$

Cancel <mark>matching</mark> and renormalization for h_\perp^stat ,

$$
\frac{h_{\perp}(E_{\pi})}{h_{\perp}(E_{\pi}^{\text{ref}})} = \frac{h_{\perp}^{\text{stat}}(E_{\pi})}{h_{\perp}^{\text{stat}}(E_{\pi}^{\text{ref}})} + O(1/m_{\text{b}}).
$$

■ Connection with f_{B^*} : Normalize to the vector decay constant

$$
h_{\perp}(E_{\pi}^{\text{ref}}) = \hat{f}_{\text{V}} \frac{h_{\perp}(E_{\pi}^{\text{ref}})}{\hat{f}_{\text{V}}} = \hat{f}_{\text{V}} \left[\frac{h_{\perp}^{\text{stat}}(E_{\pi}^{\text{ref}})}{\hat{f}_{\text{V}}^{\text{stat}}} + \text{O}(1/m_{\text{b}}) \right]
$$

 \rightarrow Problem solved for h_{\perp} . How to compute \hat{f}_{V} ?

Step-scaling: Use the finite-volume as a tool.

E Cancel matching and renormalization via ratios of observables $O(L_2)/O(L_1)$ or differences of logs computed in two volumes :

$$
\sigma_{\rm V} = \left[\log[L_{\rm ref}^{3/2} \hat{f}_{\rm V}(L_2)] - \log[L_{\rm ref}^{3/2} \hat{f}_{\rm V}(L_1)] \right]
$$

 \blacksquare Same ansatz to cancel the additive divergence in the static energy

$$
\sigma_m = L_{\text{ref}} \left[m_{\text{PS}}(L_2) - m_{\text{PS}}(L_1) \right]
$$

■ Connect large-volume (CLS) ensembles with small volumes in two steps:

$$
L_{\infty} \to L_2 = 1 \text{ fm}
$$
 and $L_2 = 1 \text{ fm} \to L_1 = 0.5 \text{ fm}$

■ Small volume $L_1 = 0.5$ fm: Simulate **relativistic b quarks** with $am_b \ll 1$

The vector meson decay constant from step-scaling

■ Vector meson decay constant
$$
\hat{f}_V = f_V \sqrt{m_V}
$$
,

$$
\hat{f}_V = \sqrt{2} \langle 0|V_k(0)|V(\vec{p} = 0, k) \rangle_{\text{NR}} = \hat{f}_V^{\text{stat}} + O(1/m_b),
$$

 \blacksquare For the step-scaling, we define

$$
\Phi_{\vec{V}}(L) \equiv \ln\left(\frac{L_{\text{ref}}^{3/2} \hat{f}_V(L)}{2}\right)
$$

 \blacksquare Compute the large-volume (physical) quantity via

 $\Phi_{\vec{v}} = \Phi_{\vec{v}}(L_1) + [\Phi_{\vec{v}}(L_2) - \Phi_{\vec{v}}(L_1)] + [\Phi_{\vec{v}} - \Phi_{\vec{v}}(L_2)]$

Each observable is continuum extrapolated.

B-physics from step-scaling

- QCD observables with relativistic b quarks in finite volume at $L_1 = 0.5$ fm where $a^{-1} \in [9.5, 25] \,\text{GeV}^{-1}.$
- Step-scaling for observables with:
	- \blacktriangleright static quarks
	- \blacktriangleright relativistic quarks with $m_h < m_b$
- Contact with large-volume simulations.

A word on light quark masses

- Simulate $N_f = 3$ massless QCD in the sea in small volumes.
- **Current status in large volume: SU(3) symmetric point,** $m_{\pi} = m_K \approx 420$ **MeV.** Later more on this... β

First results

[for the vector decay constant](#page-18-0)

[\[2312.09811\]](#page-18-0) [\[2312.10017\]](https://inspirehep.net/literature/2737610)

Interpolate observables to the B-scale:

- Interpolate relativistic measurements around $m_{\rm b}$:
	- In small volumes: Observables such as \hat{f}_V , m_B/m_b .
- Interpolate between the static limit and $m_h \ll m_b$:
	- \blacktriangleright Step-scaling functions such as σ_V , σ_m .
	- ▶ In large volume: Ratios of observables like $h_\perp(E_\pi)/h_\perp(E_\pi^{\rm ref})$ or $h_\perp(E_\pi^{\rm ref})/\hat{f}_\mathrm{V}.$
- Interpolations in $1/m_h$ are performed in the continuum limit:
	- ▶ Continuum extrapolations at the B-scale only for $a^{-1} \in [9.5, 25]$ ${\rm GeV}^{-1}$
	- \blacktriangleright Cutoff effects partially cancel in differences.

$$
\Phi_{\vec{V}}=\Phi_{\vec{V}}(L_1)+[\Phi_{\vec{V}}(L_2)-\Phi_{\vec{V}}(L_1)]+[\Phi_{\vec{V}}-\Phi_{\vec{V}}(L_2)]
$$

CONTINUUM EXTRAPOLATION AT THE BOTTOM SCALE

- B-physics on fine lattices in small volumes.
- Continuum extrapolations for vector (left) and axial (right) decay constants.
- **Four heavy valence quark masses encompass the bottom quark mass.**

INTERPOLATION TO THE BOTTOM SCALE

- B-physics on fine lattices in small volumes.
- **■** Interpolate in inverse heavy-light meson mass $1/y = 1/(L_{\text{ref}} m_{\text{PS}}(L_1)) \propto 1/m_h$.
- Straight-forward interpolation to $m_h = m_b$.

STEP-SCALING FROM L_1 to L_2 : continuum limit

- Continuum extrapolation of relativistic and static step-scaling functions for $\Phi_{\vec{v}}$.
	- $L = 0.5$ fm to $L = 1$ fm. Only include $am_h^{\text{RGI}} < 0.8$.

relativistic: valence masses $m_h^{\rm RGI} < 0.5\, m_b^{\rm RGI}$

16 / 28 static: two heavy quark actions

L_2 to L_{∞} : continuum limit

Continuum extrapolation of relativistic and static step-scaling functions for $\Phi_{\vec{v}}$.

 $L = 1$ fm to L_{CLS} . Only include $am_h^{\text{RGI}} < 0.8$.

relativistic: valence masses $m_h^{\rm RGI} < 0.3\,m_b^{\rm RGI}$ static static the fit of 17 / 28

static

Interpolations for decay constants

- Interpolation to $1/m_B$: highly constrained by the static result.
- Step-scaling functions of pseudoscalar Φ_{A_0} and vector $\Phi_{\vec{v}}$ decay constant have the same static limit (heavy quark symmetry).

RESULTS FOR $f_{B\star}/f_B$

- Combine all pieces to arrive at the final result.
- \blacksquare N.b.: We (currently) work at the SU(3) symmetric point. Expect light quark dependence in the **ratio** f_{B*}/f_B to be small.

RESULTS FOR $f_{B\star}/f_B$

- Combine all pieces to arrive at the final result.
- \blacksquare N.b.: We (currently) work at the SU(3) symmetric point. Expect light quark dependence in the **ratio** f_{B*}/f_B to be small.

- Puzzling situation for the ratios $f_{B_{\rm (s)}}/f_{B_{\rm (s)}^\star}$.
- Systematically improvable result with competitive uncertainties.
- Decay constants currently at about 2.5% precision, dominated by finite-volume statistical uncertainties.

First results

[for the mass of the bottom quark](#page-27-0)

[\[2312.09811\]](#page-27-0) [\[2312.10017\]](https://inspirehep.net/literature/2737610)

The bottom quark mass from step-scaling

 \blacksquare In small volume, compute

$$
m_h^{\text{RGI}} = \frac{M}{m_{\text{R}}(1/L_0)} \frac{Z_{\text{A}}}{Z_{\text{P}}(L_0)} [1 + (b_{\text{A}} - b_{\text{P}}) a m_h] m_h^{\text{PCAC}}(L_1) \text{ and } \pi_m = \frac{m_{\text{PS}}(L_1)}{m_h^{\text{RGI}}}
$$

with the running factor from [\[ALPHA, 1802.05243\]](https://inspirehep.net/literature/1654908) and the renormalization and improvement from [Fritzsch, Heitger, SK].

■ Compute the bottom quark mass via

$$
L_{\text{ref}} m_h^{\text{RGI}} = \left(L_{\text{ref}} m_{\text{PS}} - L_{\text{ref}} [m_{\text{PS}} - m_{\text{PS}}(L_2)] - L_{\text{ref}} [m_{\text{PS}}(L_2) - m_{\text{PS}}(L_1)] \right) \frac{m_h^{\text{RGI}}}{m_{\text{PS}}(L_1)}
$$

$$
\equiv \frac{L_{\text{ref}} m_{\text{PS}} - \rho_m(L_2) - \sigma_m(L_1)}{\pi_m(L_1)}
$$

with the physical input for $m_{\rm PS}$. We choose $m_{\rm PS} = m_{\overline{B}} \equiv \frac{2}{3}m_B + \frac{1}{3}m_{B_{\rm s}}$ for $h = {\rm b}$.

The bottom quark mass from step-scaling

■ We have omitted the light quark dependence. Let's expand

$$
\rho_m(L_2) = L_{\text{ref}}[m_{\text{PS}} - m_{\text{PS}}(L_2)]
$$

= $L_{\text{ref}}[m_{\text{PS}} - m_{\text{PS}}^{\text{SU}(3)}] + L_{\text{ref}}[m_{\text{PS}}^{\text{SU}(3)} - m_{\text{PS}}(L_2)]$

where $m_{\rm PS}^{\rm SU(3)}\equiv m_{\rm PS}(m_\pi=m_K\approx 420\,{\rm MeV})$ is the heavy-light meson mass at the SU(3) symmetric point. β

- Normalize step-scaling to the $SU(3)$ symmetric point $(2 + 1)$ flavor CLS).
- \blacksquare Reach physical sea quarks via

$$
\lim_{m_{\pi} \to m_{\pi}^{\text{phys}}} \lim_{a \to 0} L_{\text{ref}}[m_{\text{PS}} - m_{\text{PS}}^{\text{SU}(3)}]
$$

where
$$
m_K^2 + \frac{1}{2}m_\pi^2 \approx
$$
 const..

CONTINUUM EXTRAPOLATION AT THE BOTTOM SCALE

- Ratio of heavy-light meson mass and heavy quark mass m_H/m_h^RGI around the b.
- Left: Continuum extrapolation for four valence quark masses.
- Right: Interpolation to $1/m_{\overline{B}}$

L_1 to L_2 : continuum limit

Continuum extrapolation of relativistic and static step-scaling functions for the quark mass $\Sigma_m = L_2 [m_H(L_2) - m_H(L_1)]$ and Σ_m^{stat} from $L = 0.5$ fm to $L = 1$ fm with $m_h^{\text{RGI}} < 0.5 \, m_b^{\text{RGI}}$.

L_2 to CLS: continuum limit

Continuum extrapolation of relativistic and static step-scaling functions for the quark mass $R_m = L_2 \left[m_H - m_H(L_2) \right]$ with $m_h^{\rm RGI} < 0.3 \, m_b^{\rm RGI}$ and $R_m^{\rm stat}$ from $L = 1$ fm to CLS.

SSFS IN THE CONTINUUM

 \blacksquare Interpolate SSFs to the bottom scale in the continuum, where

$$
\sigma_m = \lim_{a \to 0} \Sigma_m \text{ and } \rho_m = \lim_{a \to 0} R_m \, .
$$

PION MASS DEPENDENCE: THE STATIC SECTOR

- Need to compute $\lim\limits_{m_\text{PS}\to m_{\overline{B}}}\lim\limits_{m_\pi\to m_\pi}$ $m_{\pi} \rightarrow m_{\pi}^{\text{phys}}$ $\lim_{a\to 0} L_{\rm ref}[m_{\rm PS} - m_{\rm PS}^{\rm SU(3)}].$
- Small effects expected: $2m_1 + m_s = \text{const.}$ and cutoff effects largely cancel.

■ Look at quark mass and cutoff effects in the static energy

$$
\overline{E}_{\rm stat}=\frac{2}{3}E^{\rm hl}_{\rm stat}+\frac{1}{3}E^{\rm hs}_{\rm stat}
$$

- \blacksquare Effect at the physical point is at most 13 MeV for a static heavy quark.
- Very small w.r.t. our uncertainties (next slide)!

FULL STEP-SCALING FOR $\overline{m_{\rm b}}$

$$
m_b^{\text{RGI}}(N_f = 3) = \frac{L_{\text{ref}} m_{\text{PS}} - \rho_m(L_2) - \sigma_m(L_1)}{L_{\text{ref}} \pi_m(L_1)} = 6.608(49) \text{ GeV} [0.7\%]
$$

Result at the SU(3) symmetric point, neglected shift of $\leq 0.017 \,\text{GeV}$.

■ Uncertainty dominated by running to RGI \rightarrow improvable external quantity.

 $m_b^{\text{RGI}}(N_f=3)$

26 / 28

What is already done

- Simulations of relativistic bottom quarks in small volumes.
- Step-scaling functions of static HQET and relativistic QCD with $am_b \ll 1$.
- \blacksquare Continuum step-scaling chain to the SU(3) symmetric point in large-volume.

What remains to be done (by **anyone** who likes to make use of this work)

- Simulations of static HQET and QCD in large volumes for $m_\pi\to m_\pi^{\text{phys}}.$
- \Box (Log-)difference with zero-momentum quantities at the SU(3) symmetric point.

CONCLUSIONS

- \blacksquare Precision B-physics from well controlled continuum extrapolations, keeping $am_b \ll 1$, is possible by including static HQET, canceling matching and renormalization.
- We need to further explore the parameter space (finite-volume definitions, $1/m_\mathrm{h}^2$ effects, cuts in the continuum extrapolations).
- Next step: Extension to semi-leptonics (correlation functions have been computed) and inclusion of physical light quark masses.

Take home message

- Step-scaling functions can be used by any collaboration with any action.
- For form factors, only the large-volume computation and \hat{f}_B^{\star} are needed.