Discussion session: systematic effects in heavy-light observables setting

Rainer Sommer

Theory institute, Cern, July 2024

Systematic effects

- we don't want any
- we don't like to discuss them (it's no fun)
- but it is necessary, especially since Nature \approx SM
- discussion usually starts when something happens, e.g.
 - WI is violated in nucleon matrix elements

Systematic effects

Systematic effects

imo this is late and common errors may go unnoticed let's start now

Systematics in most simple (?) quantity: *t*₀

DESY

t_0 , possible interpretations

t_0 , possible interpretations

NIC

t_0 , possible interpretations

how do the differences affect g-2?

Iet's switch to B-physics

Systematics for B-observables

- we are mostly "just" dealing with extrapolations
 - 1) excited state effects: $x_0 \rightarrow \infty$
 - 2) continuum limit: $a \rightarrow 0$
 - 3 ... not discussed here.
- there is a big difference between 1) and 2)
 - 1) exponential convergence
 - 2) polynomial with logs
- start with the "easy" one

dominant effects: states with additional pions

-> ChPT (HMChPT)

—> this is a (good, I think) approximation and definitely gives a good general picture for what is relevant

follow what has been done by O. Bär for the nucleon, apart from construction of Lagrangian, renormalisation, ...

References for what I discuss here:

- Bπ excited-state contamination in lattice calculations of B-meson correlation functions, O. Bär, A. Broll, RS Eur.Phys.J.C 83 (2023) 8, 757, 2306.02703 [hep-lat]
- Lattice 2022 talk by A. Broll
- Thesis A. Broll https://edoc.hu-berlin.de/handle/18452/28796

$B\pi$ and $B^*\pi$ states¹

¹ I often won't distinguish between B and B* in the following ...

Infinite volume: continuous 2-particle spectrum, threshold = $M_B + M_\pi$

¹ I often won't distinguish between B and B* in the following ...

A little on HMChPT

- Relevant interaction given by

$$\mathcal{L}_{\rm int} = i \frac{g}{f} \operatorname{tr} \left(H \gamma_5 \gamma_\mu \partial_\mu \pi \bar{H} \right) + \dots \qquad -$$

Note:

- one pion derivative
- two LO LECs f: pion decay constant
 - g: $BB^*\pi$ coupling (in the chiral limit)

 $BB^*\pi$ $B^*B^*\pi$

 $f \approx f_{\pi} \approx 93 \,\mathrm{MeV}$ q pprox 0.49 Lattice: A. Gerardin *et al.* (2022)

Interpolating B-meson fields

 $\overline{q}_r(x)\Gamma Q(x)$ QCD: HMChPT: $\frac{\alpha}{\gamma} [B_k^{\star} + i\beta_1 B\partial_k \pi + ...], \ \beta_1 = 0.14(4) \text{ GeV}^{-1} \text{ (from JLQCD form factor)}$

smeared interpolating field with $r_{sm} \ll 1/m_{\pi}$: $\beta_1 \rightarrow \tilde{\beta}_1(r_{sm})$. Can it be tuned?

Example 1: 2-pt function, (infinite volume, but this is not important)

Example

$$\langle 0|A_4^{\rm RGI}(0)|B(\vec{p}=0)\rangle \equiv \hat{f}$$

heavy light decay constant $\hat{f} = f_B \sqrt{M_B} / C_{PS}$

Estimator not unique

Example 1: 2-pt function, (infinite volume, but this is not important)

Example

 $\langle 0 | A_4^{\text{RGI}}(0) | \underline{B}(\vec{p}=0) \rangle \equiv \hat{f}$

 $\hat{f}_{\text{eff}}(t) = \sqrt{2} \sqrt{C_2(t)} e^{\frac{1}{2}M_B^{\text{eff}}(t) t}$

heavy light decay constant $\hat{f} = f_B \sqrt{M_B} / C_{PS}$

Estimator not unique

Bn contamination Δh_{\perp}

• no factor $1/L^3 \Rightarrow$ sometimes called "volume enhanced" contribution

- no sum over pion momenta (i.e. no tower of states), one fixed pion momentum
- $t_V = 1.2$ fm: underestimate of ~ 20% !
- is it taken into account by standard excited state fitting ?

Bn contamination Δh_{\perp}

$$\Delta h_{\perp}^{B\pi}(t_V, E_{\pi, \vec{p}}) \approx \Delta h_{\perp}^{B\pi, \text{tree}}(t_V, E_{\pi, \vec{p}}) = -\frac{g + \tilde{\beta}_1 E_{\pi, \vec{p}}}{g - \beta_1 E_{\pi, \vec{p}}} e^{-E_{\pi, \vec{p}} t_V} = -1 \times e^{-E_{\pi} t_V} + \text{NLO}$$

- in principle this can be suppressed by negative β_1
- since it is a LEC there are various handles to determine it (see Bär, Broll, S)
- Lattice 2024 talk: Antoine Gérardin "B* π excited-state contamination in B-physics observables" abstract: ... "The LECs can be determined well and it turns out that the investigated smearings do not suppress excited states significantly." ... btw: subtraction of tree-level Bpi contamination in the determination of LEC works very well (too well?)

Relation to standard fitting procedure of 3-point + 2-point

Relation to standard fitting procedure of 3-point + 2-point

2-pt correlator

$$\langle O(t)\bar{O}(0)\rangle = \sum_{n=1}^{\infty} e^{-E_n t} \psi_n \psi_n^*, \qquad \left| \frac{\psi_{n>1}}{\psi_1} \right| = \left| \frac{\langle 0 \mid B \mid k+1 \rangle}{\langle 0 \mid B \mid 1 \rangle} \right| = \left| \frac{\langle 0 \mid B \mid B^* \pi, k \rangle}{\langle 0 \mid B \mid B \rangle} \right|$$
$$= \left(N_{\text{deg}}(k) \right)^{1/2} \frac{\sqrt{3}}{4} (g + \beta_1 E_{\pi,k}) \frac{2\pi k}{fL} \frac{1}{(LE_{\pi,k})^{3/2}}$$

3-pt correlator
$$\langle \pi^+(t) V_{\mu}(t_{\nu}) \bar{O}_{j}(0) \rangle \approx \sum_{n=1}^{\infty} \phi_1 e^{-E_1(\pi)(t-t_{\nu})} \mathscr{M}^{\mu}_{1n} e^{-E_n t_{\nu}} \psi_n^*$$

$$\frac{\mathscr{M}_{1n}^{j}(p)}{\mathscr{M}_{11}^{j}(p)} = \delta_{n,k+1} \frac{1 + \beta_1 E_{\pi}/g}{1 - \beta_1 E_{\pi}/g} + \mathcal{O}((LE_{\pi})^{-3}), \quad p = |\overrightarrow{p}| = \sqrt{k} 2\pi/L, \quad k > 0$$

spectrum relative to ground state

Relation to standard fitting procedure of 3-point + 2-point

part of spectrum which contributes in 2-pt function is very suppressed in 3-pt function

effectively: different states in 3-pt fct than in 2-pt fct message: allow for this in fits .

furthermore: energy of dominant correction in 3-pt function is known

structure expected to remain beyond HMChPT

This is all rather simple But: signal/noise problem limits accessible t

let's do it after the next topic

two issues

• 1) *a* -expansion is not a Taylor expansion

it is non-analytic, given by Symanzik EFT (according to standard wisdom)

```
non-integer powers of \alpha_s(1/a)
```

• 2) Symanzik EFT is for energies below a^{-1}

but $m_b > a^{-1}$

RHQ actions are a separate discussion. CERN cafeteria (still with leather chairs) AK, MdM, RS "should not extrapolate $a \rightarrow 0$ "

```
NRQCD is yet another discussion —> Lepage and B. Thacker
```

 1) is worrying to me (and to Peter Weisz and to ?) The combination with 2) makes it scary.

The "interpolation method" (S. Kuberski) avoids 2)

Discretization errors, continuum extrapolation

two issues

• 1) *a* -expansion is not a Taylor expansion

it is non-analytic, given by Symanzik EFT (according to standard wisdom)

non-integer powers of $\alpha_s(1/a)$

• 2) Symanzik EFT is for energies below a^{-1}

but $m_b > a^{-1}$

RHQ actions are a separate discussion. CERN cafeteria (still with leather chairs) AK, MdM, RS "should not extrapolate $a \rightarrow 0$ "

NRQCD is yet another discussion —> Lepage and B. Thacker

1) is worrying to me (and to Peter Weisz and to ?) The combination with 2) makes it scary.

The "interpolation method" (S. Kuberski) avoids 2)

Briefly on Symanzik EFT

$$\blacktriangleright \qquad \mathscr{L}_a = \mathscr{L}_0 + a^2 \mathscr{L}_2 + \dots$$

 $\mathscr{L}_{2}(x) = \sum_{i} c_{i} \mathscr{O}_{i}(x)$ different local fields depending on symmetry of lattice action

e.g.
$$\mathcal{O}_2 = \frac{1}{g_0^2} \sum_{\mu,\nu} D_\mu F_{\mu\nu} D_\mu F_{\mu\nu}$$

H(4) invariant but not O(4)

but e.o.m. can be used

 enough for energies more is needed for ME's of local fields, susceptibilities ...

(see N. Husung)

and more for Gradient Flow

 $\mathcal{O}_i(x)$ as insertions into correlation functions

$$\delta C^{\mathcal{O}}(x-y) = -a^2 \int d^4 z \, \langle \, \Phi(x) \Phi(y) \, \mathcal{O}(z) \, \rangle_{\text{cont}}^{\text{con}}$$

Non-integer powers of $\alpha_{s}(1/a)$: the usual EFT story

SymEFT = continuum EFT, regularize, renormalize:

 $\alpha_{\overline{MS}}(\mu)$

Match to Lattice PT (expanded in a): gives $\bar{c}_i(\alpha_{\overline{\mathrm{MS}}}(\mu), a\mu)$ matching coefficients

Do RG improvement $\mu = a^{-1} \rightarrow a^{-1}$

 $\bar{c}_i(\alpha_{\overline{\mathrm{MS}}}(a^{-1}),1)$

Introduce RGI operators to express result in terms of (non-perturbative) constants. Needs anomalous dimension matrix! (N. Husung)

$$\Delta_{\mathscr{P}}(a) = -a^{2} \sum_{i} c_{i}^{(0)} \left[\alpha(a^{-1}) \right]^{\hat{\gamma}_{i}} \mathscr{M}_{\mathscr{P},i}^{\text{RGI}} \left[1 + \mathcal{O}(\alpha(a^{-1})) + \mathcal{O}(a^{3}) \right]^{\hat{\gamma}_{i}} \mathcal{M}_{\mathscr{P},i}^{\text{RGI}} \left[1 + \mathcal{O}(\alpha(a^{-1})) \right]^{\hat{\gamma}_{i}} \mathcal{M}_{\mathscr{P},i}^{\text{RGI}} \left[1 + \mathcal{O}(\alpha(a^{-1})) + \mathcal{O}(a^{3}) \right]^{\hat{\gamma}_{i}} \mathcal{M}_{\mathscr{P},i}^{\text{RGI}} \left[1 + \mathcal{O}(\alpha(a^{-1})) + \mathcal{O}(\alpha(a^{-1})) \right]^{\hat{\gamma}_{i}} \mathcal{M}_{\mathscr{P},i}^{\text{RGI}} \left[1 + \mathcal{O}(\alpha(a^{-1})) \right]^{\hat{\gamma}_{i}} \mathcal{M}_{\mathscr{P},i}^{\text{RGI}} \left[1 + \mathcal{O}(\alpha(a^{-1})) + \mathcal{O}(\alpha(a^{-1})) \right]^{\hat{\gamma}_{i}} \mathcal{M}_{\mathscr{P},i}^{\text{RGI}} \left[1 + \mathcal{O}(\alpha(a^{-1}) \right]^{\hat{\gamma}_{i}} \right]^{\hat{\gamma}_{i}} \mathcal{M}_{\mathscr{P},i}^{\text{$$

 $\hat{\gamma}_i = \gamma_i^{(0)} / (2b_0)$ eigenvalues of 1-loop AD matrix of $\left\{ \mathcal{O}_j(x) \right\}$

known for theory with flavor symmetry

not for staggered fermions (or minimally doubled) or ...

Examples what is done: 1

$$f_X^{B_s \to K}(M_\pi, E_K, a^2) = \frac{\Lambda}{E_K + \Delta_X} \left[c_{X,0} \left(1 + \frac{\delta f(M_\pi^s) - \delta f(M_\pi^p)}{(4\pi f_\pi)^2} \right) + c_{X,1} \frac{\Delta M_\pi^2}{\Lambda^2} + c_{X,2} \frac{E_K}{\Lambda} + c_{X,3} \frac{E_K^2}{\Lambda^2} + c_{X,4} (a\Lambda)^2 \right],$$

"We include a term proportional to a^2 to account for the dominant lattice-spacing dependence.

The domain-wall fermion and Iwasaki gluon actions are expected to have discretization errors $O((a\Lambda_{OCD})^2)$,

about 3% (5%) on the F (M) ensemble(s) for $\Lambda QCD = 500$ MeV, while power-counting estimates of errors in the RHQ action and heavy-light current are smaller, below 2%. "

Examples what is done: 1

$$f_X^{B_s \to K}(M_\pi, E_K, a^2) = \frac{\Lambda}{E_K + \Delta_X} \left[c_{X,0} \left(1 + \frac{\delta f(M_\pi^s) - \delta f(M_\pi^p)}{(4\pi f_\pi)^2} \right) + c_{X,1} \frac{\Delta M_\pi^2}{\Lambda^2} + c_{X,2} \frac{E_K}{\Lambda} + c_{X,3} \frac{E_K^2}{\Lambda^2} + c_{X,4} (a\Lambda)^2 \right],$$

"We include a term proportional to a^2 to account for the dominant lattice-spacing dependence.

The domain-wall fermion and Iwasaki gluon actions are expected to have discretization errors $O((a\Lambda_{QCD})^2)$, about 3% (5%) on the F (M) ensemble(s) for $\Lambda QCD = 500$ MeV, while power-counting estimates of errors in the RHQ action and heavy-light current are smaller, below 2%. "

Yes,
$$a^2 \mathscr{L}_2 = a^2 \mathscr{O}_2 + \ldots = a^2 \frac{1}{g_0^2} \sum_{\mu,\nu} D_\mu F_{\mu\nu} D_\mu F_{\mu\nu} + \ldots$$
 but SymEFT says
 $\delta C^{\mathscr{L}}(x-y) = -\int d^4 z \langle \Phi(x) \Phi(y) \mathscr{L}_2(z) \rangle_{\text{cont}}^{\text{con}} \to a^2 \mathscr{M}_{\mathscr{P},2}^{\text{RGI}} = a^2 \Lambda_{\text{QCD}} \times \varphi(E_K/\Lambda, m_b/\Lambda, m_\pi/\Lambda)$
with some function φ not $(a\Lambda_{\text{QCD}})^2$,

(here I ignored mixing, AD, ...)

and question: how do these power-counting estimates go? Are they independent of E_K ?

Examples what is done: 1

$$+ c_{X,4} (a\Lambda)^2$$

effect of continuum limit simultanously determined by all data points

error in CL becomes small even at large E where data have large errors

footnote: discussion of systematics involves an $(aE)^2$ term but it does not affect the statistical error of the CL (as far as I understand)

Example 2: most precise determination of b-quark mass

$$\begin{split} \mathcal{F} &= \breve{m}_{h,\text{MRS}} + \breve{\Lambda}_{\text{MRS}} + \frac{\breve{\mu}_{\pi}^{2}}{2m_{h,\text{MRS}}} - \frac{\breve{\mu}_{G}^{2}(m_{b})}{2m_{h,\text{MRS}}} \frac{C_{\text{cm}}(m_{h})}{C_{\text{cm}}(m_{b})} \\ &+ 2\breve{\lambda}_{1}B_{0}(m_{x} - m_{l}) + 2\breve{\lambda}_{1}'B_{0}(2m_{l}' + m_{s}' - 2m_{l} - m_{s}) \\ &+ \delta M_{H_{x}}(m_{x}; \{m_{l}', m_{l}', m_{s}'\}; a) - \delta M_{H_{l}}(m_{l}; \{m_{l}, m_{l}, m_{s}\}; 0) \\ &+ \Lambda_{\text{HQET}} \left[\rho_{1}w_{h}^{2} + \rho_{2}w_{h}^{3} + \rho_{3}w_{h}^{4}\right] \\ &+ f_{\pi} \left[\sum_{i=1}^{4} q_{i}\left(1 + q_{i}'w_{h} + \tilde{q}_{i}\alpha_{s}y^{2}\right)x_{i}^{2} + \sum_{j=5}^{11} q_{j}x_{j}^{3}\right], \end{split}$$

$$\begin{split} \breve{\Lambda}_{\text{MRS}} &= \overline{\Lambda}_{\text{MRS}}\left(1 + \overline{c}_{1}\alpha_{s}y + \overline{c}_{2}y^{2}\right)\left(\frac{m_{c}'}{m_{c}}\right)^{2/27}\left(1 + k_{1}'\frac{\delta m_{c}'}{m_{c}}\right), \\ \breve{\lambda}_{1} &= \lambda_{1}\left(1 + c_{1}\alpha_{s}y + c_{2}y^{2} + c_{3}\bar{w}_{h}\alpha_{s}y + c_{4}\bar{w}_{h} + c_{5}\bar{w}_{h}^{2} + c_{6}\bar{w}_{h}^{3}\right), \\ \breve{\lambda}_{1}' &= \lambda_{1}'\left(1 + c_{1}'\alpha_{s}y + c_{2}'y^{2} + c_{3}'\bar{w}_{h}\alpha_{s}y + c_{4}'\bar{w}_{h} + c_{5}'\bar{w}_{h}^{2} + c_{6}'\bar{w}_{h}^{3}\right), \\ \breve{\lambda}_{1}' &= \lambda_{1}'\left(1 + c_{1}'\alpha_{s}y + c_{2}'y^{2} + c_{3}'\bar{w}_{h}\alpha_{s}y + c_{4}'\bar{w}_{h} + c_{5}'\bar{w}_{h}^{2} + c_{6}'\bar{w}_{h}^{3}\right), \\ \breve{\lambda}_{1}' &= \mu_{1}'\left(1 + c_{1}'\alpha_{s}y + g_{2}y^{2} + g_{3}'\bar{w}_{h}\alpha_{s}y + g_{4}'\bar{w}_{h} + g_{5}'\bar{w}_{h}^{2} + g_{5}'\bar{w}_{h}^{3}\right), \\ \breve{\mu}_{\pi}'' &= g_{\pi}\left(1 + g_{1}\alpha_{s}y + g_{2}y^{2} + g_{3}\bar{w}_{h}\alpha_{s}y + g_{4}\bar{w}_{h} + g_{5}\bar{w}_{h}^{2} + g_{5}'\bar{w}_{h}^{3}\right), \\ \breve{\mu}_{G}'''(m_{b}) &= \mu_{G}^{2}(m_{b})\left(1 + p_{G}\alpha_{s}y + r_{G}\alpha_{s}x_{h}^{2}\right), \end{split}$$

$$\breve{m}_{h,\mathrm{MRS}} = m_{p4s,\overline{\mathrm{MS}}}(2 \text{ GeV}) \left[\frac{C(\alpha_{\overline{\mathrm{MS}}}(\overline{m}_h))}{C(\alpha_{\overline{\mathrm{MS}}}(2 \text{ GeV}))} \right]_{\mathrm{Eq.}(3.23)} \left[\frac{m_{h,\mathrm{MRS}}}{\overline{m}_h} \right]_{\mathrm{Ref.}[1]} \left[\frac{am_{0h}}{am_{0,p4s}} \right]_{\mathrm{sim}} \times \left(1 + \alpha_{\overline{\mathrm{MS}}}(2 \text{ GeV}) \sum_{n=1}^{4} k_n x_h^n \right) \times \left(1 + \tilde{c}_1 \alpha_s y + \tilde{c}_2 y^2 + \tilde{c}_3 y^3 \right).$$

Example 2: most precise determination of b-quark mass

• various places: $Q \times (1 + c_1 \alpha_s a^2 + c_2 a^4)$

t

- Symanzik: $Q \times (1 + \{ c_{11}[\alpha_s(1/a)]^{\hat{\Gamma}_1} + c_{12}[\alpha_s(1/a)]^{\hat{\Gamma}_2} + \dots \} a^2 + \dots)$
- ▶ yes, tree-level improvement buys a $\hat{\Gamma}_i = \hat{\gamma}_i + 1$ but $\hat{\gamma}_i > 0$ is unknown (Nikolai?)

Example 2: most precise determination of b-quark mass

- complicated extrapolation to physical quark mass and continuum limit
- non-trivial theory (MRS scheme, HMrASχPT)
- How do we get convinced that the combined extrapolation is correct? Symanzik-like expansion with $am_b \approx 1$! Why can we truncate?
- Does the behavior at $am_b \ll 1$ really tell us much about $am_b \approx 1$

Continuum extrapolations

- General form allows for very general functions
- Assumptions needed, e.g. just explore one power at a time
- A good strategy seems:
 - computations with different discretisations
 - compare
 - perform combined continuum extrapolations better to disentangle continuum extrapolations and other extrapolations
 - even better: cancel renormalisation

(S. Kuberski: $h_{\perp}(E_{\pi}) / h_{\perp}(E_{\pi}^{\text{ref}})$ or $h_{\perp}(E_{\pi}) / f_V$)

simple heavy quark mass scaling!

 or develop some new ideas (means work! credited?)

New continuum extrapolation criterion in FLAG6

Issue: there are quantities with a strong dependence on a

Given the discussed uncertainties in the functional form of the *a* effects, extrapolating too far is dangerous.

"Far" should be measured in the (total) error cited for the result, σ_0^{cont}

▶ $\delta(a_{\min}) \leq 3$ considered fine: extrapolation by $3 \times \sigma_O^{\text{cont}}$

• $\delta(a_{\min}) > 3$ some stretching of the uncertainty before averaging

FLAG5 scale setting: update

Fits:
$$a^2 \left[\alpha_s(1/a) \right]^{\hat{\Gamma}}, \quad \hat{\Gamma} = 0$$

indeed (Husung) $\hat{\Gamma}_{lead} = 0$, for $N_f = 0$ (also for $N_f > 0$?)

Still: described entirely by the leading term?

imo. B-physics on the lattice is not in good shape

- I find it good that some discrepancies/tensions are there because they provide motivation for doing better
 - The real worry is wrong results in agreement with others
- Some news on excited state effects

 $B^{\star}\pi$ states dominate at large *t* and can be estimated by HMChPT

- mostly small (loop effects; L^{-3} in finite volume, but ...)
- but known, large, tree-level effect (only $L^{-3/2}$ in finite vol.) in f_{\perp} of $B \rightarrow \pi$
- Continuum extrapolations remain scary
 - interpolation to B (-> Simon Kuberski) helps
 - perform computations of benchmark computations with different discretisations, compare, constrain continuum limit
 - avoid fits with $am_b \approx 1$
- ▶ I plead for more work (compare to g-2; that is only one number!) It is worth it, after all: QCD $\equiv \lim_{a \to 0} (\text{Lattice QCD})$

