Developments in $K_L \to \mu^+ \mu^-$ from lattice QCD

En-Hung CHAO

Columbia University

July 17, 2024, Lattice@CERN 2024

On behalf of the RBC/UKQCD collaboration Based on on-going work with Norman Christ and Ceran Hu.

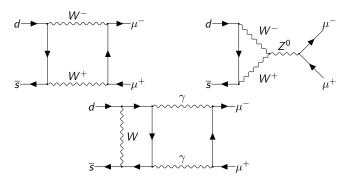
(*)Yidi Zhao's participation in the early stage of this work is acknowledged.

Outline

- 1. Introduction
- 2. Formalism
- 3. Numerical implementation
- 4. Preliminary results
- 5. Summary and outlook

Introduction

- ▶ In the Standard Model, $K_{\rm L} \to \mu^+ \mu^-$ comes in at one-loop level with exchange of two W-bosons or two W- and a Z-boson (short-distance contribution, SD).
- ▶ Precisely measured ${\rm Br}({\it K}_{\rm L} \to \mu^+\mu^-) = 6.84(11) \times 10^{-9} \Rightarrow$ good test for the SM and potential interest for the physics beyond the SM. [BNL E871 Collab., PRL '00]
- ▶ Current theory limitation is the long-distance contribution (LD) involving two-photon exchange entering at $O(G_F\alpha_{\rm QED}^2)$, parametrically comparable to the SD contribution: the real part of the amplitude is not well understood.



Introduction

Various estimates

$${\rm Br}(\textit{K}_{\rm L} \to \mu^+ \mu^-) = 6.84(11) \times 10^{-9}$$

- ▶ SD contribution computed with RG technique [Buchalla & Buras '94], known to NNLO with the charm quark effect included: $0.79(12) \times 10^{-9}$ [Gorbahn & Haisch '06]
- ▶ LD absorptive (imaginary) part from optical theorem
 - The 2γ cut dominates over other channels [Martin et al, PRD '70]

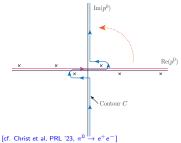
Abs
$$\left(\frac{\kappa^{\circ}}{2}\right) = \frac{\kappa^{\circ}}{2} \left(\frac{\kappa^{\circ}}{2}\right) + \dots$$

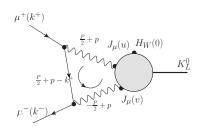
- ► Estimate with the most recent Γ($K_L \to \gamma \gamma$) saturates the experimental KL2mu decay rate: Br($K_L \to \mu^+ \mu^-$) = 6.59(5) × 10⁻⁹ [Geocucci '17]
- \Rightarrow unitary bound for the LD amplitude.
- ▶ Phenomenological attempts for the dispersive (real) part (+large- N_c)
 - ► Chiral perturbation with $\pi^0/\eta/\eta'$ pole [Dumm & Pich, PRL '98] ⇒ GMO-suppressed, needs to go beyond $SU(3)_f$ and include mixings.
 - Parametrization of the $K_L o \gamma^* \gamma^*$ transition form factor [Knecht et al, PRL '99; Hoferichter et al, '23]

▶ Strategy: perturbatively expanded kernel function in G_F and $\alpha_{\rm QED}$ + hadronic correlation function computed on the lattice.

$$\begin{split} \mathcal{A}_{ss'}(\boldsymbol{k}^+,\boldsymbol{k}^-) &= & e^4 \int \! d^4 \boldsymbol{p} \int \! d^4 \boldsymbol{u} \int \! d^4 \boldsymbol{v} \; e^{-i \left(\frac{P}{2} + \boldsymbol{p}\right) \boldsymbol{u}} e^{-i \left(\frac{P}{2} - \boldsymbol{p}\right) \boldsymbol{v}} \frac{1}{\left(\frac{P}{2} - \boldsymbol{p}\right)^2 + m_\gamma^2 - i\varepsilon} \cdot \frac{1}{\left(\frac{P}{2} + \boldsymbol{p}\right)^2 + m_\gamma^2 - i\varepsilon} \\ &\times \frac{\vec{u}_s(\boldsymbol{k}^-) \gamma_{\mathcal{V}} \left\{ \boldsymbol{\gamma} \cdot \left(\frac{P}{2} + \boldsymbol{p} - \boldsymbol{k}^+\right) + m_{\mathcal{H}} \right\} \gamma_{\mathcal{H}} \boldsymbol{v}_{s'}(\boldsymbol{k}^+)}{\left(\frac{P}{2} + \boldsymbol{p} - \boldsymbol{k}^+\right)^2 + m_{\mathcal{H}}^2 - i\varepsilon} \cdot \left\langle \boldsymbol{0} \mid T \left\{ J_{\mathcal{H}}(\boldsymbol{u}) J_{\mathcal{V}}(\boldsymbol{v}) \mathcal{H}_{\mathcal{W}}(\boldsymbol{0}) \right\} \middle| K_L \right\rangle. \end{split}$$

- ► Analytic continuation of the kernel: ⇒ unphysical exponentially growing contribution from states lighter than the kaon at rest.
- ► Finite number of such states on a finite lattice ⇒ explicit, precise subtraction of such is possible.

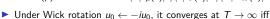




Time-ordering and Wick rotation

- ▶ Set an IR cutoff T and consider the possible intermediate states in the particular time-ordering $0 \le v_0 \le u_0$.
- ▶ The contribution from this time-ordering reads

$$\begin{split} & \int_{0}^{T}\!\!du_{0} \int_{0}^{u_{0}}\!\!dv_{0} \int_{-\infty}^{\infty}\!\!dp_{0} \; e^{i\left(\frac{M_{K}}{2}+p_{0}\right)u_{0}} e^{i\left(\frac{M_{K}}{2}-p_{0}\right)v_{0}} \\ & \times \tilde{\mathcal{L}}^{\mu\nu}(p) e^{-iE_{n}u_{0}} e^{-i(E_{n'}-E_{n})v_{0}} \left\langle 0 \left| J_{\mu}(0) \right| n \right\rangle \langle n \left| J_{\nu}(0) \right| n' \right\rangle \langle n' \left| \mathcal{H}_{W}(0) \right| K_{L} \right\rangle. \end{split}$$



$$E_n' > M_K$$
 (S1) and $E_n + \sqrt{\vec{p}^2 + m_\gamma^2} \ge M_K$ (S2)

Otherwise, unphysical exponential terms appear.

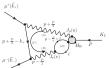
- Repeating the above analysis for all possible time-ordering and intermediate state, the two sources for the exponential terms are
 - 1. π^0 with zero spatial momentum, coming from $K_{\rm L}$ turned into π^0 by the weak Hamiltonian.
 - 2. $\pi\pi(\gamma)$ states with low kinetic energy, propagating between the electromagnetic currents.

Limitations 1/3 [arXiv:2406.07447]

- In the case of non-interacting pions, (S2) is satisfied with $L \leq 10$ fm in the continuum
 - ⇒ systematic error if only simulating below this volume threshold?
- Sources of systematic errors:
 - E1 quantitative control of the finite-volume effects (FVE).
 - E2 incomplete $\pi\pi$ spectrum
- ▶ (E1) With QED_{∞} , in general the FVEs are expected to be exponentially suppressed; however, in the current case, $LQCD+QED_{\infty}$ does not conserve momentum \Rightarrow (S2) is violated by $O(L^{-n})$ contributions.

Claim: these effects are numerically small \Leftarrow important check from the I=1 calculation.

Limitations 2/3 [arXiv:2406.07447]

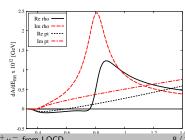


• (E2) Quantitative estimates of the CP-conserving $\pi\pi$ effects up to an energy of $E_{\pi\pi}$ from a spectral representation:

$$\mathcal{A}_{K_L\mu\mu}^{\pi\pi\gamma}(E_{\pi\pi}) = 4\pi \mathit{CM}_K^2 \int d^4p \ \frac{\mathbf{p}^2}{D(p)} \Pi(E_{\pi\pi},p;P) \,, \label{eq:Kappa}$$

$$\Pi(E_{\pi\pi}, p; P) \equiv \int_{4M_{\pi}^2}^{E_{\pi\pi}^2 - \mathbf{p}^2} \frac{ds}{2\pi} \, s \, \eta(s) [F_{\pi}^{V}(s)]^* V_{K_{L}\pi\pi\gamma}^{\text{pt}} \left[\frac{2}{\left(p - \frac{1}{2}P\right)^2 + s - i\varepsilon} \right],$$

- ▶ Valid for a point-like $K_L \to \pi^+\pi^-\gamma$ vertex and for a generic pion electric form factor F_π^V .
- ▶ Two models for F_{π}^{V} are considered:
 - ► Point-like (scalar QED)
 - ► Gounaris-Sakuri
- ▶ **Caveat**: divergence as $E_{\pi\pi} \to \infty$, but irrelevant for our purpose.



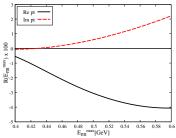
Limitations 3/3 [arXiv:2406.07447]

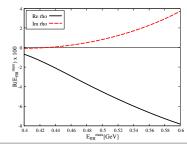
• With $E_{\pi\pi}^{\rm max}=$ 0.6 GeV, we obtain the following ratios of the $\pi\pi$ contribution to the amplitude to the experimental results:

Model	$Re A/Re A_{exp}$	$\mathrm{Im}\mathcal{A}/\mathrm{Im}\mathcal{A}_{\mathrm{exp}}$
pt	-0.041	0.022
GS	-0.078	0.037

 \Rightarrow both models give < 10% estimates.

▶ The ρ meson is generally well captured on the lattice \Rightarrow the mild enhancement in the GS model in the energy region of interest is reassuring.





En-Hung Chao (Columbia U)

Our master formula for extracting the decay amplitude from the lattice:

$$oxed{\mathcal{A}_{\mathcal{K}_{\mathcal{L}}\mu\mu}=\mathcal{A}^{\mathrm{I}}+\mathcal{A}^{\mathrm{II}}}$$

with the unphysical exponentially-growing states removed

$$\mathcal{A}^{\mathrm{I}} = \int_{-T_{v}^{-}}^{T_{v}^{+}} dv_{0} \int_{V} d^{3}\mathbf{v} \int_{v_{0}}^{T_{u}+v_{0}} du_{0} \int_{V} d^{3}\mathbf{u} e^{M_{K}(u_{0}+v_{0})/2}$$

$$L_{\mu\nu}(u-v) \langle T \{J_{\mu}(u)J_{\nu}(v)\mathcal{H}_{W}(0)K_{L}(t_{i})\} \rangle',$$

and their physical contributions added back

$$\mathcal{A}^{\mathrm{II}} = -\sum_{n} \int_{V} d^{3}\mathbf{v} \int_{0}^{T_{u}} dw_{0} \int_{V} d^{3}\mathbf{u} \left[\frac{e^{M_{K}w_{0}/2}}{M_{K} - E_{n}} L_{\mu\nu}(\mathbf{u} - \mathbf{v}, w_{0}) \right.$$
$$\left. \times \left\langle T \left\{ J_{\mu}(\mathbf{u}, w_{0}) J_{\nu}(\mathbf{v}, 0) \right\} | n \right\rangle \left\langle n | T \left\{ \mathcal{H}_{W}(0) \mathcal{K}_{L}(t_{i}) \right\} \right\rangle.$$

Numerical implementation

► Lattice setup: Möbius Domain Wall fermion ensemble 24ID from the RBC/UKQCD collaboration.

Parameter	Value
$L^3 \times T \times L_s$	$24^3\times 64\times 24$
m_{π} [MeV]	142
M_K [Mev]	515
a^{-1} [GeV]	1.023

Master formula:

$$\begin{split} \mathcal{A}(t_{\mathrm{sep}},\delta,x) &\equiv \sum_{\substack{d \leq \delta \\ V \text{us}}} \sum_{\substack{v_{\ell} < \delta \\ v_{0} = x_{0},d}} \delta_{v_{0}-x_{0},d} \ e^{M_{K}(v_{0}-t_{K})} \ K_{\mu\nu}(u-v) \, \langle J_{\mu}(u)J_{\nu}(v)\mathcal{H}_{W}(x)K_{L}(t_{K})\rangle \ , \\ \mathcal{H}_{W}(x) &= \frac{G_{F}}{\sqrt{2}} V_{us}^{*} V_{ud}(C_{1}Q_{1}+C_{2}Q_{2}) \,, \\ Q_{1} &\equiv (\bar{s}_{a}\Gamma_{\mu}^{L}d_{a})(\bar{u}_{b}\Gamma_{\mu}^{L}u_{b}) + (s \leftrightarrow d) \,, \\ Q_{2} &\equiv (\bar{s}_{a}\Gamma_{\mu}^{L}d_{b})(\bar{u}_{b}\Gamma_{\mu}^{L}u_{a}) + (s \leftrightarrow d) \,. \end{split}$$

- ► Control of the contaminations from π^0 and low-energy $\pi\pi\gamma$ states:
 - ightharpoonup The unphysical π^0 contribution can be measured and subtracted exactly

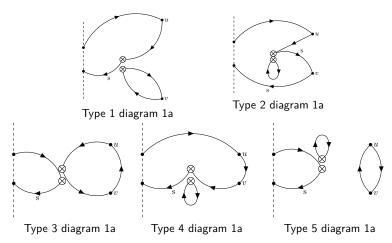
$$\frac{1}{2m_\pi} \sum_{\delta \geq 0} \sum_{u \in \Lambda} e^{(M_K - m_\pi)\delta} \left\langle 0 | J_\mu(u) J_\nu(v) | \pi^0 \right\rangle K_{\mu\nu}(u-v) \left\langle \pi^0 | \mathcal{H}_{\mathrm{W}}(v) | \mathcal{K}_{\mathrm{L}} \right\rangle \,.$$

Control of the $\pi\pi\gamma$ -intermediate state: use several kernels with different $|u-v| \leq R_{\max}$.

Numerical implementation

Contractions

Wick-contractions for $\langle J_{\mu}(u)J_{\nu}(v)\mathcal{H}_{W}(x)K_{L}(t_{K})\rangle$. Dashed line: $K_{L}(t_{K})$, crosses: $\mathcal{H}_{W}(x)$, solid dots: $J_{\mu}(u)$ and $J_{\nu}(v)$



(*)We acknowledge Luchang Jin for generating the propagators used in this work.

Isospin decomposition

- In $N_{\rm f}=2+1$, we can decompose $J_{\mu}^{\rm em}J_{\nu}^{\rm em}$ into terms with definite isospin $(J_{\mu}J_{\nu})^{l=0,1}$.
- If neglecting the (m_s-m_l) -suppressed tadpole contributions, l=1 contains only connected diagrams with the unphysical π^0 to be removed
 - \Rightarrow precise results where some aspects of our formalism can be tested
 - ▶ $O(L^{-n})$ momentum-non-conserving $\pi\pi$ contribution [E1].
 - Order of magnitude compared to the experimental results.
- ▶ The I=0 part: more challenging due to the quark-disconnected contributions and the almost-on-shell slow-decay of the η proportional to

$$\frac{e^{(M_K-m_\eta)N}-1}{M_K-m_\eta}.$$

⇒ current status: experimenting different subtraction strategies.

Removal of the η

- ▶ **Method 1**: direct removal, identical to the case of π^0 .
- Under the flavor-rotation:

$$\begin{pmatrix} d \\ s \end{pmatrix} \rightarrow 1 + \varepsilon \mathcal{T} \begin{pmatrix} d \\ s \end{pmatrix} \,, \quad \mathcal{T} \equiv \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \,,$$

we can derive the Ward identity with possible contact terms (c.t.)

$$\left\langle (m_d - m_s)(\bar{s}d + \bar{d}s)(x)\mathcal{O}^i_{\mu\nu}(u,v,w) + i\frac{\partial}{\partial x_\lambda}(\bar{s}\gamma_\lambda d - \bar{d}\gamma_\lambda s)(x)\mathcal{O}^i_{\mu\nu}(u,v,w) \right\rangle = \mathrm{c.t.}$$

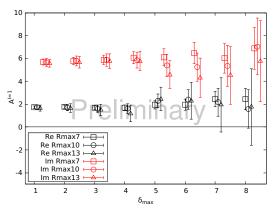
 \Rightarrow modify Q_i by adding the on-shell-vanishing c_i $\left(\bar{s}d + \bar{d}s\right)$ and appropriate contact terms, such that the η is suppressed:

$$Q_i' = Q_i + c_s \left(\bar{s}d + \bar{d}s
ight) \,, \quad c_i = -rac{\langle \eta | Q_i | K_{
m L}
angle}{\left\langle \eta | \bar{s}d + \bar{d}s | K_{
m L}
ight
angle} \,.$$

▶ Method 2: $\mathcal{O}_{\mu\nu} = (J_{\mu}J_{\nu})^{I=0}\hat{\mathcal{K}}_{L}$, has a contact term but only I=0 information.

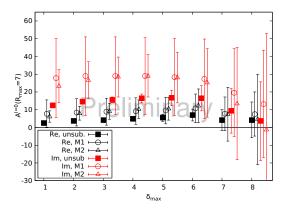
I=1

- Clear plateau formed at small $\delta > 0$ after the removal of the unphysical π^0 .
- Consistency across different $R_{\rm max} \Rightarrow$ effects from the $O(L^{-n})$ $\pi\pi$ states are numerically small.



I = 0 with different subtraction schemes

- ▶ M1: direct subtraction; M2: subtracting a $\Delta S = 1$ operator.
- Dominant sources of statistical noise:
 - ▶ M1: the reconstruction of the physical η (10% error on m_{η}).
 - \blacktriangleright M2: the c_s coefficient has about 80% errors, which gets amplified by the contact terms.



Summary table

lacktriangle Summary with the integrations cut off at $\delta_{\sf max}=4$ and $R_{\sf max}=7$

$$\left\langle \mu^{+}\mu^{-}|\mathcal{H}_{\mathrm{W}}(0)|\mathcal{K}_{\mathrm{L}}
ight
angle _{\mathrm{LD}}=rac{G_{\mathrm{F}}e^{4}}{\sqrt{2}}|V_{us}||V_{ud}|\mathcal{A}$$

	$ { m Re}{\cal A} imes 10^{-4} \; [{ m MeV}]$	$ { m Im}{\cal A} imes 10^{-4} \; [{ m MeV}]$
<i>l</i> = 1	0.80(12)	2.87(25)
I = 0	4.89(2.49)	13.74(5.67)
Total	5.69(2.49)	16.61(5.70)
SD	2.47(18)	_
exp.	1.53(14)	7.10(3)

Conclusions and outlook

- We propose a coordinate-space based lattice-QCD formalism for determining both the absorptive and the dispersive part of the 2γ contribution to $K_L \to \mu^+ \mu^-$.
- ▶ We expect this formalism to provide estimates up to a 10% precision, enabling meaningful comparison between theory and experiment.
- Numerical strategies have been developed and successfully applied to a $24^3 \times 64$ lattice at $a^{-1} \approx 1$ GeV, showing good control of different sources of systematic error.
- ightharpoonup Current large statistical error due to the poor determination of the contribution from the η -intermediate state.