Axial form factors of the nucleon

Sara Collins

Universität Regensburg

Lattice@CERN 2024, July 17th 2024

Motivation: neutrino oscillation experiments

T2K: Tokai to Super-Kamiokande, E = 0.6 GeV, $L/E \approx 500$ km/GeV.

Also NOvA, $L/E \approx 400 \text{ km/GeV}$, DUNE $L/E \approx 520 \text{ km/GeV}$, HK(=T2K). Muon neutrino beam: proton on nucleus \rightarrow pions and kaons $\rightarrow \mu^+ \nu_{\mu}$ or $\mu^- \bar{\nu}_{\mu}$. Near and far detectors.

$$\mathsf{N}^{\mu}_{\mathrm{far}}(\mathsf{E}_{\nu}) = \mathsf{N}^{\mu}_{\mathrm{near}}(\mathsf{E}_{\nu}) \times [\mathrm{flux}(\mathsf{L})] \times [\mathrm{detector}] \times [1 - \sum_{\beta} \mathsf{P}_{\mu \to \beta}(\mathsf{E}_{\nu})]$$

 E_{ν} has to be reconstructed from the momentum of the detected charged lepton.

$$u_{\mu} + \mathbf{n} \rightarrow \mu^{-} + \mathbf{p}$$

But...

The neutrino beam is not monochromatic but has a momentum distribution. The nucleon is bound in a nucleus and has $|\mathbf{p}_{\mathrm{Fermi}}| \sim 200 \, \text{MeV}$. The lepton momentum reconstruction is often incomplete. Misidentification of inelastic scattering as elastic scattering.

Monte-Carlo simulation needs input regarding the differential cross section.

Neutrino-nucleon scattering cross-section

Quasi-elastic scattering (QE)

Overview: Quasi-elastic scattering (axial form factors), excited state contamination. Steps towards $N \to N\pi$ matrix elements.

Quasi-elastic scattering

Relevant V - A matrix element in the isospin limit:

$$\begin{split} \langle \mathbf{p}(\mathbf{p}') | \bar{\mathbf{u}} \gamma_{\mu} (1 - \gamma_{5}) \mathbf{d} | \mathbf{n}(\mathbf{p}) \rangle &= \overline{u}_{\rho}(\mathbf{p}') \left[\gamma_{\mu} \mathbf{F}_{1}(\mathbf{Q}^{2}) + \frac{i \sigma_{\mu\nu} q^{\nu}}{2m_{N}} \mathbf{F}_{2}(\mathbf{Q}^{2}) \right. \\ &+ \gamma_{\mu} \gamma_{5} \mathbf{G}_{A}(\mathbf{Q}^{2}) + \frac{q^{\mu}}{2m_{N}} \gamma_{5} \tilde{\mathbf{G}}_{P}(\mathbf{Q}^{2}) \right] u_{n}(\mathbf{p}) \end{split}$$

$$q_\mu=p'_\mu-p_\mu$$
, virtuality $Q^2=-q^2>0.$

Dirac and Pauli form factors $F_{1,2}$ are reasonably well determined experimentally from lepton-nucleon scattering for range of $Q^2 \sim (0.1 - 1)$ GeV² relevant for the long-baseline experiments.

Axial form factor: forward limit: $G_A(Q^2) \rightarrow g_A$ (well determined from β -decay).

Shape at low Q^2 , $\langle r_A^2 \rangle = -6 \frac{dG_A(Q^2)}{dQ^2}$:

$$G_A(Q^2) = G_A(0) \left[1 - rac{1}{6} \langle r_A^2 \rangle Q^2 + \ldots
ight]$$

Parameterisation: dipole form $G_A(q^2) = \frac{g_A}{(1+\frac{q^2}{M_A^2})^2}$, $M_A = \frac{12}{\langle r_A^2 \rangle^{1/2}}$, z-expansion.

Axial and induced pseudoscalar form factors

 $G_A(Q^2)$: information from old $\bar{\nu}$ -p and ν -d scattering data.

Over-constrained dipole fits performed: e.g. [Bernard et al.,hep-ph/0107088] $M_A = 1.03(2)$ GeV.

z-expansion analysis from [Meyer,1603.03048] $M_A = 1.01(24)$ GeV.

Neutrino scattering with nuclear targets, e.g. [MiniBooNE,1002.2680] $M_A = 1.35(17)$ GeV (using the dipole form).

$\tilde{G}_P(Q^2)$:

Impact on the cross section is suppressed by a factor $m_\ell^2/m_N^2 \approx 0.01$ for $\ell = \mu$.

Only relevant for very small Q^2 , where this formfactor is large.

Not well constrained: experimentally measured at the muon capture point. In muonic hydrogen, $\mu^- + p \rightarrow \nu_{\mu} n$.

$$[MuCAP, 1210.6545]: \qquad g_P^* = m_\mu \, { ilde G}_P(0.88 m_\mu^2)/(2m_N) = 8.06 \pm 0.48 \pm 0.28.$$

Additional indirect information on G_A and \tilde{G}_P via low energy theorems from pion electroproduction $e^- + N \rightarrow \pi + N + e^-$.

PCAC relation and pion pole dominance

For nucleon matrix elements: $A_{\mu} = \bar{u}\gamma_{\mu}\gamma_{5}d$, $P = \bar{u}i\gamma_{5}d$.

$$2 \operatorname{m}_{\mathsf{q}} \langle N(\vec{p}') | \mathsf{P} | N(\vec{p}) \rangle = \langle N(\vec{p}') | \partial_{\mu} \mathsf{A}_{\mu} | N(\vec{p}) \rangle + \mathcal{O}(a^{2})$$

leads to

$$m_q G_P(Q^2) = m_N G_A(Q^2) - \frac{Q^2}{4m_N} \tilde{G}_P(Q^2)$$

where the pseudoscalar form factor: $\langle p(p')|P|n(p)\rangle = \overline{u}_p i \gamma_5 G_P(Q^2) u_n$. SU(2) chiral limit: $\tilde{G}_P(Q^2) = 4m_N^2 G_A(Q^2)/Q^2$

Pion pole dominance (LO ChPT): only an approximation.

$$ilde{G}_{P}(Q^2)=G_{A}(Q^2)rac{4m_N^2}{Q^2+m_\pi^2}+ ext{corrections}$$

PCAC+pion pole dominance (PPD) \rightarrow one independent form factor

$$G_P(Q^2) = G_A(Q^2) rac{m_N}{m_\ell} rac{m_\pi^2}{Q^2 + m_\pi^2} + ext{corrections}$$

Lattice details:

Three-point functions are evaluated with the sequential source method [Martinelli,Sachrajda,(1989)].

For each t, $t > \tau > 0$. Choose $\vec{p}' = \vec{0}$ with $\vec{p} = -\vec{q}$. Extra propagator inversion for every sink t.

Spectral decomposition:

$$C_{2pt}^{\vec{p}}(t) = Z_{\vec{p}} Z_{\vec{p}}^* \frac{E_{\vec{p}} + m_N}{E_{\vec{p}}} e^{-E_{\vec{p}}t} \left[1 + b_1 e^{-t\Delta_{\vec{p}}} + \dots \right]$$

Overlap factors: $Z_{\vec{p}}u_N(\vec{p}) = \langle 0|\mathcal{N}|N(\vec{p})\rangle, \ b_1 \propto |Z_{\vec{p}}^1|^2/|Z_{\vec{p}}|^2.$

Energy difference between first excited and ground state: $\Delta_{\vec{p}} = E_{\vec{p}}^1 - E_{\vec{p}}$.

$$\begin{split} C_{3\rho t,\Gamma_{i}}^{\vec{p}',\vec{p},J}(t,\tau) &= \frac{Z_{\vec{p}'}Z_{\vec{p}}^{z}}{2E_{\vec{p}'}2E_{\vec{p}}}e^{-E_{\vec{p}'}(t-\tau)}e^{-E_{\vec{p}}\tau}\mathbf{B}_{\Gamma_{i},J}^{\vec{p}',\vec{p}} \\ &\cdot \left[1+c_{10}e^{-(t-\tau)\Delta_{\vec{p}'}}+c_{01}e^{-\tau\Delta_{\vec{p}}}+c_{11}e^{-(t-\tau)\Delta_{\vec{p}'}}e^{-\tau\Delta_{\vec{p}}} \dots\right] \end{split}$$

where $\mathcal{B}_{\Gamma_{i},J}^{\vec{p}',\vec{p}} \propto \langle N|J|N \rangle$, $c_{10} \propto \langle N_{1}|J|N \rangle$, $c_{01} \propto \langle N|J|N_{1} \rangle$, $c_{11} \propto \langle N_{1}|J|N_{1} \rangle$. Smeared interpolators reduce $|Z_{\vec{p}}^{1}|^{2}/|Z_{\vec{p}}|^{2}$, however, $\langle N|J|N_{1} \rangle$ etc may be large.

Challenges

Statistical noise: signal vs noise decays with $e^{-(E-3m_{\pi}/2)t}$ for large *t*.

 $\vec{p} = \vec{0}$

NME: 1 fm \sim 14a.

Wuppertal (Gaussian) smearing of nucleon interpolators using APE smeared gauge transporters.

NME:
$$\langle r^2 \rangle_{\Psi^2}^{1/2} \sim 0.76$$
 fm, Mainz: $\langle r^2 \rangle_{\Psi^2}^{1/2} \sim 0.50$ fm.

Challenges

Excited state pollution: significant since t in $C_{3pt}^{N}(t,\tau)$ cannot be too large.

Spectrum contains resonances and multi-particle states. Latter will be lowest excitations for ensembles with pion masses close to m_{π}^{phys} and $Lm_{\pi} \gtrsim 4$.

Source: $\vec{p} \neq 0$, parity not a good QN, $N(\vec{p})\pi(\vec{0})$, $N(\vec{0})\pi(\vec{p})$,

Sink: $\vec{p}' = \vec{0}$, parity is a good QN, $N(\vec{p})\pi(-\vec{p})$, $N(\vec{0})\pi(\vec{0})\pi(\vec{0})$ and $N\pi\pi\pi$ etc + momentum combinations.

CLS ensembles:

 $m_{\pi}=286$ MeV, a=0.064 fm. Forward limit: $C_{3pt}(t,\tau)/C_{2pt}(t)
ightarrow g_A.$

Assume for $Lm_{\pi} \gtrsim 4$: $E_{N\pi} \approx E_N + E_{\pi}$.

Challenges

Additional systematics to be controlled.

***** Discretisation effects: $\mathcal{O}(a)$ or $\mathcal{O}(a^2)$. More important as \vec{p} becomes large.

★ Quark mass dependence: not clear how well ChPT describes the quark mass dependence in the range $m_{\pi} \sim (m_{\pi}^{phys} - 300 \text{ MeV})$.

E.g. NNLO SU(2) covariant BChPT [Schindler et al.,nucl-th/0611083]

$$G_A(0) \equiv g_A = g_A^{(0)} + g_A^{(1)} m_\pi^2 + g_A^{(2)} m_\pi^2 \ln\left(rac{m_\pi}{\mu}
ight) + g_A^{(3)} m_\pi^3$$

In ChPT, the $g_A^{(2)}$ log term gives a large positive contribution.

Lattice results find a mild dependence on m_π with a negative slope, large cancellation between terms.

The Δ resonance also needs to be considered.

Need $m_{\pi} \approx m_{\pi}^{phys}$.

* Finite volume effects: exponentially suppressed $\sim m_{\pi}^2 e^{-Lm_{\pi}}/(m_{\pi}L)^{3/2}$, want $Lm_{\pi} \gtrsim 4$.

* Parameterisation of Q^2 dependence.

Recent progress

Statistical noise and excited state pollution:

More source-sink separations, $t_{max} = 1.4 - 1.6$ fm. More measurements for larger t.

[ETMC,2309.05774] $m_{\pi} = 140$ MeV, a = 0.09 fm

[Mainz,2207.03440]: $m_{\pi} = 129$ MeV, $t_{max} = 1.4$ fm, 102k measurements on 400 configs.. [PNDME,2305.11330]: $m_{\pi} = 128$ MeV, $t_{max} = 1.4$ fm, 170k measurements on 1290 configs.. Both Mainz and PNDME use TSM/AMA [Bali et al.,0910.3970], [Blum et al.,1208.4349].

Systematics from finite *a* and *V* and m_q dependence: most studies 3-5 lattice spacings, $m_{\pi}^{min} \approx m_{\pi}^{phys}$ and $Lm_{\pi}^{min} \gtrsim 3.5$.

Forward limit: axial charge, $G_A(0) \equiv g_A$

Not a FLAG plot, however, the FLAG criteria are applied.

ETMC 23, PNDME 23, Mainz 22 and RQCD 19 results obtained from data for $Q^2 > 0$ as well as $Q^2 = 0$. Rest: $Q^2 = 0$ only. PCAC relation: $\partial^{\mu}A_{\mu} = 2m_{\ell}P + \mathcal{O}(a^2)$

m_q extracted using pion two-point correlation functions:

zero momentum :
$$2m_{\ell} = \frac{\partial_t \langle A_4(t) P^{\dagger}(0) \rangle}{\langle P(t) P^{\dagger}(0) \rangle} = \frac{\partial_t C_{2pt}^{FA_4}(t)}{C_{2pt}^{P\rho}(t)}$$

Using nucleon three-point correlation functions:

finite
$$\vec{q}$$
: $2m_{\ell} = \frac{\langle \mathcal{N}_{snk} \partial_{\mu} A_{\mu}(x) \overline{\mathcal{N}}_{src} \rangle}{\langle \mathcal{N}_{snk} P(x) \overline{\mathcal{N}}_{src} \rangle} = \frac{\partial_{\mu} C^{j,\rho,A_{\mu}}_{3pt,P_{i}}(t,\tau)}{C^{\vec{0},\vec{p},P}_{3pt,P_{i}}(t,\tau)}$

D A

 $\vec{a} \rightarrow a$

PCAC relation

$$\mathbf{r}_{\mathsf{PCAC}} = \frac{m_q G_P(Q^2) + \frac{Q^2}{4m_N} \tilde{G}_P(Q^2)}{m_N G_A(Q^2)} = 1 + \mathbf{O}(\mathbf{a}^2) \qquad r_{PPD} = \frac{m_\pi^2 + Q^2}{4m_N^2} \frac{\tilde{G}_P(Q^2)}{G_A(Q^2)} = 1 + \dots$$

Discrepancy biggest for low Q^2 and $m_{\pi} \rightarrow m_{\pi}^{phys}$. No improvement with smaller *a*, see, e.g., [RQCD,1911.13150].

Excited state contamination

 $m_{\pi} = 200$ MeV, a = 0.064 fm, $|\vec{q}| = 2\pi/(64a)$

[RQCD,1911.13150]

 $\begin{aligned} \mathcal{R}_{\mathcal{J},\Gamma_{i},\vec{q}} &= C_{3\rho t,\Gamma_{i}}^{\vec{p}',\vec{p},J} / C_{2pt}^{\vec{p}} \times (\text{factor}) \rightarrow \text{constant} \\ (a) \ \mathcal{R}_{A_{i} \parallel \Gamma_{i} \perp \vec{q}} \propto \mathcal{G}_{A}(Q^{2}) & (b) \ \mathcal{R}_{A_{i} \parallel \Gamma_{i} \parallel \vec{q}} \propto (m_{N} + E_{\vec{q}}) \mathcal{G}_{A}(Q^{2}) - \frac{q_{i}^{2}}{2m_{N}} \tilde{\mathcal{G}}_{P}(Q^{2}) \\ (c) \ \mathcal{R}_{A_{4},\Gamma_{i} \parallel \vec{q}} \propto \mathcal{G}_{A}(Q^{2}) + \frac{(m_{N} - E_{\vec{q}})}{2m_{N}} \tilde{\mathcal{G}}_{P}(Q^{2}) & (d) \ \mathcal{R}_{P,\Gamma_{i} \parallel \vec{q}} \propto \mathcal{G}_{P}(Q^{2}) \end{aligned}$

Well known problem: e.g. [RQCD,1412.7336], [ETMC,1705.03399], [PNDME,1705.06834], [RQCD,1810.05569], [PACS,1811.07292].

Some works only extract G_A , using $R_{A_i \parallel \Gamma_i \perp \vec{q}}$.

Excited state contamination in ChPT

 $N\pi$ excited state contamination in correlation functions can be investigated in ChPT.

For example,

Forward limit (zero recoil): [Tiburzi,0901.0657,1503.06329] $N\pi$ excited state contribution to $G_A(0) = g_A$ in leading loop order HBChPT. [Hansen,1610.03843] $N\pi$ excited state contribution to g_A , LO ChPT with finite volume interaction corrections a la Lellouch-Lüscher. [Bär,1606.09385] BChPT: leading loop order g_A .

Form factors: [Meyer,1811.03360] $N\pi$ contributions to $G_A(Q^2)$, $\tilde{G}_P(Q^2)$ and $G_P(Q^2)$ computed to tree-level in ChPT. [Bär,1906.03652,1812.09191] $N\pi$ contributions to $G_A(Q^2)$, $\tilde{G}_P(Q^2)$ and $G_P(Q^2)$ computed in leading loop order BChPT.

Limitations to ChPT approach: *p* and m_{π} should be small. Applies to large source-sink separation (not always accessible due to deterioration of the signal). When using spatially extended sources $\langle r^2 \rangle_{smear}^{1/2} \ll 1/m_{\pi}$.

Excited state contamination in ChPT

Ground state (single particle): $N(-\vec{q}) \rightarrow N(\vec{0})$.

Axial and pseudoscalar currents can couple to pions: dominant contributions come from tree-level diagrams, where the pion takes the momentum of the current:

Top (ground state), bottom middle (ground+excited states), rest (excited states).

Channels $\mathcal{J} = \mathcal{P}$, \mathcal{A}_4 and $\mathcal{A}_i \parallel \vec{q}$: large $N(\vec{0})\pi(-\vec{q}) \rightarrow N(\vec{0})$ and $N(-\vec{q}) \rightarrow N(-\vec{q})\pi(\vec{q})$ contributions.

Only extraction of G_P and \tilde{G}_P affected.

 $\mathcal{J}=\mathcal{A}_i\parallel ec{q}$: correction to $ilde{G}_P(t, au=t/2)\sim -e^{-E_\pi(ec{q})t/2}$ for small $ec{q}$. [Bår,1906.03652]

No enhanced excited state contributions to G_A.

ightarrow (moderate) loop contributions to $\mathcal{A}_i \perp \vec{q}_i$.

No enhanced contributions in the forward limit. Consistent with the lattice data.

Excited state fits accounting for $N\pi$ states

[Jang et al.,1905.06470] Expected first excitation: $\vec{p} = \vec{n} \frac{2\pi}{L}$ Sink: $N(-\vec{p})\pi(\vec{p})$ Source: $N(0)\pi(\vec{p})$ Fit to C_{3pt} : first fix excited state energy from A_4 component. Additional excited states also considered. See also [PNDME,2305.11330].

(

[RQCD,1911.13150]: use tree-level BChPT to determine form of $N\pi$ contributions. No constraints on the ground state contributions.

$$\begin{split} & \left[F^{\Gamma_{\alpha},A_{\mu}}_{3pt}(\vec{p}',\vec{p},t_{f},\tau) = \frac{\sqrt{Z_{\vec{p}'}Z_{\vec{p}}}}{2E_{\vec{p}'}E_{\vec{p}}} e^{-E_{\vec{p}'}(t_{f}-\tau)} e^{-E_{\vec{p}}\tau} \times \\ & \left[B_{\Gamma_{i},A_{\mu}}(\vec{p}',\vec{p}) + \frac{E_{\vec{p}'}}{E_{\pi}} r_{+}^{\mu} c^{\vec{p}'} q_{\alpha} e^{-\Delta E_{\vec{p}'}^{N\pi}(t-\tau)} + \frac{E_{\vec{p}}}{E_{\pi}} r_{-}^{\mu} c^{\vec{p}} q_{\alpha} e^{-\Delta E_{\vec{p}}^{N\pi}(\tau)} + \dots \right] \end{split}$$

Energy gaps $\Delta E^{N\pi}_{\vec{p}'}$ and $\Delta E^{N\pi}_{\vec{p}}$ fixed using priors in the fit.

Second excited state included in the fit with the standard form.

 $N\pi$ terms for $C_{3pt}^{\Gamma_{\alpha},P}$ obtained from the PCAC relation. Simultaneous fit of C_{3pt} for the A_{μ} and P currents gives a reasonable χ^2/dof . Recent works with $m_{\pi} \rightarrow m_{\pi}^{phys}$, $V \rightarrow \infty$, $a \rightarrow 0$ limits

[ETMC,2309.05774] $N_f = 2 + 1 + 1$, a = 0.08, 0.07, 0.06 fm, $m_\pi \sim m_\pi^{phys}$, $Lm_\pi = 3.6 - 3.9$.

Simultaneous fits to C_{2pt} and C_{3pt} for the A_{μ} and P currents. One and two excited state contributions explored (final results from the one excited state fit difference included in the systematics).

 Q^2 parameterisation and $a \rightarrow 0$ limit:

t =

$$G_{z}(Q^{2},a^{2}) = g(a^{2}) \sum_{k=0}^{k_{max}} c_{k}(a^{2}) z^{k}(Q^{2}) \qquad z(t,t_{cut},t_{0}) = \frac{\sqrt{t_{cut}-t} - \sqrt{t_{cut}-t_{0}}}{\sqrt{t_{cut}-t} + \sqrt{t_{cut}-t_{0}}}$$
$$q^{2} = -Q^{2}, t_{cut} = 9m_{\pi}^{2}, k_{max} = 3, t_{0} = 0.$$

Coefficients constrained by restrictions that expansion converges smoothly to zero as $Q^2 \rightarrow \infty$ following [Lee et al.,1505.01489], [Meyer et al.,1603.03048].

For
$$\tilde{G}_P$$
 and $G'_P = 4m_N/m_\pi^2 imes m_q G_P(Q^2)$ use: $G_{wpole}(Q^2, a^2) = rac{1}{Q^2 + m_\pi^2 + ba^2} G_z(Q^2, a^2)$

Recent works with $m_{\pi} \rightarrow m_{\pi}^{phys}$, $V \rightarrow \infty$, $a \rightarrow 0$ limits

[RQCD,1911.13150]: $N_f = 2 + 1$ O(a)-improved Wilson ensembles (CLS), 5 lattice spacings, a = 0.09 - 0.04 fm, $m_{\pi} = 130 - 410$ MeV, $Lm_{\pi}^{phys} = 3.5 - 4.1$.

Simultaneous fit to $\mathcal{J} = \mathcal{A}_{\mu}$ and $\mathcal{P} C_{3\rho t}/C_{2\rho t}$ functions (two excited states, first set to $E_{N\pi}$). Four source-sink separations t = 0.7 - 1.2 fm.

Combined m_q , V, a^2 and Q^2 (*z*-expansion) fit of G_A , \tilde{G}_P , G_P (after testing in the continuum limit, the PCAC relation imposed).

Constraints on coefficients from asymptotic behaviour $G_A \propto 1/Q^4$ etc. and the PCAC relation. $k_{max} = 4 + 3$.

[PNDME,2305.11330]: clover fermions on MILC $N_f = 2 + 1 + 1$ ensembles, $m_{\pi} = 128 - 312$, $m_{\pi}^{phys}L = 3.9$, 4 lattice spacings, a = 0.15 - 0.06 fm

Simultaneous fits to $\mathcal{J} = \mathcal{A}_{\mu}$ and $\mathcal{P} C_{3pt}$ and C_{2pt} functions (two/three excited states). Three-five source-sink separations t = 0.8 - 1.4 fm.

Followed by a three-step procedure:

 Q^2 fit to G_A with $k_{max} = 2$.

For 11 reference values of Q^2 , extrapolation with respect to m_q , V and a. At the physical point: fit to 11 Q^2 values with $k_{max} = 2$. Similarly, for \tilde{G}_P and G_P . Recent works with $m_{\pi} \rightarrow m_{\pi}^{phys}$, $V \rightarrow \infty$, $a \rightarrow 0$ limits

[Mainz,2207.03440]: $N_f = 2 + 1 \ O(a)$ -improved Wilson ensembles (CLS), 4 lattice spacings, a = 0.09 - 0.05 fm, $m_{\pi} = 130 - 350$ MeV, $Lm_{\pi}^{phys} = 4.0$.

 G_A only.

Combined excited state and Q^2 fit with $k_{max} = 2$.

t = 0.2 - 1.4 fm, 9-17 source-sink separations with ground state fits to the summed ratio $\sum_{\tau} C_{3pt}(t,\tau)/C_{2pt}(t)$ (summation method [Maiani et al.,Nucl. Phys. B 239 (1987)])

Dependence of the coefficients on m_q , V and a^2 is fitted.

Figures from [Gupta,Lattice 23], νD fit from [Meyer et al.,1603.03048].

Also shown: [NME,2103.05599] clover fermions on MILC $N_f = 2 + 1 + 1$ HISQ ensembles, no $m_{\pi} \rightarrow m_{\pi}^{phys}$, $V \rightarrow \infty$, $a \rightarrow 0$ limit. Fit $m_{\pi} = 170 - 285$ MeV, a = 0.07 - 0.13 fm data together. Simultaneous fits to $\mathcal{J} = \mathcal{A}_{\mu}$ and $\mathcal{P} C_{3pt}$ functions (one/three excited states). Four-six source-sink separations t = 0.8 - 1.5 fm.

Recent results for $G_A(Q^2)$

[Meyer,2301.04616]

[CalLat,2111.06333], domain wall fermions on MILC $N_f = 2 + 1 + 1$ HISQ ensembles, $m_{\pi} = 130$ MeV, $Lm_{\pi} = 3.9$, a = 0.12 fm. 10 source-sink separations, t = 0.3 - 1.4 fm, 3 excited states fitted to C_{3pt}/C_{2pt} . [PACS,2311.10345], O(a) improved-Wilson $N_f = 2 + 1$ ensembles, $m_{\pi} = 138$ MeV, a = 0.06 and 0.09 fm. 3 source-sink separations, t = 0.82 - 1.2 fm. Ground state fits to ratios.

Recent results for $G_A(Q^2)$

[Tomalak et al.,2307.14920]

Lattice results are more consistent with MINERvA data.

[MINERva,Nature 614, 48 (2023)]: antineutrino scattering off hydrogen atoms inside hydrocarbon molecules. Monte-Carlo simulations used to remove antineutrino-carbon scattering.

Axial radius: $\langle r^2 \rangle_A$ [fm²]

Lattice results and fits to experiment obtained using the z-expansion.

\tilde{G}_P at the muon capture point: g_P^*

 \tilde{G}_P not well known from expt: muon capture $\mu^- p \rightarrow \nu_\mu n$ gives

 $g_P^* = rac{m_\mu}{2m_N} ilde{G}_P(Q^2 = 0.88 \ m_\mu^2) = 8.06(55) \ [MuCap, 1210.6545]$

Compatible with pion pole dominance.

Recap: axial form factors

- ★ Many new lattice studies of the axial form factor, with a focus on increasing precision and controlling all the main systematics. General agreement between results.
- ★ Constraints, such as the PCAC relation on the form factors, provide an important check on the results. Lattice results now show consistency with the PCAC relation in the continuum limit.
- \star There is very significant excited state contamination of the three-point functions from N π states.
- * Extraction of \tilde{G}_P and G_P are mostly affected, while excited state contamination in the extraction of G_A is "moderate". Consistent with LO ChPT analysis.
- * Size of the excited state contamination when extracting G_A depends on details of the analysis (choice of nucleon interpolator \mathcal{N} , source-sink separations for C_{3pt} , m_{π} , L, ...). Still needs to be considered carefully, for precision results.
- * Lattice results now reproduce the expt. value for g_P^* . Pion pole dominance in \tilde{G}_P is also found to hold on a few percent level.

Neutrino scattering above the pion-production threshold ($E_{\nu} \sim 1 - 10$ GeV):

 \star $N \to N\pi$ transition matrix elements: $N \to \Delta(1232), N^*$ resonances for vector and axial currents.

* Straightforward if m_{π} is large enough for the resonance to be stable, e.g. [ETMC,0710.4621,0706.3011] ($N \rightarrow \Delta$), [Lin, Cohen,1108.2528] ($N \rightarrow$ Roper) and earlier $N_f = 0$ works.

* $N \rightarrow$ resonance requires finite volume formalism for $N\pi \rightarrow N\pi$ scattering as well as $N \rightarrow N\pi$ [Bernard et al.,1205.4642], [Agadjanov et al.,1405.3476], [Briceno, Hansen,1502.04314].

* Elastic $N\pi$ scattering in I = 1/2 and 3/2, see e.g. [Lang et al.,1610.01422], [Anderson et al.,1710.01557], [Bulava et al.,2208.03867], [ETMC,2307.12846].

Toward N to $N\pi$ matrix elements

Computing $N \rightarrow N\pi$ matrix elements:

[Barca et al.,2211.12278] $N_f = 3 \ (m_\ell = m_s) \ m_\pi = 420$ MeV, a = 0.098 fm.

[ETMC,2312.15737] $N_f = 2 + 1 + 1$ $m_{\pi} = 346$ MeV, a = 0.095 fm, $N_f = 2$ $m_{\pi} = 131$ MeV, a = 0.094 fm.

★ First step: evaluating GEVP improved $N \rightarrow N$ axial form factors with reduced excited state contributions.

\star Next step: $N \rightarrow N\pi$ matrix elements from the GEVP.

GEVP for the two-point functions

Matrix of correlation functions: $C_{ij}(\vec{p},t) = \langle O_i(\vec{p},t)\overline{O}_j(\vec{p},0) \rangle$, $O_i \in \{O_{3q}, O_{5q}\}$.

 $O_{3q,5q}$ must be projected onto the relevant lattice irreducible representation to give spin 1/2: $(\vec{p} = \vec{0}) G_1^+$ of O_h , $(\vec{p} \neq \vec{0}) G_1$ of the little group C_{4v} .

Similarly, for isospin:

e.g. for the neutron $(I = -I_z = 1/2) O_{5q}^n = -\frac{1}{\sqrt{3}} O_{3q}^n O_{\bar{q}q}^{\pi^0} + \sqrt{\frac{2}{3}} O_{3q}^p O_{\bar{q}q}^{\pi^-}$

Note $E_2 \approx E_N + E_{\pi}$ and $v_i^1 \overline{O}_i |\Omega\rangle \approx |N\rangle$, $v_i^2 \overline{O}_i |\Omega\rangle \approx |N\pi\rangle$.

Little $N\pi$ in $\overline{O}_{3q}|\Omega\rangle \Rightarrow N\pi$ not visible in $\langle O_{3q}(\vec{p},t)\overline{O}_{3q}(\vec{p},0)\rangle$.

GEVP-projected correlation functions

Use eigenvectors $v^{1,2} \sim v^{N,N\pi}$ to obtain GEVP-improved two- and three-point functions for $\alpha, \beta \in \{N, N\pi\}$:

$$C_{2pt}^{\alpha}(\vec{p},t) = v_i^{\alpha}(\vec{p},t;t_0)C_{ij}(\vec{p},t)v_j^{\alpha}(\vec{p},t;t_0)$$
$$C_{3pt}^{\alpha,\beta}(\vec{p},t,\vec{q},\tau;P_k;\mathcal{J}) = v_i^{\alpha}(\vec{p}',t;t_0)C_{ij}^{3pt}(\vec{p},t,\vec{q},\tau;P_k;\mathcal{J})v_j^{\beta}(\vec{p},t;t_0)$$

 $|v_2^N|$ and $|v_1^{N\pi}|$ are small. However, there is an enhancement of $N \xrightarrow{\mathcal{J}} N\pi$.

Neglect $\sim |v_2^N|^2$ (small)² terms, i.e. $\langle O_{5q} \mathcal{J} \overline{O}_{5q} \rangle$ is not computed.

Improved nucleon matrix elements can be obtained from

$$\mathcal{R}^{k,\mathcal{J}}(\vec{p}',t;\vec{q},\tau)^{NN} = \frac{C_{3pt}^{k,\mathcal{J}}(\vec{p}',t;\vec{q},\tau)^{NN}}{C_{2pt}(\mathbf{p}',t)^{N}} \sqrt{\frac{C_{2pt}(\mathbf{p}',\tau)^{N} C_{2pt}(\mathbf{p}',t)^{N} C_{2pt}(\mathbf{p},t-\tau)^{N}}{C_{2pt}(\mathbf{p},\tau)^{N} C_{2pt}(\mathbf{p},\tau)^{N} C_{2pt}(\mathbf{p},t-\tau)^{N}}}$$

Wick contractions $p \rightarrow p\pi^-$

 $p \rightarrow n\pi^{0}$: A, B, C diagrams but no D diagram. Largest contribution from the *D* diagram: we find D diagram $\approx C_{2pt}^{N}(\vec{p}'_{N}, t; \vec{p}, 0) \times C_{2pt}^{\pi}(\vec{p}'_{\pi}, t; \vec{q}, \tau) \overset{\mathcal{J}=\mathcal{A}_{\mu}}{\propto} \delta_{\vec{p}'_{N}, \vec{p}} \delta_{\vec{p}'_{\pi}\vec{q}} q_{\mu} e^{-E_{N}t} e^{-E_{\pi}(t-\tau)}.$

Two-point functions: same topologies, current at $\tau \longrightarrow$ smeared pion interpolator at $\tau = 0$. A, B, C diagrams evaluated using the sequential source method. D diagram, one-end trick [Foster, Michael,hep-lat/9810021] for the pion part. $R^{k,\mathcal{J}}(ec{p}\prime,t;ec{q}, au)^{NN}$ with momentum transfer

Set up:

Source (left): $\vec{p} = -\vec{q} = \hat{e}_z 2\pi/L$, sink (right): $\vec{p}' = 0$.

Source: most excitations removed, sink (at rest): some excitations remain.

Blue: Large contributions from $\langle N(\vec{0})\pi(\hat{e}_z)|\mathcal{A}_4|N(\vec{0})\rangle$ and $\langle N(\hat{e}_z)|\mathcal{A}_4|N(\hat{e}_z)\pi(-\hat{e}_z)\rangle$ due to the *D* diagram etc.

Green bands: ground state matrix element obtained from fit M2, see below.

PCAC and PPD relations

 $N_f = 3 \ (m_\ell = m_s) \ m_\pi = 420$ MeV, a = 0.098 fm

GEVP-improved $N \rightarrow N$ form factors consistent with PCAC and PPD relations up to around 10%.

Note: the axial form factor G_A does not change significantly, see ETMC results below.

Fitting analyses of $\langle O_{3q} \mathcal{J} \overline{O}_{3q} \rangle$ correlation functions also give consistent results:

M1: fit used in [RQCD,1911.13150], guided by ChPT with mass gap to 1st excited state fixed with a prior to $E_{N\pi}$.

M2: combined one excited state fit to three- to two-point function ratios for $\mathcal{J} = \mathcal{A}_{\mu}$ and \mathcal{P} , similar to [Jang et al.,1905.06470] and [ETMC,2309.05774].

 $N
ightarrow N\pi$ transition matrix elements from the GEVP

Setup: $\vec{q} = \vec{0}$, $\vec{p}' = \vec{p} = \hat{e}_z \times 2\pi/L$, $Q^2 = m_{\pi}^2$.

Only moderate excited state contributions to $R^{\mathcal{P},\mathcal{A}_4}(\vec{p},t;\vec{0},\tau)^{N\pi N}$.

Note that the Lorentz decomposition of the $N \rightarrow N\pi$ matrix elements is different to that for $N \rightarrow N$.

GEVP improved form factors from ETMC

[ETMC,2312.15737] Effective energies of eigenvalues and eigenvector for the lowest eigenenergy.

(Left) $N_f = 2 + 1 + 1$, $m_{\pi} = 346$ MeV, a = 0.095 fm (Right) $N_f = 2$, $m_{\pi} = 131$ MeV, a = 0.094 fm.

Omitted: additional diagrams involving pion loops arising from the breaking of isospin symmetry with twisted mass fermions. Also $\langle O_{5q} \mathcal{J} O_{5q} \rangle$ correlation functions.

GEVP improved form factors from ETMC

Forward limit: no signifiant change in the excited state contributions when using GEVP improved three-point functions to extract g_A

With momentum transfer: $|\vec{q}| = 2\pi/L$ Left: $m_{\pi} = 346$ MeV, $Q^2 = 0.283$ GeV² Right: $m_{\pi} = 131$ MeV, $Q^2 = 0.074$ GeV²

 $ar{G}_5^{u-d}$ denotes the form factor extracted with $\mathcal{J}=\mathcal{P}$ with the pole removed:

$$ar{G}_5^{u-d} = rac{m_\pi^2 + Q^2}{F_\pi m_\pi^2} m_q G_5$$

Similarly for $\bar{G}_{P,i}^{u-d}$ and $\bar{G}_{P,t}^{u-d}$ extracted with $\mathcal{J} = \mathcal{A}_i$ and $\mathcal{J} = \mathcal{A}_4$, respectively.

Summary and outlook

- ★ First steps towards computing $N \rightarrow N\pi$ matrix elements relevant for $N \rightarrow \Delta$, ... transitions have been made.
- * Large $N\pi$ contributions to the axial and pseudoscalar three-point functions can be removed via the GEVP for $m_{\pi} \sim 420$ MeV down to 131 MeV.
- ★ Fitting analyses to $\langle O_{3q} \mathcal{J} O_{3q} \rangle$ correlation functions that account for $N\pi$ contributions agree with GEVP results for \tilde{G}_P and G_P . (Limited test at $m_{\pi} = 420$ MeV).
- **\star** No significant change in g_A .

More work to be done:

- * $N \rightarrow N\pi$: extended basis of operators for range of \vec{p} , implement the finite volume formalism.
- \star G_A: how to deal with the "moderate" excited state contamination? Control over other systematics.