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Motivation: neutrino oscillation experiments

T2K: Tokai to Super-Kamiokande,

E = 0.6 GeV, L/E ≈ 500 km/GeV.

Also NOvA, L/E ≈ 400 km/GeV, DUNE L/E ≈ 520 km/GeV, HK(=T2K).

Muon neutrino beam: proton on nucleus → pions and kaons → µ+νµ or µ−ν̄µ.

Near and far detectors.

Nµ
far(Eν) = Nµ

near(Eν) × [flux(L)] × [detector] × [1 −
∑

β

Pµ→β(Eν)]

Eν has to be reconstructed from the momentum of the detected charged lepton.

νµ + n → µ− + p

But. . .
The neutrino beam is not monochromatic but has a momentum distribution.
The nucleon is bound in a nucleus and has |pFermi| ∼ 200 MeV.
The lepton momentum reconstruction is often incomplete.
Misidentification of inelastic scattering as elastic scattering.

Monte-Carlo simulation needs input regarding the differential cross section.
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Overview: Quasi-elastic scattering (axial form factors), excited state contamination.
Steps towards N → Nπ matrix elements.



Quasi-elastic scattering

Relevant V − A matrix element in the isospin limit:

⟨p(p′)|ūγµ(1 − γ5)d|n(p)⟩ = up(p′)
[

γµF1(Q2) +
iσµνqν

2mN
F2(Q2)

+ γµγ5GA(Q2) +
qµ

2mN
γ5G̃P(Q2)

]
un(p)

qµ = p′
µ − pµ, virtuality Q2 = −q2 > 0.

Dirac and Pauli form factors F1,2 are reasonably well determined experimentally from
lepton-nucleon scattering for range of Q2 ∼ (0.1 − 1) GeV2 relevant for the long-baseline
experiments.

Axial form factor: forward limit: GA(Q2) → gA (well determined from β-decay).

Shape at low Q2, ⟨r 2
A⟩ = −6 dGA(Q2)

dQ2 :

GA(Q2) = GA(0)
[
1 − 1

6 ⟨r 2
A⟩Q2 + . . .

]
Parameterisation: dipole form GA(q2) = gA

(1+ q2
MA2 )2

, MA = 12/⟨r 2
A⟩1/2, z-expansion.



Axial and induced pseudoscalar form factors

GA(Q2): information from old ν̄-p and ν-d scattering data.

Over-constrained dipole fits performed: e.g. [Bernard et al.,hep-ph/0107088]
MA = 1.03(2) GeV.

z-expansion analysis from [Meyer,1603.03048] MA = 1.01(24) GeV.

Neutrino scattering with nuclear targets, e.g. [MiniBooNE,1002.2680] MA = 1.35(17) GeV
(using the dipole form).

G̃P(Q2):

Impact on the cross section is suppressed by a factor m2
ℓ/m2

N ≈ 0.01 for ℓ = µ.

Only relevant for very small Q2, where this formfactor is large.

Not well constrained: experimentally measured at the muon capture point. In muonic
hydrogen, µ− + p → νµn.

[MuCAP, 1210.6545] : g∗
P = mµG̃P(0.88m2

µ)/(2mN) = 8.06 ± 0.48 ± 0.28.

Additional indirect information on GA and G̃P via low energy theorems from pion electroproduction
e− + N → π + N + e−.



PCAC relation and pion pole dominance

For nucleon matrix elements: Aµ = ūγµγ5d , P = ūiγ5d .

2 mq⟨N(p⃗′)|P|N(p⃗)⟩ = ⟨N(p⃗′)|∂µAµ|N(p⃗)⟩ + O(a2)

leads to

mqGP(Q2) = mNGA(Q2) − Q2

4mN
G̃P(Q2)

where the pseudoscalar form factor: ⟨p(p′)|P|n(p)⟩ = up iγ5GP(Q2)un.

SU(2) chiral limit: G̃P(Q2) = 4m2
NGA(Q2)/Q2

Pion pole dominance (LO ChPT): only an approximation.

G̃P(Q2) = GA(Q2) 4m2
N

Q2 + m2
π

+ corrections

PCAC+pion pole dominance (PPD) → one independent form factor

GP(Q2) = GA(Q2)mN

mℓ

m2
π

Q2 + m2
π

+ corrections



Lattice details:

N̄ (xsrc)N (xsnk)

O(xins)

N̄ (xsrc)N (xsnk)

Three-point functions are evaluated with the
sequential source method
[Martinelli,Sachrajda,(1989)].

For each t, t > τ > 0. Choose p⃗′ = 0⃗ with p⃗ = −q⃗.
Extra propagator inversion for every sink t.

Spectral decomposition:

C p⃗
2pt(t) = Zp⃗Z∗

p⃗
Ep⃗ + mN

Ep⃗
e−E⃗p t

[
1 + b1e−t∆⃗p + . . .

]
Overlap factors: Zp⃗uN(p⃗) = ⟨0|N |N(p⃗)⟩, b1 ∝ |Z1

p⃗ |2/|Zp⃗ |2.

Energy difference between first excited and ground state: ∆p⃗ = E1
p⃗ − Ep⃗ .

C p⃗′ ,⃗p,J
3pt,Γi

(t, τ) =
Zp⃗′ Z∗

p⃗

2Ep⃗′ 2Ep⃗
e−E⃗p′ (t−τ)e−E⃗pτ Bp⃗′ ,⃗p

Γi ,J

·
[
1 + c10e−(t−τ)∆⃗p′ + c01e−τ∆⃗p + c11e−(t−τ)∆⃗p′ e−τ∆⃗p . . .

]
where Bp⃗′ ,⃗p

Γi ,J
∝ ⟨N|J|N⟩, c10 ∝ ⟨N1|J|N⟩, c01 ∝ ⟨N|J|N1⟩, c11 ∝ ⟨N1|J|N1⟩.

Smeared interpolators reduce |Z1
p⃗ |2/|Zp⃗ |2, however, ⟨N|J|N1⟩ etc may be large.



Challenges

Statistical noise: signal vs noise decays with e−(E−3mπ/2)t for large t.

p⃗ = 0⃗

[NME,2103.05599] [Mainz,2212.09940]
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E250 Mπ = 130MeV, a = 0.064fm, MN = 932(4)MeV
E300 Mπ = 172MeV, a = 0.050fm, MN = 967(5)MeV

NME: 1 fm ∼ 14a.

Wuppertal (Gaussian) smearing of nucleon interpolators using APE smeared gauge
transporters.

NME: ⟨r2⟩1/2
Ψ2 ∼ 0.76 fm, Mainz: ⟨r2⟩1/2

Ψ2 ∼ 0.50 fm.



Challenges

Excited state pollution: significant since t in CN
3pt(t, τ) cannot be too large.

Spectrum contains resonances and multi-particle states. Latter will be lowest excitations for
ensembles with pion masses close to mphys

π and Lmπ ≳ 4.
Source: p⃗ ̸= 0, parity not a good QN, N(p⃗)π(⃗0), N (⃗0)π(p⃗), . . ..
Sink: p⃗′ = 0⃗, parity is a good QN, N(p⃗)π(−p⃗), N (⃗0)π(⃗0)π(⃗0) and Nπππ etc + momentum
combinations.

CLS ensembles:
mπ = 286 MeV, a = 0.064 fm.
Forward limit: C3pt(t, τ)/C2pt(t) → gA.
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Challenges
Additional systematics to be controlled.

⋆ Discretisation effects: O(a) or O(a2). More important as p⃗ becomes large.

⋆ Quark mass dependence: not clear how well ChPT describes the quark mass
dependence in the range mπ ∼ (mphys

π − 300 MeV).
E.g. NNLO SU(2) covariant BChPT [Schindler et al.,nucl-th/0611083]

GA(0) ≡ gA = g (0)
A + g (1)

A m2
π + g (2)

A m2
π ln

(mπ

µ

)
+ g (3)

A m3
π

In ChPT, the g (2)
A log term gives a large positive contribution.

Lattice results find a mild dependence on mπ with a negative slope, large cancellation between
terms.
The ∆ resonance also needs to be considered.

Need mπ ≈ mphys
π .

⋆ Finite volume effects: exponentially suppressed ∼ m2
πe−Lmπ /(mπL)3/2,

want Lmπ ≳ 4.

⋆ Parameterisation of Q2 dependence.



Recent progress

Statistical noise and excited state pollution:

More source-sink separations, tmax = 1.4 − 1.6 fm. More measurements for larger t.

[ETMC,2309.05774] mπ = 140 MeV, a = 0.09 fm
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[Mainz,2207.03440]: mπ = 129 MeV, tmax = 1.4 fm, 102k measurements on 400 configs..
[PNDME,2305.11330]: mπ = 128 MeV, tmax = 1.4 fm, 170k measurements on 1290 configs..
Both Mainz and PNDME use TSM/AMA [Bali et al.,0910.3970], [Blum et al.,1208.4349].

Systematics from finite a and V and mq dependence: most studies 3-5 lattice
spacings, mmin

π ≈ mphys
π and Lmmin

π ≳ 3.5.



Forward limit: axial charge, GA(0) ≡ gA

0.9 1.0 1.1 1.2 1.3 1.4

=
+

+
=

+
Ex

pt PDG
JLQCD 18
QCD 18

PACS 18
PACS 18A
Mainz 19
LHPC 19
RQCD 19jai
NME 21
Mainz 22
PACS 22
QCDSF/UKQCD/CSSM 23
RQCD 23
PACS 23
Mainz 24
FLAG 21 average for = +
PNDME 16
CalLat 17
CalLat 18
PNDME 18
ETMC 19
CalLat 19
PNDME 23
ETMC 23
FLAG 21 average for = + +

Not a FLAG plot, however, the FLAG criteria are applied.

ETMC 23, PNDME 23, Mainz 22 and RQCD 19 results obtained from data for Q2 > 0
as well as Q2 = 0.
Rest: Q2 = 0 only.



PCAC relation: ∂µAµ = 2mℓP + O(a2)
mq extracted using pion two-point correlation functions:

zero momentum : 2mℓ = ∂t⟨A4(t)P†(0)⟩
⟨P(t)P†(0)⟩ =

∂tCPA4
2pt (t)

CPP
2pt (t)

Using nucleon three-point correlation functions:

finite q⃗ : 2mℓ = ⟨Nsnk∂µAµ(x)N src⟩
⟨NsnkP(x)N src⟩

=
∂µC 0⃗,⃗p,Aµ

3pt,Pi
(t, τ)

C 0⃗,⃗p,P
3pt,Pi

(t, τ)

[RQCD,1810.05569]
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PCAC relation

rPCAC =
mqGP(Q2) + Q2

4mN
G̃P(Q2)

mNGA(Q2)
= 1 + O(a2) rPPD =

m2
π + Q2

4m2
N

G̃P(Q2)
GA(Q2)

= 1 + . . .

[Jang et al.,1905.06470]

mπ ∼ mphys
π , a = 0.09 fm.

Circles: excited state spectrum
extracted from C2pt and used
in fit of C3pt .

Lowest Nπ state(s) not resolved in C2pt .
Size of excited state contributions underes-
timated.
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Discrepancy biggest for low Q2 and mπ → mphys
π .

No improvement with smaller a, see, e.g., [RQCD,1911.13150].



Excited state contamination
mπ = 200 MeV, a = 0.064 fm, |⃗q| = 2π/(64a) [RQCD,1911.13150]
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Well known problem: e.g. [RQCD,1412.7336], [ETMC,1705.03399], [PNDME,1705.06834],
[RQCD,1810.05569], [PACS,1811.07292].

Some works only extract GA, using RAi ∥Γi ⊥q⃗.



Excited state contamination in ChPT

Nπ excited state contamination in correlation functions can be investigated in ChPT.

For example,
Forward limit (zero recoil):
[Tiburzi,0901.0657,1503.06329] Nπ excited state contribution to GA(0) = gA in leading loop
order HBChPT.
[Hansen,1610.03843] Nπ excited state contribution to gA, LO ChPT with finite volume
interaction corrections a la Lellouch-Lüscher.
[Bär,1606.09385] BChPT: leading loop order gA.

Form factors:
[Meyer,1811.03360] Nπ contributions to GA(Q2), G̃P(Q2) and GP(Q2) computed to tree-level
in ChPT.
[Bär,1906.03652,1812.09191] Nπ contributions to GA(Q2), G̃P(Q2) and GP(Q2) computed in
leading loop order BChPT.

Limitations to ChPT approach: p and mπ should be small. Applies to large
source-sink separation (not always accessible due to deterioration of the signal). When
using spatially extended sources ⟨r 2⟩1/2

smear ≪ 1/mπ.



Excited state contamination in ChPT

Ground state (single particle): N(−q⃗) → N (⃗0).

Axial and pseudoscalar currents can couple to pions: dominant contributions come
from tree-level diagrams, where the pion takes the momentum of the current:

O

O O O

Top (ground state), bottom middle (ground+excited states), rest (excited states).

Channels J = P, A4 and Ai ∥ q⃗: large N (⃗0)π(−q⃗) → N (⃗0) and
N(−q⃗) → N(−q⃗)π(q⃗) contributions.

Only extraction of GP and G̃P affected.

J = Ai ∥ q⃗: correction to G̃P(t, τ = t/2) ∼ −e−Eπ (⃗q)t/2 for small q⃗. [Bär,1906.03652]

No enhanced excited state contributions to GA.
→ (moderate) loop contributions to Ai ⊥ q⃗i .

No enhanced contributions in the forward limit. Consistent with the lattice data.



Excited state fits accounting for Nπ states
[Jang et al.,1905.06470]
Expected first excitation: p⃗ =
n⃗ 2π

L
Sink: N(−p⃗)π(⃗p)
Source: N(0)π(⃗p)

Fit to C3pt : first fix excited
state energy from A4 com-
ponent. Additional excited
states also considered. See also
[PNDME,2305.11330].
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[RQCD,1911.13150]: use tree-level BChPT to determine form of Nπ contributions. No constraints on the
ground state contributions.

CΓα,Aµ
3pt (⃗p′

, p⃗, tf , τ) =

√
Z⃗p′ Z⃗p

2E⃗p′ E⃗p
e−E⃗p′ (tf −τ)e−E⃗p τ ×[

BΓi ,Aµ (⃗p′
, p⃗) +

E⃗p′

Eπ

rµ
+ c p⃗′

qαe
−∆ENπ

p⃗′ (t−τ)
+

E⃗p

Eπ

rµ
−c p⃗qαe

−∆ENπ
p⃗ (τ)

+ . . .

]
Energy gaps ∆ENπ

p⃗′ and ∆ENπ
p⃗ fixed using priors in the fit.

Second excited state included in the fit with the standard form.

Nπ terms for CΓα,P
3pt obtained from the PCAC relation.

Simultaneous fit of C3pt for the Aµ and P currents gives a reasonable χ2/dof .



Recent works with mπ → mphys
π , V → ∞, a → 0 limits

[ETMC,2309.05774] Nf = 2 + 1 + 1, a = 0.08, 0.07, 0.06 fm, mπ ∼ mphys
π , Lmπ = 3.6 − 3.9.

Simultaneous fits to C2pt and C3pt for the Aµ and P currents. One and two excited state
contributions explored (final results from the one excited state fit difference included in the
systematics).

Q2 parameterisation and a → 0 limit:

Gz (Q2, a2) = g(a2)
kmax∑
k=0

ck(a2)zk(Q2) z(t, tcut , t0) =
√

tcut − t −
√

tcut − t0√
tcut − t +

√
tcut − t0

t = q2 = −Q2, tcut = 9m2
π, kmax = 3, t0 = 0.

Coefficients constrained by restrictions that expansion converges smoothly to zero as
Q2 → ∞ following [Lee et al.,1505.01489], [Meyer et al.,1603.03048].

For G̃P and G ′
P = 4mN/m2

π × mqGP(Q2) use: Gwpole(Q2, a2) = 1
Q2+m2

π+ba2 Gz(Q2, a2)
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Recent works with mπ → mphys
π , V → ∞, a → 0 limits

[RQCD,1911.13150]: Nf = 2 + 1 O(a)-improved Wilson ensembles (CLS), 5 lattice spacings,
a = 0.09 − 0.04 fm, mπ = 130 − 410 MeV, Lmphys

π = 3.5 − 4.1.

Simultaneous fit to J = Aµ and P C3pt/C2pt functions (two excited states, first set to ENπ).
Four source-sink separations t = 0.7 − 1.2 fm.
Combined mq, V , a2 and Q2 (z-expansion) fit of GA, G̃P , GP (after testing in the
continuum limit, the PCAC relation imposed).
Constraints on coefficients from asymptotic behaviour GA ∝ 1/Q4 etc. and the PCAC
relation. kmax = 4 + 3.

[PNDME,2305.11330]: clover fermions on MILC Nf = 2 + 1 + 1 ensembles, mπ = 128 − 312,
mphys

π L = 3.9, 4 lattice spacings, a = 0.15 − 0.06 fm

Simultaneous fits to J = Aµ and P C3pt and C2pt functions (two/three excited states).
Three-five source-sink separations t = 0.8 − 1.4 fm.
Followed by a three-step procedure:
Q2 fit to GA with kmax = 2.
For 11 reference values of Q2, extrapolation with respect to mq, V and a.
At the physical point: fit to 11 Q2 values with kmax = 2. Similarly, for G̃P and GP .



Recent works with mπ → mphys
π , V → ∞, a → 0 limits

[Mainz,2207.03440]: Nf = 2 + 1 O(a)-improved Wilson ensembles (CLS),
4 lattice spacings, a = 0.09 − 0.05 fm, mπ = 130 − 350 MeV, Lmphys

π = 4.0.

GA only.

Combined excited state and Q2 fit with kmax = 2.

t = 0.2 − 1.4 fm, 9-17 source-sink separations with ground state fits to the summed
ratio

∑
τ

C3pt(t, τ)/C2pt(t) (summation method [Maiani et al.,Nucl. Phys. B 239 (1987)])

Dependence of the coefficients on mq, V and a2 is fitted.



Recent results for GA(Q2)
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Figures from [Gupta,Lattice 23], νD fit from [Meyer et al.,1603.03048].

Also shown: [NME,2103.05599] clover fermions on MILC Nf = 2 + 1 + 1 HISQ ensembles, no
mπ → mphys

π , V → ∞, a → 0 limit. Fit mπ = 170 − 285 MeV, a = 0.07 − 0.13 fm data
together. Simultaneous fits to J = Aµ and P C3pt and C2pt functions (one/three excited states). Four-six source-sink separations

t = 0.8 − 1.5 fm.



Recent results for GA(Q2)
[Meyer,2301.04616]
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[CalLat,2111.06333], domain wall fermions on MILC Nf = 2 + 1 + 1 HISQ ensembles,
mπ = 130 MeV, Lmπ = 3.9, a = 0.12 fm. 10 source-sink separations, t = 0.3 − 1.4 fm, 3 excited
states fitted to C3pt /C2pt .
[PACS,2311.10345], O(a) improved-Wilson Nf = 2 + 1 ensembles, mπ = 138 MeV,
a = 0.06 and 0.09 fm. 3 source-sink separations, t = 0.82 − 1.2 fm. Ground state fits to ratios.



Recent results for GA(Q2)
[Tomalak et al.,2307.14920]

deuterium fit
hydrogen fit
PNDME

G
A

 (Q
2 )

0

0.5

1.0

Q2 [GeV2]
0 0.5 1.0 1.5 2.0

Lattice results are more consistent with MINERvA data.
[MINERva,Nature 614, 48 (2023)]: antineutrino scattering off hydrogen atoms inside
hydrocarbon molecules. Monte-Carlo simulations used to remove antineutrino-carbon
scattering.



Axial radius: ⟨r2⟩A [fm2]
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Lattice results and fits to experiment obtained using the z-expansion.



G̃P at the muon capture point: g∗
P

G̃P not well known from expt: muon capture µ−p → νµn gives

g∗
P = mµ

2mN
G̃P(Q2 = 0.88 m2

µ) = 8.06(55) [MuCap,1210.6545]

Compatible with pion pole dominance.

[RQCD,1911.13150]
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Recap: axial form factors

⋆ Many new lattice studies of the axial form factor, with a focus on increasing
precision and controlling all the main systematics. General agreement between
results.

⋆ Constraints, such as the PCAC relation on the form factors, provide an important
check on the results. Lattice results now show consistency with the PCAC relation
in the continuum limit.

⋆ There is very significant excited state contamination of the three-point functions
from Nπ states.

⋆ Extraction of G̃P and GP are mostly affected, while excited state contamination in
the extraction of GA is “moderate”. Consistent with LO ChPT analysis.

⋆ Size of the excited state contamination when extracting GA depends on details of
the analysis (choice of nucleon interpolator N , source-sink separations for C3pt ,
mπ, L, . . .). Still needs to be considered carefully, for precision results.

⋆ Lattice results now reproduce the expt. value for g∗
P . Pion pole dominance in G̃P

is also found to hold on a few percent level.



Toward N to Nπ matrix elements

Neutrino scattering above the pion-production threshold (Eν ∼ 1 − 10 GeV):

⋆ N → Nπ transition matrix elements: N → ∆(1232), N∗ resonances for vector and
axial currents.

⋆ Straightforward if mπ is large enough for the resonance to be stable, e.g.
[ETMC,0710.4621,0706.3011] (N → ∆), [Lin, Cohen,1108.2528] (N → Roper) and earlier
Nf = 0 works.

⋆ N → resonance requires finite volume formalism for Nπ → Nπ scattering as well as
N → Nπ [Bernard et al.,1205.4642], [Agadjanov et al.,1405.3476], [Briceno, Hansen,1502.04314].

⋆ Elastic Nπ scattering in I = 1/2 and 3/2, see e.g. [Lang et al.,1610.01422], [Anderson et
al.,1710.01557], [Bulava et al.,2208.03867], [ETMC,2307.12846].



Toward N to Nπ matrix elements

Computing N → Nπ matrix elements:

[Barca et al.,2211.12278] Nf = 3 (mℓ = ms) mπ = 420 MeV, a = 0.098 fm.

[ETMC,2312.15737] Nf = 2 + 1 + 1 mπ = 346 MeV, a = 0.095 fm, Nf = 2
mπ = 131 MeV, a = 0.094 fm.

⋆ First step: evaluating GEVP improved N → N axial form factors with reduced
excited state contributions.

⋆ Next step: N → Nπ matrix elements from the GEVP.



GEVP for the two-point functions [Barca et al.,2211.12278]

Matrix of correlation functions: Cij (p⃗, t) = ⟨Oi (p⃗, t)Oj (p⃗, 0)⟩, Oi ∈ {O3q , O5q}.

O3q,5q must be projected onto the relevant lattice irreducible representation to give spin 1/2:
(p⃗ = 0⃗) G+

1 of Oh , (p⃗ ̸= 0⃗) G1 of the little group C4v .

Similarly, for isospin:
e.g. for the neutron (I = −Iz = 1/2) On

5q = − 1√
3
On

3qOπ0
q̄q +

√
2
3 Op

3qOπ−
q̄q

GEVP: C(t)V (t, t0) = C(t0)V (t, t0)Λ(t, t0),
V (t, t0) = (v1(t, t0), v2(t, t0))

Λ(t, t0) = diag(λ1(t, t0), λ2(t, t0)),
λα(t, t0) ≈ dα(t0)e−Eαt

Setup: t0 = 2a, |⃗p| = 2π/L
(top) O5q (⃗0) = O3q(p⃗)Oq̄q(−p⃗)
(bottom) O5q(p⃗) = O3q (⃗0)Oq̄q(p⃗)
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Note E2 ≈ EN + Eπ and v 1
i O i |Ω⟩ ≈ |N⟩, v 2

i O i |Ω⟩ ≈ |Nπ⟩.

Little Nπ in O3q|Ω⟩ ⇒ Nπ not visible in ⟨O3q(p⃗, t)O3q(p⃗, 0)⟩.



GEVP-projected correlation functions

Use eigenvectors v 1,2 ∼ vN,Nπ to obtain GEVP-improved two- and three-point
functions for α, β ∈ {N, Nπ}:

Cα
2pt(p⃗, t) = vα

i (p⃗, t; t0)Cij(p⃗, t)vα
j (p⃗, t; t0)

Cα,β
3pt (p⃗, t, q⃗, τ ; Pk ; J ) = vα

i (p⃗′, t; t0)C3pt
ij (p⃗, t, q⃗, τ ; Pk ; J )vβ

j (p⃗, t; t0)

|vN
2 | and |vNπ

1 | are small. However, there is an enhancement of N J→ Nπ.

Neglect ∼ |vN
2 |2 (small)2 terms, i.e. ⟨O5qJ O5q⟩ is not computed.

Improved nucleon matrix elements can be obtained from

Rk,J (p⃗′, t; q⃗, τ )NN =
Ck,J

3pt (p⃗′, t; q⃗, τ)NN

C2pt(p′, t)N

√
C2pt(p′, τ)N C2pt(p′, t)N C2pt(p, t − τ)N

C2pt(p, τ)N C2pt(p, t)N C2pt(p′, t − τ)N .



Wick contractions p → pπ−
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ū(0)

p

C-like

u(x)
u(x)
d(x)

p

d̄(z)
u(z)ū(y)
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p → nπ0: A, B, C diagrams but no D diagram.
Largest contribution from the D diagram: we find D diagram
≈ CN

2pt(p⃗′
N , t; p⃗, 0) × Cπ

2pt(p⃗′
π, t; q⃗, τ)

J =Aµ∝ δp⃗′
N ,⃗pδp⃗′

π q⃗qµe−EN te−Eπ(t−τ).

Two-point functions: same topologies, current at τ −→ smeared pion interpolator at τ = 0.
A, B, C diagrams evaluated using the sequential source method. D diagram, one-end
trick [Foster, Michael,hep-lat/9810021] for the pion part.



Rk,J (p⃗′, t; q⃗, τ)NN with momentum transfer
Set up:

Source (left): p⃗ = −q⃗ = êz2π/L, sink (right): p⃗′ = 0.

Source: most excitations removed, sink (at rest): some excitations remain.

RA4 ∝ GA, G̃P + . . . RP ∝ GP + . . .
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Blue: Large contributions from ⟨N (⃗0)π(êz)|A4|N (⃗0)⟩ and ⟨N(êz)|A4|N(êz)π(−êz)⟩
due to the D diagram etc.

Green bands: ground state matrix element obtained from fit M2, see below.



PCAC and PPD relations

Nf = 3 (mℓ = ms) mπ = 420 MeV, a = 0.098 fm

GEVP-improved N → N form factors consistent with PCAC and PPD relations up to
around 10%.

Note: the axial form factor GA does not change significantly, see ETMC results below.
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Fitting analyses of ⟨O3qJ O3q⟩ correlation functions also give consistent results:
M1: fit used in [RQCD,1911.13150], guided by ChPT with mass gap to 1st excited state fixed
with a prior to ENπ .
M2: combined one excited state fit to three- to two-point function ratios for J = Aµ and P,
similar to [Jang et al.,1905.06470] and [ETMC,2309.05774].



N → Nπ transition matrix elements from the GEVP

Setup: q⃗ = 0⃗, p⃗′ = p⃗ = êz × 2π/L, Q2 = m2
π.

Only moderate excited state contributions to RP,A4 (p⃗, t; 0⃗, τ)NπN .
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Note that the Lorentz decomposition of the N → Nπ matrix elements is different to
that for N → N.



GEVP improved form factors from ETMC

[ETMC,2312.15737] Effective energies of eigenvalues and eigenvector for the lowest
eigenenergy.
(Left) Nf = 2 + 1 + 1, mπ = 346 MeV, a = 0.095 fm
(Right) Nf = 2, mπ = 131 MeV, a = 0.094 fm.
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Omitted: additional diagrams involving pion loops arising from the breaking of isospin symmetry with
twisted mass fermions. Also ⟨O5qJ O5q⟩ correlation functions.



GEVP improved form factors from ETMC

Forward limit: no signifiant change in the ex-
cited state contributions when using GEVP im-
proved three-point functions to extract gA

With momentum transfer: |⃗q| = 2π/L
Left: mπ = 346 MeV, Q2 = 0.283 GeV2

Right: mπ = 131 MeV, Q2 = 0.074 GeV2
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Summary and outlook

⋆ First steps towards computing N → Nπ matrix elements relevant for N → ∆,
. . . transitions have been made.

⋆ Large Nπ contributions to the axial and pseudoscalar three-point functions can be
removed via the GEVP for mπ ∼ 420 MeV down to 131 MeV.

⋆ Fitting analyses to ⟨O3qJ O3q⟩ correlation functions that account for Nπ
contributions agree with GEVP results for G̃P and GP . (Limited test at
mπ = 420 MeV).

⋆ No significant change in gA.

More work to be done:

⋆ N → Nπ: extended basis of operators for range of p⃗, implement the finite volume
formalism.

⋆ GA: how to deal with the “moderate” excited state contamination? Control over
other systematics.

⋆ . . .


