

Chris Sachrajda University of Southampton

Lattice@CERN 2024 18th July 2024

Radiative Decays

Outline of Talk

- Introductory Remarks 1.
- 2. $P \rightarrow \ell \nu_{\ell} \gamma$ Radiative Decays
- 3. $\bar{B}_s \rightarrow \mu^+ \mu^- \gamma$ at large q^2
 - Contributions which we are able to compete precisely
 - Contributions which we can only calculate approximately, but adequately (\bar{F}_T)
 - Contributions which we are not yet able to compute on the lattice, but are striving to do so (charming penguins)

 $(\mathbf{F}_{\mathbf{V}}, F_A, F_{TV}, F_{TA})$

4. $P \rightarrow \ell \nu_{\ell} \ \ell'^+ \ell'^-$ Radiative Decays

1. Introduction

• Our computations of radiative decays started with our major study of QED corrections to leptonic decays of pseudoscalar mesons.

$$\Gamma(\Delta E_{\gamma}) = \Gamma_0(P \to \ell \bar{\nu}_{\ell}) + \Gamma_1(P \to \ell \bar{\nu}_{\ell} \gamma) = \Gamma_0 + \int_0^{2\Delta E_{\gamma}/m_P} \frac{d\Gamma_1}{dx_{\gamma}} \left(x_{\gamma} = \frac{2E_{\gamma}}{m_P} \right)$$

$$= \lim_{L \to \infty} \left[\Gamma_0(L) - \Gamma_0^{\text{pt}}(\mu_{\gamma}, L) \right] + \lim_{\mu_{\gamma} \to 0} \left[\Gamma_0^{\text{pt}}(\mu_{\gamma}) + \Gamma_1^{\text{pt}}(\Delta E_{\gamma}, \mu_{\gamma}) \right] + \Gamma_1^{\text{SD}}(\Delta E_{\gamma}) + \Gamma_1^{\text{INT}}(\Delta E_{\gamma})$$

• pt = "pointlike", SD = "Structure Dependent", INT = "Interference"

- Initially we suggested ΔE_{γ} to be small ($\simeq 20 \text{ MeV}$) so that Γ_1^{SD} and Γ_1^{INT} can be neglected.
 - Applicable for kaons and pions.
- Subsequently we have been computing Γ_1 for larger values of ΔE_{γ} , including the SD and INT contributions.

QED Corrections to Hadronic Processes in Lattice QCD, N.Carrasco, V.Lubicz, G.Martinelli, CTS, N.Tantalo, C.Tarantino and M.Testa, arXiv:1502.00257

First lattice calculation of radiative leptonic decay rates of pseudoscalar mesons, A.Desiderio et al., arXiv:2006.05358

• This allows the evaluation of $O(\alpha_{em})$ corrections to leptonic decays for all stable pseudoscalar mesons.

• Non-perturbative contribution to $P \to \ell \bar{\nu}_{\ell} \gamma$ is encoded in:

$$H_W^{\alpha r}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) H_W^{\alpha \mu}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \int d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^{\alpha}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^r(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, \mathbf{T} \, \langle 0 \, | \, j_W^r(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \, d^4 y \, e^{ik \cdot y} \, d^4 y \, e^{ik \cdot y} \, d^4 y \, e^{ik \cdot y} \, d^4 y \, d^4$$

$$=\epsilon_{\mu}^{r}(k)\left\{\frac{H_{1}}{m_{K}}\left[k^{2}g^{\mu\alpha}-k^{\mu}k^{\alpha}\right]+\frac{H_{2}}{m_{K}}\frac{\left[(p\cdot k-k^{2})k^{\mu}-k^{2}(p-k)^{\mu}\right](p-k)^{\alpha}}{(p-k)^{2}-m_{K}^{2}}\right.\\\left.-i\frac{F_{V}}{m_{K}}\epsilon^{\mu\alpha\gamma\beta}k_{\gamma}p_{\beta}+\frac{F_{A}}{m_{K}}\left[(p\cdot k-k^{2})g^{\mu\alpha}-(p-k)^{\mu}k^{\alpha}\right]+f_{P}\left[g^{\mu\alpha}-\frac{(2p-k)^{\mu}(p-k)^{\alpha}}{(p-k)^{2}-m_{K}^{2}}\right]\right\}$$

$$=\epsilon_{\mu}^{r}(k)\left\{\frac{H_{1}}{m_{K}}\left[k^{2}g^{\mu\alpha}-k^{\mu}k^{\alpha}\right]+\frac{H_{2}}{m_{K}}\frac{\left[(p\cdot k-k^{2})k^{\mu}-k^{2}(p-k)^{\mu}\right](p-k)^{\alpha}}{(p-k)^{2}-m_{K}^{2}}\right.\\\left.-i\frac{F_{V}}{m_{K}}\epsilon^{\mu\alpha\gamma\beta}k_{\gamma}p_{\beta}+\frac{F_{A}}{m_{K}}\left[(p\cdot k-k^{2})g^{\mu\alpha}-(p-k)^{\mu}k^{\alpha}\right]+f_{P}\left[g^{\mu\alpha}-\frac{(2p-k)^{\mu}(p-k)^{\alpha}}{(p-k)^{2}-m_{K}^{2}}\right]\right\}$$

- For decays into a real photon, $k^2 = 0$ and $\varepsilon \cdot k = 0$, only the decay constant f_K and the vector and axial form factors $F_V(x_{\gamma})$ and $F_A(x_{\gamma})$ are needed to specify the amplitude $(x_{\gamma} = 2p \cdot k/m_P^2, 0 < x_{\gamma} < 1 - m_\ell^2/m_P^2)$.
- In phenomenology $F^{\pm} \equiv F_V \pm F_A$ are more natural combinations.

2. P $\rightarrow \ell \nu_{\ell} \gamma$ radiative decays - the form factors.

 $(0)j_{\rm em}^{\mu}(y) | P(\mathbf{p}) \rangle$

Minkowski → Euclidean Continuation

- In this case the photon is real, and so there is also no on-shell state which can propagate between $O_W(t_W)$ and $J_{em}(t_{em})$ where $t_{em} > t_W$.
- As expected, the Minkowski-Euclidean continuation is therefore straightforward.
- This is not the case in general when the emitted photon is virtual.

- We assume that *P* is the lightest particle with quantum numbers $q_1 \bar{q}_2$.
- The decay $P \rightarrow |n, \gamma\rangle$, where $|n\rangle$ also has quantum numbers $q_1\bar{q}_2$, is therefore not possible.
- The states propagating between J_{em} and O_W can therefore not be on-shell.

Computing the Form Factors

$$H_W^{\alpha r}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) H_W^{\alpha \mu}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \int d^4 y \, e^{ik \cdot y} \, T\langle 0 \, | \, j_W^{\alpha}(0) \, j_{\text{em}}^{\mu}(y) \, | \, P(\mathbf{p}) \rangle$$

• Euclidean Correlation Functions:

$$C_W^{\alpha r}(t; \mathbf{k}, \mathbf{p}) = -i\epsilon_{\mu}^r(k) \int d^4y \int d^3x \ \epsilon$$

• $H_W^{\alpha r}(k, \mathbf{p})$ can be obtained from the large *t* limit of the correlation function:

$$R_W^{\alpha r}(t; k, \mathbf{p}) \equiv \frac{1}{e^{-(E - E_{\gamma})t}}$$

where
$$E = \sqrt{m_P^2 + \mathbf{p}^2}$$
.

 $e^{t_{y}E_{\gamma}-i\mathbf{k}\cdot\mathbf{y}}e^{i\mathbf{p}\cdot\mathbf{x}} T\langle 0 | j_{W}^{\alpha}(t,\mathbf{0}) j_{em}^{\mu}(y) \phi_{P}^{\dagger}(0,\mathbf{x}) | 0 \rangle$

 $\frac{2E}{\sqrt[p]{t}{P(\mathbf{p}) | \phi_P^{\dagger}(0) | 0}} C_W^{\alpha r}(t; k, \mathbf{p}) + \cdots$

Choice of Kinematics

 $\epsilon^1_\mu = \Big(0,$ • For the polarisation vectors we choose,

With these choices ullet

$$R_A(t) \equiv \frac{1}{2m_P} \sum_{r=1,2} \sum_{j=1,2} \frac{R^{jr}(t;k,\mathbf{p})}{\epsilon_j^r} \to x_\gamma F_A(x_\gamma) + \frac{2f_P}{m_P}$$

• Thus in principle the two form factors, F_V and F_A can be determined.

• We use twisted boundary conditions to introduce momenta,

$$\mathbf{p} = \frac{2\pi}{L} \left(\theta_0 - \theta_s\right); \qquad \mathbf{k} = \frac{2\pi}{L} \left(\theta_0 - \theta_t\right),$$

with both **p** and **k** in the *z* direction

$$\mathbf{p} = (0, 0, |\mathbf{p}|);$$
 $\mathbf{k} = (0, 0, E_{\gamma}).$

$$-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0$$
, $\epsilon_{\mu}^{2} = \left(0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right), \quad \epsilon_{\mu}^{3} = \epsilon_{\mu}^{0} =$

$$R_{V}(t) \equiv \frac{m_{P}}{4} \sum_{r=1,2} \sum_{j=1,2} \frac{R_{V}^{jr}(t;k,\mathbf{p})}{i(E_{\gamma}\epsilon^{\mathbf{r}} \times \mathbf{p} - E\epsilon^{\mathbf{r}} \times \mathbf{k})^{j}} \to F_{V}(t)$$

7

$\mathbf{P} \rightarrow \ell \nu_{e} \gamma$ radiative decays - the form factors

- We have computed $F_V(x_{\gamma})$ and $F_A(x_{\gamma})$ for $\pi, K, D_{(s)}$ mesons.
 - The computations were performed on 11 ETMC $N_f = 2 + 1 + 1$ ensembles with 0.062 fm < a <0.089 fm and 227 MeV< m_{π} <441 MeV and a range of volumes.
 - Computations are performed in the electroquenched approximation.
- Our data is fully consistent with a parametrisation of the form : $F^{P}_{A V}(x_{\nu}) = C^{P}_{A V} + D^{P}_{A V}x_{\nu}.$
- Other parametrisation were also tried and presented.
- Values of the parameters are presented in the paper.
- Below we compare our results to the experimental data and also to LO ChPT:

$$F_A(x_{\gamma}) = \frac{8m_P}{f_P} (L_9^r + L_{10}^r) \simeq \frac{8m_P}{f_P} (0.00)$$

A.Desiderio et al. arXiv:2006.05358

(0017), $F_V(x_{\gamma}) = \frac{m_P}{4\pi^2 f_p}$.

Non-perturbative subtractions of IR divergent discretisation effects

 $m_{D_s} \sim 2027$ MeV, a = 0.0619 fm

• The combination $F_A(x_{\gamma}) + 2f_p/(m_P x_{\gamma})$ is dominated by $2f_p/(m_P x_{\gamma})$, particularly at small x_{γ} .

• We rewrite the behaviour of the axial estimator to include discretisation effects

$$\frac{A(t)}{x_{\gamma}} \rightarrow \left[F_A(x_{\gamma}) + a^2 \Delta F_A(x_{\gamma})\right] + \frac{2}{m_P x_{\gamma}} \left(f_P + a^2 \Delta f_P\right) + \cdots$$

• f_P obtained from two-point functions $\neq (f_P + a^2 \Delta f_P) \Rightarrow$ incomplete cancelation of the infrared divergent term.

• We introduce the modified estimator

$$\bar{R}_{A}(t) = e^{-tE_{\gamma}} \frac{\sum_{r=1,2} \sum_{j=1,2} \frac{R^{jr}(t;k,\mathbf{p})}{\epsilon_{j}^{r}}}{\sum_{r=1,2} \sum_{j=1,2} \frac{R^{jr}(t;0,\mathbf{p})}{\epsilon_{j}^{r}}} - 1$$

 $\frac{2f_P}{-}\bar{R}_A(t) \to F_A^{\text{NPsub}}(x_{\gamma}) = F_A(x_{\gamma}) + O(a^2).$ $m_P X_{\gamma}$

9

Non-perturbative subtractions of IR divergent discretisation effects (cont.)

a = 0.0815 fm

• Illustrative example: $F_A(x_{\gamma})$ for the D_s meson.

- Blue points $F_A(x_{\gamma})$ obtained by performing the subtraction using the value of f_P obtained from two-point correlation functions.
- Red Points Discretisation effects in f_P fitted and subtracted.
- Black Points $F_A^{\text{NPsub}}(x_{\gamma})$

Comparison with Experimental Data

R.Frezzotti, M.Garofalo, V.Lubicz, G.Martinelli, CTS, F.Sanfilippo, S.Simula and N.Tantalo, arXiv:2012.02120

- $K \rightarrow e\nu_e \gamma$ KLOE, arXiv:0907.3594

• The different experiments introduce different cuts on E_{γ} , E_{ℓ} and $\cos \theta_{\ell\gamma}$, resulting in sensitivities to different form factors.

J-PARC E36, arXiv:2107.03583

• $K \rightarrow \mu \nu_{\mu} \gamma$ E787@BNL AGS, hep-ex/0003019 ISTRA+ @U-79 Protvino, arXiv:1005.3517 OKA@U-79 Protvino, arXiv:1904.10078

• $\pi \rightarrow e\nu_{e}\gamma$ PIBETA@ π E1 beam line PSI, arXiv:0804.1815

Comparison with Experimental Data – Kaon Decays

- Good Agreement with KLOE
- Significant tensions with $K \rightarrow \mu \nu_{\mu} \gamma$ experiments
- Unable to find a set of phenomenological form factors to account for all the data.
- NA62 will soon have the most precise results for $K \rightarrow e \nu_e \gamma$ decay rates.
- Is it conceivable that we have LFU-violation here?

12

Comparing JPARC and KLOE's Results

E_{γ} (MeV)	pe (MeV)	KLOE [10]	J-PARC E36[11]	lattice [9]	
10 - 250	> 200	$1.483 \pm 0.066 \pm 0.013$	$1.85 \pm 0.11 \pm 0.07$	1.743 ± 0.212	1

(Units of 10^{-5})

S.Simula et al., PoS Lattice 2021 (2022) 631

J-PARC E36 Collaboration, A.Kobayashi et al., arXiv:2212.10702

- E36 Result was subsequently updated to $(1.98 \pm 0.11) \times 10^{-5}$ (as in the figure above).

Comparison with Experimental Data – Pion Decays

• It is also difficult to understand the PIBETA data in some kinematical regions.

 $\theta_{e\gamma} > 40^{\circ}$

- A: $E_{\gamma} > 50$ MeV and $E_{e} > 50$ MeV
- B: $E_{\gamma} > 50$ MeV and $E_{e} > 10$ MeV
- C: $E_{\gamma} > 10$ MeV and $E_{e} > 50$ MeV
- D: $E_{\gamma} > 10$ MeV and $E_e > m_e$

- In the paper discussed above, we have also computed the form factors for the D_s meson but only for $E_{\gamma} < 0.4$ GeV.
- In a subsequent paper we have computed them over the full kinematic range. R.Frezzotti, G.Gagliardi, V.Lubicz, G.Martinelli, F.Mazzetti, CTS, F.Sanfilippo, S.Simula, and N.Tantalo, arXiv:2306.05904

- The calculations were performed using four ETMC ensembles with $a \in [0.058, 0.09]$ fm, three of which have approximately physical pion masses and the coarsest has $m_{\pi} = 174.5$ MeV.

 - Sea Quarks Wilson Clover TM Fermions and maximal twist Valence Quarks - Osterwalder-Seiler Fermions
 - Physical m_s and m_c .

D_s Decays

XY	$F_{\mathcal{A}}$	$\Delta F_{\mathcal{A}}$	F_V	ΔF_V
0.1	0.0813	0.0054	-0.1048	0.0097
0.2	0.0715	0.0041	-0.0819	0.0028
0.3	0.0641	0.0033	-0.0643	0.0013
0.4	0.0582	0.0028	-0.0519	0.0008
0.5	0.0534	0.0021	-0.0431	0.0008
0.6	0.0495	0.0024	-0.0363	0.0008
0.7	0.0463	0.0031	-0.0316	0.0007
0.8	0.0432	0.0032	-0.0291	0.0010
0.9	0.0433	0.0083	-0.0297	0.0056
1.0	0.0489	0.0229	-0.0315	0.0152

 F_W

- Appendix A for an explanation of why the errors grow at large x_{γ} .
- Discussion of method to reduce such errors studied in

D.Giusti et al., arXiv:2302.01298

$D_s \rightarrow \ell \nu_{\ell} \gamma$ - Results for the Form Factors

• Our Results for the form factors are well represented by the following VMD-inspired ansatz:

$$(x_{\gamma}) = \frac{C_W}{\sqrt{R_W^2 + x_{\gamma}^2/4} \left(\sqrt{R_W^2 + x_{\gamma}^2/4} + \frac{x_{\gamma}}{2} - 1\right)} + B_W$$

where W = A, V and R_W , B_W and C_W are fit parameters.

• For single pole dominance $R_W = m_{res}/m_{D_s}$ and $B_W = 0$.

• For F_V we obtain stable results for C_V , and hence deduce the coupling $g_{D_s^*D_s\gamma}$ using $m_{D*} f_{D*} g_{I}$

$$C_V = -\frac{m_{D_S^*} J_{D_S^*} g_{D_S^* D_s \gamma}}{2m_{D_s}}$$

and $f_{D_s^*} = 268.6(6.6)$ MeV.

ETM Collaboration, V.Lubicz et al., arXiv 1707.04529

Cancellation in $F_V = F_V^{(c)} + F_V^{(s)}$

- There is a significant partial cancellation in F_V between the contributions from the emission of the photon from the strange and charm quarks.
- This had been observed previously by the HPQCD collaboration in their computation of the $D_s^* \rightarrow D_s \gamma$ decay amplitude. HPQCD Collaboration , arXiv:1312.5264

	LCSR	HPQCD	This wor
$g_{D_s^*D_s\gamma}$	0.60(19)	0.10(2)	0.118(13)
$g^{(s)}_{D^*_s D_s \gamma}$	1.0	0.50(3)	0.532(15)
$g^{(c)}_{D_s^*D_s\gamma}$	-0.4	-0.40(2)	-0.415(16
$g^{(s)}_{D_{s}^{*}D_{s}\gamma}/g^{(c)}_{D_{s}^{*}D_{s}\gamma}$	-2.5	-1.25(10)	-1.282(6)

• $g_{D_s^*D_{s^{\gamma}}}$ in GeV⁻¹

LCSR = B.Pullin and R.Zwicky, arXiv:2106.13617

$D_s \rightarrow \ell \nu_{\ell} \gamma - Conclusions$

- We find $B(D_s \rightarrow e\nu_e \gamma) = 4.4(3) \times 10^{-6}$ for $E_{\gamma} > 10$ MeV in the rest frame of the D_s meson. This is consistent with the corresponding bound $B(D_s \rightarrow e\nu_{\rho}\gamma) < 1.3 \times 10^{-4}$ at 90% confidence level from BESIII (quoted in PDG).
- Even for photon energies as low as 10 MeV, we find that the Structure Dependent contribution dominates the branching fraction because of the strong helicity suppression of the point-like term by a factor of $(m_e/m_D)^2$. • Such radiative decays therefore provide excellent test of the SM and Beyond.
- We use our results to test the validity and applicability of model dependent calculations.
 - LCSR calculations at NLO fail to reproduce our results for the form factors.
 - Pure VMD parametrisation does not always reproduce the momentum dependence of the form factors.
 - There are also quark model predictions for the branching ratio in the range $10^{-3} 10^{-5}$.
- B.Pullin and R.Zwicky, arXiv:2106.13617, J.Lyon and R.Zwicky, arXiv:1210.6546

3. The $B_s \rightarrow \mu^+ \mu^- \gamma$ Decay Rate at Large q^2

- I use this interesting FCNC process to illustrate the elements which we are able to compute and to highlight the important theoretical issues which we are still working to resolve.
 - Preview: We can compute the dominant contribution, but are working to solve the problems which will enable an improved precision.

R.Frezzotti, G.Gagliardi, V.Lubicz, G.Martinelli, CTS, F.Sanfilippo, S.Simula, N.Tantalo, arXiv:2402.03262

$$\frac{2}{B_s}(1-x_{\gamma}), \qquad 0 \le x_{\gamma} \le 1 - \frac{4m_{\mu}^2}{m_{B_s}^2}$$

• LHCb: $B(B_s \to \mu^+ \mu^- \gamma) |_{\sqrt{q^2} > 4.9 \,\text{GeV}} < 2.0 \times 10^{-9}$, arXiv:2108.09283/4

From the May/June 2024 issue of the Cern Courier

11100 LHCb targets rare radiative decay

Rare radiative b-hadron decays are powerful probes of the Standard Model (SM) sensitive to small deviations caused by potential new physics in virtual loops. One such process is the decay of $B_s^{\circ} \rightarrow \mu^+ \mu^$ γ. The dimuon decay of the B^o_s meson is known to be extremely rare and has been measured with unprecedented precision by LHCb and CMS. While performing this measurement, LHCb also studied the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay, partially reconstructed due to the missing photon, as a background component of the $B_s^{\circ} \rightarrow \mu^+\mu^$ process and set the first upper limit on its branching fraction to 2.0 × 10⁻⁹ at 95% CL (red arrow in figure 1). However, this search was limited to the high-dimuonmass region, whereas several theoretical extensions of the SM could manifest

Fig. 1. 95% confidence limits on differential branching fractions for $B_s^\circ \rightarrow \mu^+ \mu^- \gamma$ in intervals of dimuon mass squared (q²). The shaded boxes illustrate SM predictions for the process,

themselves in lower regions of the dimuon-mass spectrum. Reconstructing the photon is therefore essential to explore the spectrum thoroughly and probe a wide range of physics scenarios.

The LHCb collaboration now reports the first search for the $B_s^0 \rightarrow \mu^+ \mu^- \gamma$ decay with a reconstructed photon, exploring the full dimuon mass spectrum. Photon reconstruction poses additional experimental challenges, such as degrading the mass resolution of the B^o_s candidate and introducing additional background contributions. To cope with this ambitious search, machine-learning algorithms and new variables have been specifically designed with the aim of discriminating the signal among background processes with similar signatures. The analysis ▷

The Effective $b \rightarrow s$ Hamiltonian

$$\mathscr{H}_{\text{eff}}^{b \to s} = 2\sqrt{2}G_F V_{tb}V_{ts}^* \left[\sum_{i=1,2}^{2} C_i O_i^c + \sum_{i=3}^{6} C_i O_i + \frac{\alpha_{\text{em}}}{4\pi} \sum_{i=7}^{10} C_i O_i \right]$$

$$O_1^c = (\bar{s}_i \gamma^\mu P_L c_j) \ (\bar{c}_j \gamma_\mu P_L b_i) \qquad O_2^c = (\bar{s}_i \gamma_\mu P_L b_i)$$

 O_{3-6} are QCD Penguins with small Wilson Coefficients

$$O_7 = -\frac{m_b}{e} \left(\bar{s} \sigma^{\mu\nu} F_{\mu\nu} P_R b \right) \qquad O_8 = -\frac{g_s m_b}{4\pi \alpha_{\rm em}} \left(\bar{s} \sigma^{\mu\nu} G_{\mu\nu} P_R b \right)$$

$$O_9 = (\bar{s} \gamma^{\mu} P_L b) (\bar{\mu} \gamma_{\mu} \mu)$$
 $O_{10} = 0$

The amplitude is given by: $\mathscr{A} = \langle \gamma(k, \epsilon) \, \mu^+ \langle \eta(k, \epsilon) \, \mu^+ \rangle$ $= -e \frac{\alpha_{\text{em}}}{\sqrt{2\pi}} V_{tb} V_{ts}^* \epsilon_{\mu}^* \bigg[\sum_{i=1}^9 C_i H_i^{\mu\nu} L_{V\nu} + C_{10} \bigg(H_{10}^{\mu\nu} \bigg) \bigg]$

 $(\bar{s} \gamma^{\mu} P_L c) (\bar{c} \gamma_{\mu} P_L b)$

$$\left(P_{L,R} = \frac{1}{2}\left(1 \mp \gamma^5\right)\right)$$

 $F_{\mu\nu}$ and $G_{\mu\nu}$ are the QED and QCD Field Strength Tensors

 $(\bar{s} \gamma^{\mu} P_L b) (\bar{\mu} \gamma_{\mu} \gamma^5 \mu)$

$$\frac{f(p_1)\mu^{-}(p_2)| - \mathscr{H}_{\text{eff}}^{b \to s}|B_s(p)\rangle_{\text{QCD+QED}}}{\int_{10}^{\mu\nu}L_{A\nu} - i\frac{f_{B_s}}{2}L_A^{\mu\nu}p_\nu} \right] \qquad \text{The } H_{\mu\nu}$$

 $I^{\mu\nu}$ and L are hadronic and leptonic tensors respectively

$$H_{9}^{\mu\nu}(p.k) = H_{10}^{\mu\nu}(p.k) = i \int dk$$

= -i(g

- These form factors can be computed from Euclidean correlation functions (at accessible values of m_b).
- We choose $\mathbf{p} = \mathbf{0}$ and $\mathbf{k} = (0, 0, k_z)$ and use twisted boundary conditions for k_z .
- With such a choice of kinematics:

$$\frac{1}{2k_z} \left(H_V^{12}(p,k) - H_V^{21}(p,k) \right) \to F_V(x_\gamma) \text{ and } \frac{i}{2E_\gamma} \left(H_A^{11}(p,k) + H_A^{22}(p,k) \right) \to F_A$$

Contribution from "Semileptonic" Operators - F_V and F_A

 $d^{4}y\langle 0 | T[\bar{s}\gamma^{\nu}P_{L}b(0) J_{\text{em}}^{\mu}(y)] | \bar{B}_{s}(p) \rangle$

$$g^{\mu\nu}(k \cdot q) - q^{\mu}k^{\nu}) \frac{F_A(q^2)}{2m_{B_s}} + \epsilon^{\mu\nu\rho\sigma}k_{\rho}q_{\sigma}\frac{F_V(q^2)}{2m_{B_s}}$$

• In a similar way the following contributions can be computed:

- Here, for now, we are isolating the contribution in which it is the virtual photon which is emitted from O_7 .
- With our choice of kinematics:

$$\frac{1}{2k_z} \left(H_{TV}^{12}(p,k) - H_{TV}^{21}(p,k) \right) \to F_{TV}(x_\gamma) \text{ and } \frac{-i}{2E_\gamma} \left(H_A^{11}(p,k) + H_A^{22}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) + H_A^{22}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{11}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{21}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{11}(p,k) \right) \to F_{TA}(p,k) + \frac{1}{2k_z} \left(H_A^{11}(p,k) - H_A^{11}(p,k) \right)$$

• There is also the useful kinematical constraint that $F_{TV}(1) = F_{TA}(1)$.

The form factors F_{TV} and F_{TA}

$$(-q^{\mu}k^{\nu})\frac{m_b F_{TA}(q^2)}{q^2} + \epsilon^{\mu\nu\rho\sigma}k_\rho q_\sigma \frac{m_b F_{TV}(q^2)}{q^2}$$

23

Numerical Results for F_V , F_A , F_{TV} , F_{TA}

- These four form-factors can be computed using "standard" methods at the available heavy quark masses.
- We use gauge field configurations generated by the European Twisted Mass Collaboration (ETMC), with ensemble with 0.057 fm < a < 0.091 fm).
- We perform the calculations at 5 values of the heavy quark mass corresponding to

$$\frac{m_h}{m_c} = 1, 1$$

and at 4 values of $x_{\gamma} = 0.1, 0.2, 0.3, 0.4$.

- m_c is determined from $m_{\eta_c} = 2.984(4)$ GeV.
- Much effort is then devoted to the $m_h \rightarrow m_h$ and $a \rightarrow 0$ limit, guided by the heavy-quark scaling laws and models for possible resonant contributions.

the Iwasaki gluon action and $N_f = 2 + 1 + 1$ flavours of Wilson-Clover light quarks at maximal twist (four

.5, 2, 2.5 and 3.

Continuum Extrapolation

- The continuum extrapolation is performed separately at each value of m_{H_s} and x_{γ} .
- The illustration plots are for $x_{\gamma} = 0.4$.

Extrapolation of the results to $m_{B_c} = 5.367$ GeV

- In the heavy-quark and large E_{γ} limits, scaling laws were derived up to $O(1/m_{H_s}, 1/E_{\gamma})$:

$$\frac{F_{V/A}}{f_{H_s}} = \frac{|q_s|}{x_{\gamma}} \left(\frac{R(E_{\gamma}, \mu)}{\lambda_B(\mu)} + \xi(x_{\gamma}, m_{H_s}) \pm \frac{1}{m_{H_s} x_{\gamma}} \pm \frac{|q_b|}{|q_s|} \frac{1}{m_h} \right) \quad ; \quad \frac{F_{TV/TA}}{f_{H_s}} = \frac{|q_s|}{x_{\gamma}} \left(\frac{R_T(E_{\gamma}, \mu)}{\lambda_B(\mu)} + \xi(x_{\gamma}, m_{H_s}) \pm \frac{1 - x_{\gamma}}{m_{H_s} x_{\gamma}} + \frac{|q_b|}{|q_s|} \frac{1}{m_h} \right)$$

- LCDA, $\xi(x_{\gamma}, m_{H_s})$ are power corrections.
- Photon emission from the *b*-quark suppressed relative to the emission from the *s*-quark.
- Tensor form-factors are presented in the \overline{MS} scheme at $\mu = 5 \text{ GeV}$.
- above scaling laws at large E_{γ} as well as VDM behaviour.

• Having performed the continuum extrapolation, we need to extrapolate the results to the physical value of m_{B_s} .

M.Beneke and J.Rohrwild, arXiv:1110.3228; M. Beneke, C. Bobeth and Y.-M. Wang, arXiv:2008.12494

• $R(E_{\gamma},\mu)$, $R_T(E_{\gamma},\mu)$ are radiative correction factors $= 1 + O(\alpha_s)$; λ_B is the first inverse moment of the B_s -meson

However, useful though these scaling laws are, they apply at large E_{γ} (as well as large m_h), are there are significant corrections at our lightest values of m_h and smaller values of E_{γ} . We therefore us an ansatz which includes the

Extrapolation of the results to $m_{B_s} = 5.367$ GeV

 $x_{\gamma} = 0.1$ \longrightarrow $x_{\gamma} = 0.2$ \longrightarrow $x_{\gamma} = 0.3$ \longrightarrow $x_{\gamma} = 0.4$ \longrightarrow

Comparison with Previous Determinations of the Form Factors

- Ref.[3] = T.Janowski, B.Pullin and R.Zwicky, arXiv:2106.13616, LCSR
- Ref.[4]= A.Kozachuk, D.Melikhov and N.Nikitin, arXiv:1712.07926, relativistic dispersion relations
- Ref.[5]= D.Guadagnoli, C.Normand, S.Simula and L.Vittorio, arXiv:2303.02174, VMD+quark model+lattice at charm

• In general our results for the form factors differ significantly from earlier estimates.

28

Other Contributions - \overline{F}_T

$$H_{\bar{T}}^{\mu\nu}(p,k) = i \int d^4y \ e^{i(p-k)\cdot y} \ \langle 0 | T \Big[J_{\bar{T}}^{\nu}(0) \ J_{\text{em}}^{\mu}(y) \Big] \ |\bar{B}_s(\mathbf{0}) \ \rangle \equiv -\epsilon^{\mu\nu\rho\sigma} k_\rho \ p_\sigma \frac{\bar{F}_T}{m_{b_s}} \text{ where}$$
$$J_{\bar{T}}^{\nu} = -i Z_T(\mu) \ \bar{s}\sigma^{\nu\rho}b \ \frac{k^\rho}{m_{B_s}} .$$

- The difficulty arises from the first diagram above when $t_y > 0$.
- In that case we potentially have a hadronic intermediate state (e.g. an $s\bar{s}$ 1⁻ state) with smaller mass than $(p-k)^2$, leading to an imaginary part and problems with the continuation to Euclidean space.

$$\sqrt{m_V^2 + E_\gamma^2} + E_\gamma < m_{B_s} \implies x_\gamma < 1 - \frac{m_V^2}{m_{B_s}^2} \simeq 1 - \frac{4m_K^2}{m_{B_s}^2} \simeq 0.96 \,.$$

• For t > 0 define $C_s(t, \mathbf{k}) = \langle 0 | J_{\text{em},s}^{\mu}(t, -\mathbf{k}) J_{\bar{T}}^{\nu}(0) | B_s(0, -\mathbf{k}) J_{\bar{T}}^{\nu}(0) | B_s(0,$

$$= \int_{-\infty}^{\infty} \frac{dE'}{2\pi} e^{-iE't} \int d^4x' \langle 0 | J_{\text{em},s}^{\mu}(0) e^{-i(\hat{P}-k')\cdot x'} J_{\bar{T}}T^{\nu}(0) | B(\mathbf{0}) \rangle = \int_{-\infty}^{\infty} \frac{dE'}{2\pi} e^{-iE't} \langle \underbrace{0 | J_{\text{em},s}^{\mu}(0) (2\pi)^4 \, \delta(\hat{P}-k') J_{\bar{T}}^{\nu}(0) | B(\mathbf{0})}_{\rho_s(E',\mathbf{k})} \\ \equiv \int_{-\infty}^{\infty} \frac{dE'}{2\pi} e^{-iE't} \rho_s^{\mu\nu}(E',\mathbf{k})$$

 $J_{-\infty} 2\pi$

• In Euclidean space $C_s(t, \mathbf{k}) = \int_{F^*}^{\infty} \frac{dE'}{2\pi} e^{-E't} \rho_s^{\mu\nu}(E', \mathbf{k})$.

F_T (cont.)

• Large amount of effort is being devoted to developing techniques based on the spectral density representation,

> M.Hansen, A.Lupo and N.Tantalo, arXiv:1903.06476 R.Frezzotti et al., arXiv:2306.07228

$$0) \rangle = \int_{-\infty}^{\infty} dt' \,\delta(t'-t) \,C_s(t',-\mathbf{k})$$

$$d^4 x' \,e^{ik' \cdot x'} \,(0 \mid I^{\mu} - (x') \mid I^{\nu}(0) \mid \mathbf{R}(\mathbf{0}))$$

 $a x e^{a}$ $\langle 0 | J_{\text{em},s}^{\mu}(x') J_{\overline{T}}^{\nu}(0) | B(\mathbf{0}) \rangle$ $(k' = (E', -\mathbf{k}))$

- For t > 0 define $C_s($
- In Euclidean space
- For the amplitude we require $H_{\bar{T}_{s}}^{\mu\nu}(m_{B},\mathbf{k}) = i \int_{0}^{\infty} dt \ e^{i(m_{B}-\omega)t} C_{s}^{\mu\nu}(t,\mathbf{k}) = \lim_{\epsilon \to 0} \int_{E^{*}}^{\infty} dt e^{i(m_{B}-\omega)t} C_{s}^{\mu\nu}(t,\mathbf{k}) = \lim_{\epsilon \to$
- The question is how (best) to extract the information about the spectral density, $\rho_s^{\mu\nu}(E,k)$, contained in the Euclidean correlation function in order to determine the amplitude (both the real and imaginary parts).
- We use the HLT method, in which computations are performed at several values of ϵ , and the kernel $\frac{1}{E' - (m_B - \omega) - i\epsilon}$ is approximated by a series of exponentials in time.
- Finally $H_{\bar{T}_s}^{\mu\nu}(m_B, \mathbf{k}) = \lim_{\epsilon \to 0} \int_{E^*}^{\infty} \frac{dE'}{2\pi} \frac{\rho_s^{\mu\nu}(E', \mathbf{k})}{E' (m_B \omega) i\epsilon} = \lim_{\epsilon \to 0} \sum_{n=1}^{\infty} g_n(m_B \omega, \epsilon) C_s(an, \mathbf{k})$

$\mathbf{F}_{\mathbf{T}}$ (cont.)

$$(t, \mathbf{k}) = \langle 0 | J_{\text{em},s}^{\mu}(t, -\mathbf{k}) J_T^{\nu}(0) | B_s(\mathbf{0}) \rangle = \int_{E^*}^{\infty} \frac{dE'}{2\pi} e^{-iE't} \rho_s^{\mu\nu}(E) dE'$$

$$C_{s}(t, \mathbf{k}) = \int_{E^{*}}^{\infty} \frac{dE'}{2\pi} e^{-E't} \rho_{s}^{\mu\nu}(E', k) \,.$$

$$\int_{*}^{o} \frac{dE'}{2\pi} \frac{\rho_{s}^{\mu\nu}(E',\mathbf{k})}{E'-(m_{B}-\omega)-i\epsilon} \cdot \qquad (\omega = |\mathbf{k}|)$$

$$\sum_{n=1}^{max} g_n(E,\epsilon) e^{-anE'} \text{ where the } g_n \text{ are complex coefficients.}$$
$$= \lim_{n \to \infty} \sum_{n=1}^{n_{max}} g_n(m_n - a_n,\epsilon) C(an, \mathbf{k})$$

31

- correlation functions $C_{s}(an, \mathbf{k})$.
- gauge-field ensembles (a = 0.0796(1) fm and 0.0569(1) fm).

i) \bar{F}_T only gives a very small contribution to the rate and is therefore not needed with great precision. ii) The spectral density method is computationally expensive.

- An extrapolation in ϵ is required, as well as those in a and m_h .

F_T (cont.)

• Determining the g_n requires a balance between the systematic error due to the approximation of $1/(E' - E - i\epsilon)$ by a finite number of exponentials (in which the coefficients are large with alternating signs) and the statistical errors in the

• We have computed F_T at all four values of x_{γ} , at three of the five values of m_h ($m_h/m_c = 1, 1.5, 2.5$) and on two of the

• Resulting error is O(100%) but $\bar{F}_T \ll F_{TV}$, F_{TA} . No clear x_{γ} dependence is observed in our data and we quote: Re $\bar{F}_T^s(x_{\gamma}) = -0.019(19)$ and Im $\bar{F}_T^s(x_{\gamma}) = 0.018(18)$.

\bar{F}_T^s -Illustrative Plots

	-
	-
	_
	-
	_
	-
	_

Other Contributions - Charming Penguins

- Of the contributions we have not computed directly, the most significant one at large q^2 is expected to be that from the operators $O_{1,2}^c$ (charming penguins) and we are working on developing methods to overcome this. There are a number of new theoretical issues to be understood.
- In the meantime we follow previous ideas and estimate the contribution based on VMD inserting all $c\bar{c}$ resonances from the J/Ψ to the $\Psi(4660)$. It can be viewed as a shift in $C_9 \rightarrow C_9^{\text{eff}}(q^2) = C_9 + \Delta C_9(q^2)$:

$$\Delta C_9(q^2) = -\frac{9\pi}{\alpha_{\rm em}^2} \left(C_1 + \frac{C_2}{3} \right) \sum_V |k_V| e^{i\delta_V} \frac{m_V \Gamma_V B(V \to \mu^+ \mu^-)}{q^2 - m_V^2 + im_V \Gamma_V}$$

to vary over $(0,2\pi)$ and $|k_V|$ to vary in the range 1.75 ± 0.75 .

• k_V and δ_V parametrise the deviation from the factorisation approximation (in which $\delta_V = k_V - 1 = 0$). We allow δ_V

34

Branching Fractions

- Structure Dependent (SD) contribution dominated by F_V .
- The error from the charming penguins increases with x_{γ} (at $x_{\gamma} = 0.4$ it is about 30 %).
- Our Result $\mathscr{B}_{SD}(0.166) = 6.9(9) \times 10^{-11}$; LHCb $\mathscr{B}_{SD}(0.166) < 2 \times 10^{-9}$.

35

Comparisons

- Ref.[3] = T.Janowski, B.Pullin and R.Zwicky, arXiv:2106.13616, LCSR
- Ref.[4]= A.Kozachuk, D.Melikhov and N.Nikitin, arXiv:1712.07926, relativistic dispersion relations
- Ref.[5]= D.Guadagnoli, C.Normand, S.Simula and L.Vittorio, arXiv:2303.02174, VMD+quark model+lattice at charm
- Discrepancy persists since rate dominated by F_V

- New LHCb update with direct detection of final state photon. I.Bachiller, La Thuile 2024 LHCb, 2404.07648
- For $q^2 > 15 \,\text{GeV}^2$ the bound is about an order of magnitude higher than before.

36

$B_s \rightarrow \mu^+ \mu^- \gamma - Conclusions$

- We have computed the form factors F_V , F_A , F_{TV} and F_{TA} which contribute to the amplitude. The amplitude is dominated by F_V . There are significant discrepancies with earlier estimates of the form factors obtained using other methods.
- As q^2 is decreased towards the region of charmonium resonances, the uncertainties grow, from 15 % with $\sqrt{q_{\text{cut}}^2} = 4.9 \,\text{GeV}$ to about 30% for $\sqrt{q_{\text{cut}}^2} = 4.2 \,\text{GeV}$, largely due to the charming penguins for which we have included a phenomenological parametrisation.

- Develop methods which would allow the evaluation of the charming penguin contributions, also for $B \rightarrow K^{(*)}\mu^+\mu^-$ decays etc.. This is one of our top priorities!
- Continue developing methods to evaluate the disconnected diagrams.
- Continue performing simulations on finer lattices so that the uncertainties due to the $m_h \rightarrow m_b$ extrapolation are reduced.

Outlook

• Non-perturbative contribution to $P \to \ell \bar{\nu}_{\ell} \gamma$ is encoded in:

 $H_W^{\alpha r}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) H_W^{\alpha \mu}(k, \mathbf{p}) = \epsilon_{\mu}^r(k) \left[d^4 y \, e^{ik \cdot y} \, \mathbf{T} \left\langle 0 \, | \, j_W^{\alpha}(0) \, j_{\text{em}}^{\mu}(y) \, | \, P(\mathbf{p}) \right\rangle \right]$

$$= \epsilon_{\mu}^{r}(k) \left\{ \frac{H_{1}}{m_{K}} \left[k^{2} g^{\mu\alpha} - k^{\mu} k^{\alpha} \right] + \frac{H_{2}}{m_{K}} \frac{\left[(p \cdot k - k^{2}) k^{\mu} - k^{2} (p - k)^{\mu} \right] (p - k)^{\alpha}}{(p - k)^{2} - m_{K}^{2}} \right. \\ \left. - i \frac{F_{V}}{m_{K}} \epsilon^{\mu\alpha\gamma\beta} k_{\gamma} p_{\beta} + \frac{F_{A}}{m_{K}} \left[(p \cdot k - k^{2}) g^{\mu\alpha} - (p - k)^{\mu} k^{\alpha} \right] + f_{P} \left[g^{\mu\alpha} - \frac{(2p - k)^{\mu} (p - k)^{\alpha}}{(p - k)^{2} - m_{K}^{2}} \right] \right\}$$

$$= \epsilon_{\mu}^{r}(k) \left\{ \frac{H_{1}}{m_{K}} \left[k^{2} g^{\mu\alpha} - k^{\mu} k^{\alpha} \right] + \frac{H_{2}}{m_{K}} \frac{\left[(p \cdot k - k^{2}) k^{\mu} - k^{2} (p - k)^{\mu} \right] (p - k)^{\alpha}}{(p - k)^{2} - m_{K}^{2}} \right. \\ \left. - i \frac{F_{V}}{m_{K}} \epsilon^{\mu\alpha\gamma\beta} k_{\gamma} p_{\beta} + \frac{F_{A}}{m_{K}} \left[(p \cdot k - k^{2}) g^{\mu\alpha} - (p - k)^{\mu} k^{\alpha} \right] + f_{P} \left[g^{\mu\alpha} - \frac{(2p - k)^{\mu} (p - k)^{\alpha}}{(p - k)^{2} - m_{K}^{2}} \right] \right\}$$

• Now all four Structure-Dependent form factors have to be determined.

38

$$\mathbf{P} \to \ell \bar{\nu}_{\ell} \ell'^+ \ell$$

- extract the four form factors and to check whether they can be determined with good precision.
- - Minkowski \rightarrow Euclidean continuation.
- $m_K \simeq 506 \,\mathrm{MeV}$.

ℓ'^{-} Decays (Cont,)

• We have performed an exploratory calculation with P = K at unphysical quark masses in order to develop a strategy to

G.Gagliardi et al., arXiv:2202.03833

• The computations were performed on a single ETMC ensemble, with $N_f = 2 + 1 + 1$ dynamical quark flavours, a spacetime volume $32^3 \times 64$, a = 0.0885(36) fm and with quark masses such that $m_{\pi} \simeq 320$ MeV and $m_{K} \simeq 530$ MeV.

• With $m_K < 2m_{\pi}$ we have the unphysical simplification that there is no difficulty in the

• There had also been a similar exploratory computation of these decays (calculating the rates without determining the form factors) on a $24^3 \times 48$ lattice, $a \simeq 0.093$ fm, and with quark masses corresponding to $m_{\pi} \simeq 352$ MeV and X.-Y.Tuo, X.Feng, L.-C.Jin and T.Wang, arXiv:2103.11331

Results from the Exploratory Computations

Decay	this work	Point-like	Tuo et al.	$\mathrm{ChPT}(f_{\pi})$	$\operatorname{ChPT}(f_K)$	Experiment
$K^+ \to e^+ \nu_e \mu^+ \mu^-$	$0.762(49) \times 10^{-8}$	3.0×10^{-13}	$0.94(8) \times 10^{-8}$	1.19×10^{-8}	0.62×10^{-8}	$1.72(45) \times 10^{-8}$
$K^+ \to \mu^+ \nu_\mu e^+ e^-$ $x_k > 0.284$	$8.26(13) \times 10^{-8}$	4.8×10^{-8}	$11.08(39) \times 10^{-8}$	9.82×10^{-8}	8.25×10^{-8}	$7.93(33) \times 10^{-8}$
$K^+ \to \mu^+ \nu_\mu \mu^+ \mu^-$	$1.178(35) \times 10^{-8}$	3.7×10^{-9}	$1.52(7) \times 10^{-8}$	$1.51(7) \times 10^{-8}$	1.10×10^{-8}	_
$K^+ \to e^+ \nu_e e^+ e^-$ $x_k > 0.284$	$1.95(11) \times 10^{-8}$	2.0×10^{-12}	$3.29(35) \times 10^{-8}$	3.34×10^{-8}	1.75×10^{-8}	$2.91(23) \times 10^{-8}$

•
$$x_k = \sqrt{k^2 / m_K^2}$$
 where $k^2 = (p_{\ell'^+} + p_{\ell'^-})^2$.

• At NLO ChPT,
$$F_V = \frac{m_K}{4\sqrt{2}\pi^2 F}$$
, $F_A = \frac{4\sqrt{2}m_K}{F}(L_9^r + L_{10}^r)$, $H_1(k^2) = 2f_K m_K \frac{F_V(k^2) - 1}{k^2} = H_2(k^2)$.

- should not be taken very seriously, nevertheless they are encouraging.

• Since the lattice results presented above are at unphysical quark masses, the comparison with the experimental results

• Experiment = E865 at BNL, HMa et al., hep-ex/0505011 and R.Aaij et al., arXiv:1812.06004

- the amplitude varies significantly.
- Results below the threshold agree with the standard method.
- Above the resonance there appears to be a mild dependence on ϵ .
- The ρ -resonance is broader, making this a good channel to study (and compare with experimental results.

$\mathbf{K} \rightarrow \ell \bar{\nu}_{\ell} \ell'^+ \ell'^-$ Decays – Status and Prospects

• At physical quark masses, the issue of the Minkowski \rightarrow Euclidean continuation arises for sufficiently large photon virtualities.

Frezzotti et al. have performed an exploratory and instructive study of the corresponding D_s decay using the spectral density method and HLT. R.Frezzotti et al., arXiv:2306.07228

• Computation was performed on a single ETMC ensemble, $V = 64^3 \times 128$, $a = 0.07957(13) \text{ fm}, m_{\pi} = 140.2(2) \text{ MeV}, m_{D_{\pi}} = 1.990(3) \text{ GeV}.$

• Necessary condition for a controlled $\epsilon \to 0$ extrapolation: $\frac{1}{I} \ll \epsilon \ll \Delta(E)$, where $\Delta(E)$ is an energy scale over which

• Difficulty arises around the sharp ϕ resonance where the $\epsilon \to 0$ limit cannot be taken ($\Gamma(\phi) \simeq 4.2 \text{ MeV}$, $\epsilon \gtrsim 100 \text{ MeV}$).

• R. Di Palma will present first results for $K \to \ell \bar{\nu}_{\ell} \ell'^+ \ell'^-$ decays using the spectral density method + HLT at Latt2024.

41