Discussion on the future of form factor computations

Felix Erben

Lattice@CERN 2024 19/7/2024

This project has received funding from the European Union's Horizon Europe research and innovation programme under the Marie Skłodowska-Curie grant

agreement No. 101106913.

B-ANOMALIES

- most recent LHCb measurements of $b \rightarrow s\ell^+\ell^-$ branching fractions
- low-q²: LCSR
- high-q²: lattice
- experiment consitently lower than theory, particularly at low q²
- can we improve this picture with lattice?

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

Hicp

CERN-PH-EP-2013-137 LHCb-PAPER-2013-039 4 September 2013

Observation of a resonance in $B^+ \to K^+ \mu^+ \mu^-$ decays at low recoil

[LHCb, PRL 13]

The contribution of the $\psi(4160)$ resonance in the low recoil region, taking into account interference with the non-resonant $B^+ \to K^+ \mu^+ \mu^$ decay, is about 20% of the total signal. This value is larger than theoretical estimates, where the $c\bar{c}$ contribution is ~10% of the vector amplitude, with a small correction from quarkhadron duality violation [23]. Results presented in this Letter will play an important role in controlling charmonium effects in future inclusive and exclusive $b \to s \mu^+ \mu^-$ measurements.

B-ANOMALIES

- progress with pseudoscalar final states
- + 2021 HPQCD lattice calculation $B \to K \ell^+ \ell^-$
- Results down to $q^2 = 0$
- tensions with LHCb $B^+\to K^+\mu^+\mu^-$ in the low- q^2 region as high as 4.2σ

$\pi\pi$ FV spectrum - slide by Luka Leskovec $_{\rm [Fri\,19/7\,11:30]}$

- FV energies for Luka's $B \rightarrow \pi \pi \ell \nu$ calculation
- no 4-quark H_W, no charmonium resonances like in
 - ${
 m B}
 ightarrow {
 m K}^{*} \ell^{+} \ell^{-}$
- reach to $q^2 = 0$ significantly harder

CHARMONIUM - SLIDE BY CHRIS SACHRAJDA [THU 18/7 11:30]

Other Contributions - Charming Penguins

- Of the contributions we have not computed directly, the most significant one at large q^2 is expected to be that from the operators $O_{1,2}^c$ (charming penguins) and we are working on developing methods to overcome this. There are a number of new theoretical issues to be understood.
- In the meantime we follow previous ideas and estimate the contribution based on VMD inserting all $c\bar{c}$ resonances from the J/Ψ to the $\Psi(4660)$. It can be viewed as a shift in $C_9 \rightarrow C_0^{\text{eff}}(q^2) = C_9 + \Delta C_9(q^2)$:

$$\Delta C_9(q^2) = -\frac{9\pi}{\alpha_{\rm em}^2} \left(C_1 + \frac{C_2}{3} \right) \sum_V |k_V| e^{i\delta_V} \frac{m_V \Gamma_V B(V \to \mu^+ \mu^-)}{q^2 - m_V^2 + im_V \Gamma_V} \,.$$

• k_V and δ_V parametrise the deviation from the factorisation approximation (in which $\delta_V = k_V - 1 = 0$). We allow δ_V to vary over $(0, 2\pi)$ and $|k_V|$ to vary in the range 1.75 ± 0.75.

CHARMONIUM - SLIDE BY CHRIS SACHRAJDA [THU 18/7 11:30]

Branching Fractions

- Structure Dependent (SD) contribution dominated by F_V .
- The error from the charming penguins increases with x_{γ} (at $x_{\gamma} = 0.4$ it is about 30 %).
- Our Result $\mathscr{B}_{SD}(0.166) = 6.9(9) \times 10^{-11}$; LHCb $\mathscr{B}_{SD}(0.166) < 2 \times 10^{-9}$.

- B anomalies
- can lattice contribute?
- · how to deal with charmonium resonances?

Transition amplitudes

- same recipe works for B decays
- overall computation more costly, b-quark parametristation, etc

D-DECAYS - SLIDE BY MAX HANSEN [FRI 19/7 9:30]

- We have the toolkit to do very involved calculations
- can we think of realistic dreams for the forseeable future?

□ Biggest problem is >2 hadron states!

- currently, there are no scattering calculations in FLAG
- should we invest more effort into fulfilling relevant criteria?
 - continuum extrapolation
 - · chiral extrapolation
 - full systematic error budget
- maybe the opposing dream: how do we ensure we can control what we know well?

- Which quantities would we like to see?
 - Resonance pole
 positions
 - form factors of e.g.
 - $B\to\pi\pi\ell\nu$

 is it more tempting to keep exploring the massive toolbox we have been provided with?

DATA & CODE SHARING

- If we want to allow re-analysis, we could share all our correlator data & analysis code
- Arguably, if all 3 B → D* calculations [Monday discussions] would have done this, a lot of good phenomenological work could have come out of it
- certainly, at least as much bad phenomenological work would have come out of it!
- is that a problem?

- Not impossible! We did it recently for K^* , ρ resonance work [FE et al., arXiv:2406.19193] [FE et al., arXiv:2406.19194]
- Correlator data published on CERN
 Document Server [FE et al.; CDS 2024]
- 800 GB of data admittedly easier if at least one author has a CERN affiliation
- European grants often pay for cost
- If at least one author is living in Germany, PUNCH4NFDI [www.punch4nfdi.de]

PERSPECTIVES

- Ambitious lattice QCD physics programmes take years and people power
 - development of general formalisms
 - adaption of formalisms for specific processes
 - grant / computing time applications
 - gauge field generation
 - production runs
 - maintaining HPC clusters
 - · data analysis

- Science / academia is a relatively precarious career path
- How do we ensure researchers at all career stages are
 - visible in the community? See a perspective for research jobs?
 - see a perspective for research jobs?
 - are motivated to have their work reproducible for future re-analysis / extensions?
 - Suggestion in yesterday's discussion to involve phenomenologists in author list

LAST SLIDE OF LATTICE@CERN 24

Thanks for participating!