Deadtime Simulation for ATLAS Level 1 Central Trigger

Sarah MacHarg
CERN Summer Student Program – 2023
Supervisors: Aimilianos Koulouris, Lorenzo Sanfilippo
ROADMAP

- Introduction & Background
- Project Scope & Specifications
- Project Demo
- Future Steps
ATLAS’ Big Data Problem

- LHC: Proton bunches
 - 3564 bunches per orbit, 25ns time separation → 40 MHz bunch crossing rate
 - Cannot record all this data (time, $$$) →
 - Triggers (select “interesting” events)
 - Deadtime (ignore events)

L1CT must be **simple** + **fast**; eliminate background while keeping good events
Deadtime

- Detectors take event data, write to temporary storage ("buffers")
- Trigger system processes event – if fits requirements, issues “Level 1 Accept” (L1A) signal
- Reading information from detector buffers to HLT storage takes time
- Lowering data rate, trying to maintain high efficiency for physics events
Deadtime Logic

Simple: After L1A, ignore N events
Prevents overlap in events being read out

Complex: Sliding Window, Leaky Bucket Algorithms
Prevents buffer overflow

Allow A triggers in a window of length B

Model detector buffer as a bucket with size C and leak rate D, don’t allow triggers when full
PROJECT SCOPE & SPECIFICATIONS
Deadtime Simulation

- Existing Deadtime Simulation Program
 - Take real LHC bunch group filling patterns, randomly assign triggers at different frequencies
 - Calculates simple, complex, total, and "physics" deadtime
 - Deadtime per bucket/logic mechanism
 - How many triggers/important events missed?
Areas for Improvement

- Only accessible via terminal: secure copy program files, run
- All configuration must be directly edited in code
- Bunch group input mode: ATLAS TriggerTool Bunch Group Keys only
- No flexibility for simulating triggers for bcids outside of bunch group 1

TriggerTool visualization of bcids and corresponding bunch groups (information accessible via BGK)
My Project

- **Phase 1: Enable online monitoring, adjustable parameters**
 - Full original functionality, but online and with user-friendly display

- **Phase 2: Additional simulation capabilities**
 - Bunch Group 15 triggering – trigger events that affect deadtime but aren’t interesting for physics
 - Add input sources
 - LHC fill schemes (user file upload)
 - Get current bunch group key being used in ATLAS (via WebIS)
 - Random seed number for repeatability
Links

Project Site

Demo Video
FUTURE STEPS
Next Steps

● Short term (me)
 ○ Patch security holes
 ○ Validate form entries
 ○ Improve documentation

● Long term (someone else?)
 ○ Multithreading for faster simulation speed
 ○ Merge production branch into official ATLAS Web Monitoring Site
 ○ Connect WebIS to active ATLAS information (vs. current pc-adt-04 setup)
 ○ Incorporate tool into ATLAS control room display?
Acknowledgements

- Supervisors: Emil and Lorenzo

- Special thanks to
 - Antoine Marzin, Patrick Czodrowski, and the L1CT team
 - Theo Alexopoulos, Nikolaos Kanellos, Foteini Kolitsi, Valerio D’Amico
 - Myron Campbell, Junjie Zhu, Steven Goldfarb, Maggie and the UMich Team
 - Patricia Burchat, Lauren Tompkins
 - Friends & Family
 - Nick for trying (and succeeding) to break my website this morning
A Wonderful Summer in Review

Thank You
Sources

Stockton, Mark. “The ATLAS Level-1 Central Trigger.”