

Emulsion Reconstruction Efficiency Analysis in SND@LHC

University of Michigan CERN REU

Tanvi Krishnan – Harvey Mudd College

Supervisors: Antonia Di Crescenzo and Antonio Iuliano

SND@LHC Overview

- Compact standalone neutrino experiment at the LHC
- Optimized to identify the 3 neutrino flavors and detect feebly interacting particles
- Pseudo-rapidity range: $7.2 < \eta < 8.4$
- Explore heavy flavor production at the LHC, explore this pseudo-rapidity region for future experiments, and search for scattering of feebly interacting particles

LHC Run 3: 250 fb⁻¹ data (~2000 neutrino events)

SND@LHC Overview

- Hybrid detector: collects online and offline data, later combined in analysis
- Target region: 800kg of tungsten interleaved with emulsion and electronic trackers

Emulsion Reconstruction

- Emulsion Cloud Chamber (ECC) for sub-micrometric position and milliradian angular resolution
- Emulsion films replaced every 20 fb⁻¹
- Each emulsion film contains segments (base tracks)
- Combine base tracks from several emulsion films to reconstruct tracks and vertices

Improving Reconstruction

- Reduce emulsion track density
 - Apply cuts prior to reconstruction
- To also improve signal-to-background ratio:
 - Omit shallow ZX and ZY angled segments
- Tested proposed methods using MC simulations of muon and neutrino events and real data from emulsion target 1

Efficiency = $\frac{\text{\# of base tracks reconstructed}}{\text{\# of base tracks simulated}}$

Emulsion Density Analysis

- Modified density of muon MC tracks simulated in emulsion films
- Significant improvement from 10⁵ to 10⁴ tracks/cm², but plateau beyond that
- Reduce track density (using cuts) by order of magnitude prior to reconstruction to maximally increase efficiency

Angular Cut Analysis: Motivation

- Background segments (passing muons) have smaller angles than signal segments (neutrino interactions) on average
- Omit shallow-angled segments → reduce track density but preserve signal

Angular Cut Analysis: Cut Selection

• MC is radially symmetric

Angular Cut Analysis: Cut Selection

- Real data is asymmetric
- Apply elliptical cuts derived from elliptical confidence intervals about the mean

Angular Cut Analysis: Results

• Plotting the following ratio $\frac{\# \text{ segments reconstructed given cut}}{\# \text{ segments reconstructed with no cuts}}$

CÉRN

Angular Cut Analysis: Results

Use cut on BDT output from existing multivariate analysis to separate signal and background in data

CÉRN

Conclusions and Next Steps

Reducing track density prior to reconstruction

 \rightarrow improve reconstruction efficiency

Removing shallow-angled segments before reconstruction

 \rightarrow also improves signal-to-background ratio

Next step: Improve reconstruction quality in large track densities

Thank you for listening! Questions?

Backup Slides

Calculation of Elliptical Cuts

Cut of the form:

$$\frac{((x-\bar{x})\cos\theta - (y-\bar{y})\sin\theta)^2}{\left(\frac{h}{2}\right)^2} + \frac{((x-\bar{x})\sin\theta - (y-\bar{y})\cos\theta)^2}{\left(\frac{w}{2}\right)^2} > 1$$

- h, w = length of major and minor axes of ellipse
- \bar{x}, \bar{y} = center position of ellipse
- θ = tilt angle of major axis of ellipse

To compare to MC, get effective radius of circular cut with same area as ellipse

$$\frac{\pi h w}{4} = \pi r^2$$

BDT Training

