

Studies of Short-Lived Kaon Decays at LHCb

Garath A. Vetters

10/08/2023

Table of Contents

- **1. Overview of Experiment**
- **2. Some Definitions**
- 3. Motivations
- 4. Making Some Histograms
- **5. Final Results**
- 6. What I Have Learned
- 7. Conclusion

Overview of Experiment

- Name: The Large Hadron Collider Beauty (LHCb) Experiment.
- Main focus: Matter-Antimatter Asymmetry & the beauty quark.
- Unique aspect: The LHCb only focuses on forward-moving particles (Unlike, say, ATLAS and CMS)

What I worked on: Analysing the decays of the short-lived kaons via programs written within Python (Experimental/Analytical Physics)

Some Definitions

- High-Level Trigger(HLT): A software application to help decide what events are interesting
 - HLT1: Conducts partial-reconstruction of events
 - HLT2: Conducts complete reconstruction of events
 - Work was done entirely within HLT2
- Reconstruction: The process of generating a set of tracks that model the path a
 particle takes through a detector.
- Rate: How many events are created within a given time period (i.e events/second)
- Cut: a maximum and/or minimum placed on a certain variable
 - Completely up to the programmer to decide this value
 - Ex: electron pt > 80 MeV

Motivations

- Decay of $K_s^0 \rightarrow e^+ + e^-$ can serve as a probe into beyond standard-model Physics.
- LHCb has undergone an upgrade, so it is now possible to study processes with low-pt electrons.

Making Some Histograms - The Basics (1/2)

Making Some Histograms - The Basics (2/2)

Feed the simulation files through the written test line, then you've managed to generate some results!

Making Some Histograms - Verifying the Results

Histogram without MCTruth

Histogram with MCTruth

CÉRN

Final Results-Effect of Bremsstrahlung on Ks mass histogram

Histogram that has been corrected for the Bremsstrahlung effect Histogram that has not been corrected for the Bremsstrahlung effect

Final Results - Offline Analysis

- Main purpose was to optimize cuts used in generation of $K_s{}^0 \rightarrow e^+ + e^-$ mass histogram.
 - Maximum rate of a line: 100 Hz
 - Rate output of $K_s^0 \rightarrow e^+ + e^-$ line: 880 Hz
- To minimize the rate, offline analysis is required.

What I Have Learned

- I have learned...
 - How research within the LHCb collaboration is conducted.
 - How to write an HLT2 line as well as run tests on that line to learn more about the reconstructed events.
 - More about Python and the various ways it can be used for data analysis.
 - How to work in Linux.
 - How to work with ROOT (to a degree).
- Quick Acknowledgement: I never would have gotten this far without my supervisor, Dr. Sergio Arguedas Cuendis. He helped me at every step along the way, and I cannot thank him enough for being there to answer my questions (even the stupid ones).

Conclusion

What's	<u>been</u>	done:

- A peak has been found in the $K_s^0 \rightarrow e^+ + e^-$ mass histogram
 - (As far as I know) this measurement has never been made before within the LHCb
- The results within the mass histogram have been proven to be signal events
 - Proven via Monte Carlo Truth
- Bremsstrahlung has been proven to have no effect on the mass histogram
 - More work is needed

What still needs to be done:

• Verification is needed for the Bremsstrahlung result.

• The rate of $K_s^0 \rightarrow e^+ + e^-$ needs to be lowered even further

• Rate has been brought down to 551 Hz. That's progress, but it's still too high.

Thank you for a great summer. It was quite the journey

Any Questions?

Backup Slides

Table of cuts

Variables	Default cuts	Tight cuts
e+/P_MIN	3.e3 MeV (3 GeV)	3.e3 MeV (3 GeV)
e+/PT_MIN	80 Mev	115 MeV
e+/PID_E_MIN	-3	-3
e+/CHI2DOF_MAX	9	2.5
e+/MINIP	1 mm	1 mm
e+/MINIPCHI2	36	256.
Ks_BPVVDZ_MIN	0 mm	0 mm
Ks_BPVVDRHO_MIN	3 mm	3.7 mm
Ks_BPVDIRA_MIN	0.999	0.996
Ks_BPVLTIME_MIN	0.0045 ns	0.0045 ns
Ks_MAX_IPBPVVDZ_RATIO	1 / 60	1 / 60
Ks_MAXIP	0.4 mm	0.3 mm
Ks_MAXDOCACUT	0.2 mm	0.2 mm
Ks_MAXDOCACHI2CUT	25.	25.

*

Histograms of Variables used (1/3)

Electron transverse momentum

Histograms of Variables used (2/3)

Electron minimum impact parameter

CÉRN

Histograms of Variables used (3/3)

• K-short minimum lifetime

HLT1 Line for $K_s^{0} \rightarrow e^+ + e^-$

- Merge request for decay line
- <u>lhcb/Allen!1134</u>
- Intended for strange decays such as $K_s^{0} \rightarrow e^+ + e^-$.
 - Work is still being done on this line

*

LHCb dataflow

*

