Temperature-Leakage current study using 8-inch silicon sensors for CMS HGCAL

Marta Krawczyk, Zachary Zawisza, Philipp Zehetner on behalf of the CMS collaboration

University of Michigan Final Summer Student Presentations 2023
August 10, 2023
Nearly 10x integrated luminosity increase

Higher event rates require faster and more radiation hard detectors

Silicon diodes will make up a large portion of the upgraded calorimeter (HGCAL)
High Granularity Calorimeter (HGCAL)

- Silicon sensors will have varying numbers of channels depending on their density and geometry
- Sensors will be of varying thickness
- Scintillator can’t be used in the higher radiation regions
- Fully depleted silicon sensors used in both CE-E and CE-H

https://cds.cern.ch

Electromagnetic calorimeter (CE-E):
- Si, Cu & CuW & Pb absorbers, 28 layers, 25 X_0 & $\sim 1.3 \lambda$

Hadronic calorimeter (CE-H):
- Si & scintillator, steel absorbers, 22 layers, $\sim 8.5 \lambda$
Sensor Parameters

- Sensor 200096
 - Low density type full sensor
 - Thickness of 200 µm
 - Fluence of 5.5e15 neq/cm²
 - Anneal time 85 minutes

- Sensor 600003
 - High density type partial sensor
 - Thickness of 120 µm
 - Fluence of 1e16 neq/cm²
 - Anneal time 79 minutes
IV and CV Characterization

Optical inspection of sensors to ensure integrity of key components

Electrical testing performed by measurement station run with labview program

Example of IV output data

200006, LD, 200 µm, -5.5 x 10^14 nsec/cm²

Values for U = 600.0 V
Visual inspection prior to post-irradiation IV+CV measurements

- Fully automated inspection of the whole sensor with the use of Machine Learning
- Identification of mechanical defects
- Removal of dust
- Focus on guard ring area where bias voltage and ground are close together

Slightly chipped corner (Non-critical)

Dust particles (Non-critical)

Chipped corner (CRITICAL)
Measurement Setup and Procedure: ALPS

Storage and preparation
- Storage of the sensors at the temperature of -18°C
- Sensor identification with the scratch pad
- Optical inspection and cleaning performed for guard ring only, to avoid unnecessary annealing
- Identification of chipped corners and edges for some sensors

Measurement procedure
- Sensors were placed directly in ALPS on chuck (no backside protection, for better temperature control)
- The temperature range was chosen as: -40°C to -36°C
- The voltage was provided to the backside
- All channel IV was performed up to -850V

NO ANNEALING as the sensors received 80 minutes of annealing at 60 degrees in the RINSC reactor

<table>
<thead>
<tr>
<th>IV Voltage Range (negative)</th>
<th>0V - 850V</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV Voltage Steps</td>
<td>25V and 50V (to protect the setup)</td>
</tr>
<tr>
<td>Temperature points (°C)</td>
<td>-40, -39, -38, -37, -36</td>
</tr>
</tbody>
</table>
Certain cells have different geometries and thus different leakage currents

Observe fluence profile across sensor (consistent shape in 2 already measured sensors)
Data Analysis Workflow

- Leakage current vs voltage data for all channels at different temperatures
- Current density vs voltage Plot for one channel across range of temperatures
- Arrhenius plot at selected voltages
Example IV (600003)

- Real data is interpolated but not extrapolated
- This channel (and many others) were masked for high voltages at higher temperatures
- Follows the expected trend

- Sensor 600003
- High density type partial sensor
- Thickness of 120 μm
- Fluence of 1e16 neq/cm²
- Anneal Time 79 minutes
Example IV (200096)

- Sensor 200096
- Low density type full sensor
- Thickness of 200µm
- Fluence of 5.5e15 neq/cm²
- Anneal Time 85 minutes

- Many more measurement points are masked despite lower current density
- Higher area pads results in higher pad current
Arrhenius Plot and SRH Calculation

- Shockley Read Hall (SRH) calculation:

\[I(T) \propto T^2 \cdot e^{-1.12/2kT} \]

- Can help tell us where our dominant source of leakage current is

- Activation energy can be given by the slope of our current in log

Channel 210

![Arrhenius Plot](image.png)
Example Arrhenius (600003)

- Sensor 600003
- High density type partial sensor
- Thickness of 120 µm
- Fluence of 1e16 neq/cm²
- Anneal Time 79 minutes

- Fit Parameter “a” is the activation energy in eV
- SRH calculation fits data very well
- “Complete” set of data at all temperatures
Example Arrhenius (200096)

- Sensor 200096
- Low density type full sensor
- Thickness of 200µm
- Fluence of 5.5e15 neq/cm²
- Anneal Time 85 minutes

- SRH calculation fits data slightly less well
- Many more masked channels resulting in slightly less reliable extraction of activation energy
- Taking leakage current density as a proxy for fluence
- We expect activation energy to decay exponentially with increasing fluence
- Wider range of fluences may tell us if activation energy has fluence dependance
Activation Energy vs Nominal Fluence

- For sensors mean activation energy is plotted for a nominal fluence.
- At this point it is hard to say whether or not there is a clear trend.
Summary

- Data appears to follow expected trends and Arrhenius plots seem to agree with literature thus far
- Activation energy may possibly be following expected trend (higher fluences corresponding to lower activation energy) but more work is needed to confirm

Outlook

- Include more sensors with different fluences in the activation energy analysis
- Plot activation energy on a hexplot of the sensor to investigate correlation with fluence profile
- More reading and investigation should be done to better understand the implications of SRH and activation energy determination
Backup
Compatible profiles for sensors of same round:

100082: Chipped corner

100076: Chipped corner

200093: over annealed

New rounds
Compatible profiles for sensors of same round: New rounds

300009: Chipped corner
Compatible profiles for sensors of same round:

- Rounds 11, 12, and 14 have consistent fluence pattern
- I_{pad} mostly scales with cell size and delivered fluence, as expected.

600015: Chipped corner

300010: Chipped corner

Reactor
Current related damage rate (-20°C)

After (80±20) min at +60°C:

\[\alpha_{600 V}(-20^\circ C) = (7.6±0.2±0.4) \times 10^{-19} \text{ A/cm} \]
Current related damage rate (-40°C)

After (80±20) min at +60°C:

\[\alpha_{600V(-20^\circ C)} = (0.6±0.0±0.0) \times 10^{19} \text{ A/cm} \]
Activation Energy Histogram

600003 1E16 neq/cm², 120 um, 80 mins annealing

200096 5.5E15 neq/cm², 200 um, 85 mins annealing
For the irradiation rounds, the irradiation time was set to a value based on the experience of the reactor personnel to meet the required target fluence, assuming that the reactor power is constant. For the alpha plot calculation, we used the delivered irradiation time as a proxy of the fluence, to make up for the possible variations of the delivered fluence vs target fluence. We used round 1 as the reference.

<table>
<thead>
<tr>
<th>Round</th>
<th>Requested time [min]</th>
<th>Delivered time [minutes at 100% power]</th>
<th>Delivered time/Requested time</th>
<th>Target fluence [neq/cm²]</th>
<th>Delivered fluence [neq/cm²]</th>
<th>Delivered fluence/Requested fluence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>32</td>
<td>32.5</td>
<td>1.0</td>
<td>1.50E+15</td>
<td>1.50E+15</td>
<td>100.00</td>
</tr>
<tr>
<td>2</td>
<td>43</td>
<td>44.7</td>
<td>1.0</td>
<td>2.00E+15</td>
<td>2.06E+15</td>
<td>103.15</td>
</tr>
<tr>
<td>3</td>
<td>86</td>
<td>80.1</td>
<td>0.9</td>
<td>4.00E+15</td>
<td>3.70E+15</td>
<td>92.42</td>
</tr>
<tr>
<td>4</td>
<td>216</td>
<td>203.7</td>
<td>0.9</td>
<td>1.00E+16</td>
<td>9.40E+15</td>
<td>94.02</td>
</tr>
<tr>
<td>5</td>
<td>86</td>
<td>90.0</td>
<td>1.0</td>
<td>4.00E+15</td>
<td>4.15E+15</td>
<td>103.85</td>
</tr>
<tr>
<td>6</td>
<td>118</td>
<td>113.2</td>
<td>1.0</td>
<td>5.50E+15</td>
<td>5.22E+15</td>
<td>94.99</td>
</tr>
<tr>
<td>7</td>
<td>43</td>
<td>44.6</td>
<td>1.0</td>
<td>2.00E+15</td>
<td>2.06E+15</td>
<td>102.92</td>
</tr>
<tr>
<td>8</td>
<td>32</td>
<td>33.6</td>
<td>1.1</td>
<td>1.50E+15</td>
<td>1.55E+15</td>
<td>103.38</td>
</tr>
<tr>
<td>9</td>
<td>216</td>
<td>225.9</td>
<td>1.0</td>
<td>1.00E+16</td>
<td>1.04E+16</td>
<td>104.26</td>
</tr>
<tr>
<td>10</td>
<td>304</td>
<td>282.9</td>
<td>0.9</td>
<td>1.40E+16</td>
<td>1.31E+16</td>
<td>93.26</td>
</tr>
<tr>
<td>11</td>
<td>118</td>
<td>106.8</td>
<td>0.9</td>
<td>5.50E+15</td>
<td>4.93E+15</td>
<td>89.62</td>
</tr>
<tr>
<td>12</td>
<td>304</td>
<td>292.2</td>
<td>1.0</td>
<td>1.40E+16</td>
<td>1.35E+16</td>
<td>96.33</td>
</tr>
<tr>
<td>13</td>
<td>118</td>
<td>113.8</td>
<td>1.0</td>
<td>5.50E+15</td>
<td>5.25E+15</td>
<td>95.50</td>
</tr>
<tr>
<td>14</td>
<td>216</td>
<td>205.9</td>
<td>1.0</td>
<td>1.00E+16</td>
<td>9.50E+15</td>
<td>95.03</td>
</tr>
</tbody>
</table>