Neutrons and lateral shower shape

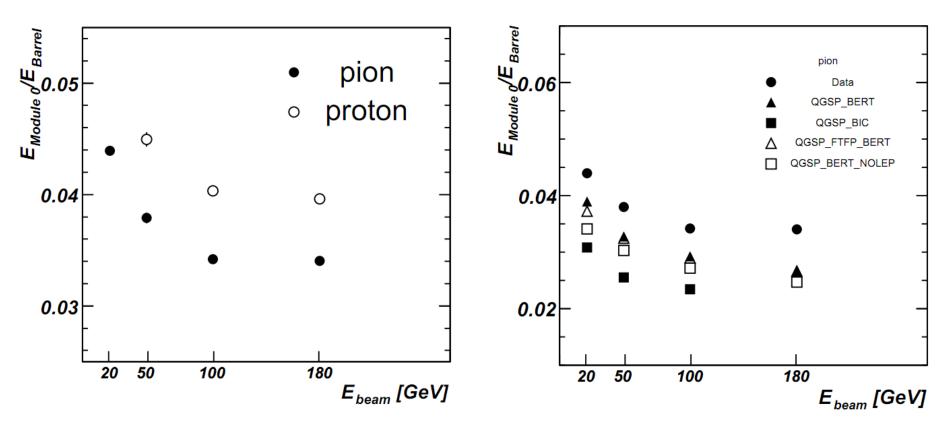
John Apostolakis

Overview

• The issue

Lateral shower shape deficit

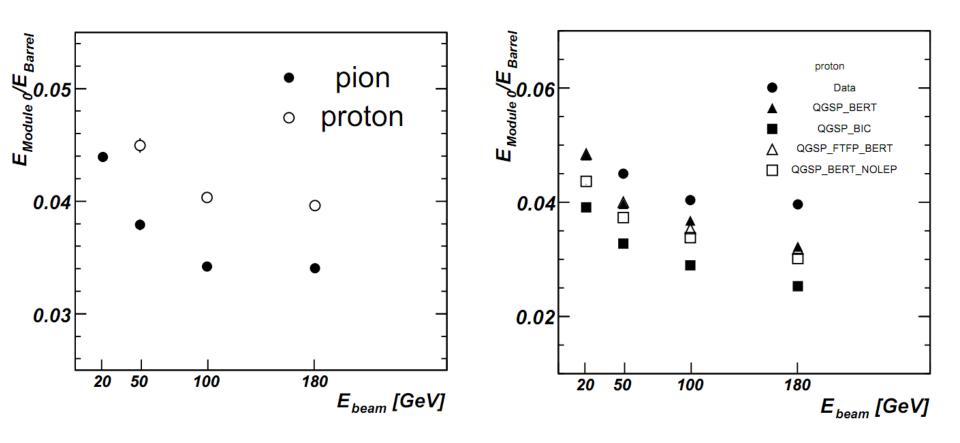
- Analysis
 - Contributing factors
 - Deficiencies in cross sections, modeling
- Investigation plan


The issue / challenge

• The lateral shower shape is narrow

- See e.g. report from ATLAS TileCal (Mar 2010)

Lateral Spread


The ratio of energy measured in the bottom and central modules is an estimate of lateral spread.

- Proton induced showers are wider than pion induced ones.
- All models predict narrow showers.
- QGSP_BERT is closer to data.

M. Simonyan (NBI)

Lateral shower shape: protons

- Proton induced showers are wider than pion induced ones.
- All models predict narrow showers.
- QGSP_BERT is closer to data.

Analysis

- The lateral size / shape are determined by neutrons
 - Neutrons travel the furthest laterally
- To identify the source(s) of the discrepancies, we must examine
 - Neutron transport
 - At all energies
 - Neutron production
 - Primarily in reactions at E>20 MeV, but also below

Neutron Transport

- All interactions are relevant
 - Inelastic: (n, 2n), (n, 3n), ..
 - Capture: (n, γ)
 - Elastic
- The basic options Geant4 for n-transport are:
 - LHEP (baseline)
 - HP data-driven models with G4NDL cross-sections

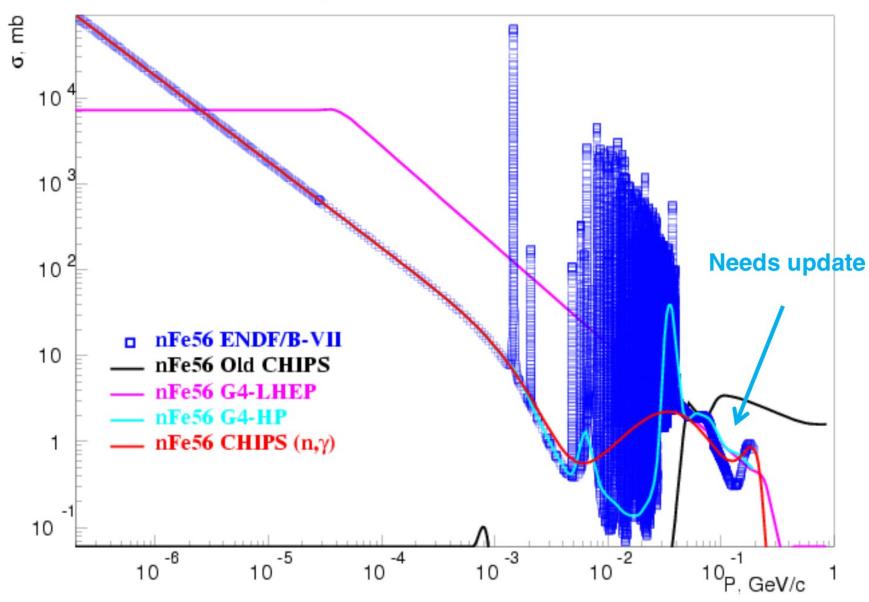
Particular concerns

- Known deficiencies in
 - Capture used in production e.g. QGSP_BERT
 - Cross sections
 - Model (LHEP)
- Alternative approaches
 - HP 'high precision': data driven E < 20 MeV
 - XS simple model with cross sections interpolated from G4NDL library used by HP (V. & A. Ivantenko)
 - New LLNL module (models and cross section libraries)
- Note: all physics lists without HP use LHEP process, except
 - QBBC uses XS
 - CHIPS has its own elastic, (capture/inelastic unfinished)

HP neutron processes

- HP utilises G4NDL data libraries

 for cross-sections and (some) final state sampling
- G4NDL was created from 1997-2011
 - HP Wellisch: 1997-2004, selected data from many sources
 - T Koi: 2005-present: added data requested by LHC, other users.
- Cross sections for some elements are derived from old neutron data libraries (e.g. ENDF/B VI)
 - Mikhail pointed out a number of elements/isotopes which have old data


Elastic: elements to improve

- Mikhail's summary: 78/157 need updates
- Our list of the important ones:
 - Ar⁴⁰, Sn, Ag, W, Fe(?), for LHC detectors
 - Ti, Nb: in superconducting wires:
 - Kr, Xe, I, U: for other HEP detectors
 - Potential needs: Cd, Ni, Ge, S, Ca

Inelastic: elements to improve

- Mikhail's summary: ?/? need updates
- Additional important ones: — Be⁷, Be⁹, C, Fe⁵⁶
- Also the same as inelastic
 - Ar⁴⁰, Sn, Ag, W, Fe(?), for LHC detectors
 - W does not exist in G4NDL? (tbc)
 - Ti, Nb: in superconducting wires:
 - Kr, Xe, I, U: for other HEP detectors
 - Potential needs: Cd, Ni, Ge, S, Ca.

CHIPS improvement of nFe56 (n,y) cross-section

Goals for next two months

- Check Low-energy neutron transport (E < 20 MeV)
 - Either eliminate imprecision as the leading cause of lateral shower shape discrepancy, or
 - Identify the 'proportion' it contributes for typical
 HEP use case, e.g. Fe-Sci, Cu-IAr, Pb-Si.
 - Leading suspect today:
 - Absorption cross section & treatment
- In JIRA this is <u>SIM-78</u> target is 30 April 2011.

Next items (alternative causes)

- Neutron production
 - Missing re-scattering: less neutrons
 - Corrections to Binary (BIC) connection to FTF
 (BIC is only existing rescattering option)
 - Encourage SLAC effort to enable rescattering in BERTini
- Improve γ production from neutrons
 - Substitute pre-compound for (n,γ)
 - It is alternative final state model for n-absorption
 - This is now being reviewed / improved
 - After feedback of issues from hadrontherapy users