

HEARTS 1st Annual Meeting: WP7

6 February 2024

https://indico.cern.ch/event/1314502/

Funded by the European Union

HEARTS is a project funded by the European Union under GA No 101082402, through the Space Work Programme of the European Commission.

Rubén García Alía, Eliott Johnson (CERN) On behalf of HEARTS WP7

- Introduction
- Readiness (both vs requirements and vs what is achievable with HEARTS@CERN boundary conditions) of:
 - Beam energy (and LET)
 - Including fragmentation
 - Beam intensity (and flux) (LET and fluence combined, i.e. SEE cross section benchmark)
 - Beam (spatial) profile
 - Physical access to experimental area
 - Yearly schedule
- Summary

Introduction

Work Package 7

Upgrade of CHARM beam line at CERN for VHE ion testing

Participants

• CERN

HEARTS 1st Annual Meeting - 6 February 2024

Objectives and tasks

Objectives

This work package aims at adapting the existing CHARM beam line infrastructure at CERN to accommodate very high energy (VHE) heavy ion beams for radiation effects testing on electronics. This requires the capacity of accurately <u>tuning the beam energy and intensity</u> in a large dynamic range and to ensure the <u>parallelization</u> of activities at CERN around the PS East Area. Furthermore, this WP will also tackle the definition of an adequate administrative and technical <u>framework for external users</u> to first validate and later regularly exploit the VHE beam for electronics testing and qualification.

Tasks

- **Task 7.1:** Methodology for extracting variable energy ion beams to ensure parallel operation of the VHE ion facility (CERN, month 1-12)
- **Task 7.2:** Achievement of the required beam parameters for microelectronics SEE testing (CERN, month 12–24)
- Task 7.3: Framework for user access (CERN, month 24-48)

In other words...

- High-level objective: to be ready by the end of the project to provide routine, reliable and user-friendly access to CERN's high-energy heavy ion beam for electronics testing
- In order to achieve this, we need to:
 - Technically, be able to tune the beam energy (i.e. LET) and intensity (i.e. flux) in a large dynamic range and in an accurate manner (and do so in a way which minimizes the impact on other CERN accelerator users)
 - Define an administrative and technical framework for electronics users to regularly exploit the beam and facility for radiation effects testing
- And, yet in other words, what we want is to become a *competitive and attractive* facility for radiation effects testing

Deliverables and Milestones

Deliverable 👙	Deliverable Name	Work Package	Lead Beneficiary	Due Date	Status 🍦
D7.1	Definition of extraction methodology for parallel use of the heavy ion beamline for different energies	WP7	CERN	2023-12- 31	Achieved
D7.2	Demonstration of the achievements in terms of beam parameters (energy, LET, range, size)	WP7	CERN	2024-12- 31	Pending
D7.3	Established framework for user access to the CHARM ion facility	WP7	CERN	2026-12- 31	Pending

Milestone 🛓	Milestone Name	Work Package 🛓	Lead Beneficiary 🛔	Due Date 🍦	Status 🛓
M20	First external users at CHARM	WP7	CERN	2024-12-31	Pending
M21	Routine access for external users at CHARM	WP7	CERN	2026-12-31	Pending

Main References

- Deliverable Report 7.1, Definition of <u>extraction methodology for parallel use of</u> <u>heavy ion beam line for different energies</u>
- JAPW presentation on Slow extraction R&D and progress at the PS
- <u>EATM presentation on HEARTS 2023 run</u> and future prospects
- November HEARTS WPL meeting, W7
 presentation with a focus on 2023
 experimental campaign
- <u>Presentation/discussion material during</u> regular WP7 meetings

Grant Agreement No: 101082402

HEARTS

High-Energy Accelerators for Radiation Testing and Shielding Horizon Europe project HEARTS

DELIVERABLE REPORT

DEFINITION OF EXTRACTION METHODOLOGY FOR PARALLEL USE OF THE HEAVY ION BEAMLINE FOR DIFFERENT ENERGIES

DELIVERABLE: D7.1

WP7 members and interfaces (within CERN)

Accelerator operation (ion injectors, Proton Synchrotron)

Accelerator beam physicists and operators

Marc Delrieux Eliott Johnson Matthew Fraser Kacper Bilko Andrea Coronetti Natalia Emriskova Luigi Esposito Karolina Klimek Daniel Prelipcean Mario Sacristán Barbero Andreas Waets

Radiation environment

and effects experts

Radiation to Electronics teams

Beam Instrumentation

9

Targets, Collimators and Dumps

CHARM and

IRRAD teams

Radiation Protection

WP7 interfaces (within HEARTS)

HEARTS

HEARTS 1st Annual Meeting - 6 February 2024

Injector complex, PS, East Area and T8

HEARTS 1st Annual Meeting - 6 February 2024

Injector complex, PS, East Area and T8

HEARTS 1st Annual Meeting - 6 February 2024

WP7 2023 timeline

Beam and FLUKA studies

Experimental area integration studies (including interface to external "users") Design and manufacturing of remotely movable degrader/mask system Activity scheduling at many different levels (including interface to external "users")

WP7 2024 timeline – expected to be similar to 2023, but with some foreseen/possible changes

HEARTS 1st Annual Meeting - 6 February 2024

HEARTS

Beam Energy and LET

HEARTS 1st Annual Meeting - 6 February 2024

Beam Energy set through magnetic flat-top in PS

No need to tune any additional parameters(*), which simply "scale" with the magnetic field (*) though, we may want to tune some, for further optimization (e.g. transmission, beam position, spill time profile...)

PS magnetic field at different energies, with injection plateau at 684 G and extraction plateau at varying Bfield corresponding to different energy levels. In 2022, different USERs were used per energy.

PS beam energy vs. energy at DUT

		Element	Position [m]	Thickness [cm]	Material	$\frac{\text{Density}}{[\text{g/cm}^3]}$	Surface density $[0.1 \text{ g/cm}^2]$
		SOURCE (PS)					
(1.	PS vacuum window	123.97	0.01	Ti	4.540	0.45
		Air section	123.97	30.0	air	$1.293 \cdot 10^{-3}$	0.39
	2.	BTV01 vacuum window	123.25	0.01	Ti	4.540	0.45
	3.	BCTF022 vacuum window	113.37	0.02	Al	2.699	0.54
		Air section	113.37	17.7	air	$1.293 \cdot 10^{-3}$	0.23
5	4.	BCGAA23	113.09	$2 \times 50 \mu \mathrm{m}$	Al	2.699	0.27
<u>۲</u>		(Gaseous scint.)		6	N_2	$1.17 \cdot 10^{-3}$	0.07
		Air section	113.09	4.0	air	$1.293 \cdot 10^{-3}$	0.05
	5.	XSEC023	112.81	$2 \times 25 \mu m$	stainless steel	7.9	0.40
				$2 \times 5 \times 5 \mu m$	Al	2.699	0.13
		Air section	109.89	250.0	air	$1.293 \cdot 10^{-3}$	3.23
C	6.	T08 vacuum window	107.30	0.02	Ti	4.540	0.91
(7.	T08 vacuum window	34.0	0.02	Al	2.699	0.54
		Air section	34.00	15.0	air	$1.293 \cdot 10^{-3}$	0.19
	8.	XSEC070	33.80	$2 \times 25 \mu \mathrm{m}$	stainless steel	7.9	0.40
~				$21 \times 5 \mu m$	Al	2.699	0.28
ĩ (Air section	33.56	10.0	air	$1.293 \cdot 10^{-3}$	0.13
	9.	XION071	33.46	$2 \times 25 \mu \mathrm{m}$	stainless steel	7.9	0.40
				$21 \times 5 \mu m$	Al	2.699	0.28
				24.0	\mathbf{Ar}	$1.66 \cdot 10^{-3}$	0.40
		Air section	33.22	75	air	$1.293 \cdot 10^{-3}$	0.97

		Cumulative:		30.83 m			5.36 g/cm ²
		DUT (CHARM)					
		Air section	9.34	934.0	air	$1.293 \cdot 10^{-3}$	12.08
				$5 \times 5 \mu m$	Al	2.699	0.07
Ö	20.	XSEC094	9.58	$2 imes 25 \mu \mathrm{m}$	stainless steel	7.9	0.40
H)		Air section	9.68	10.0	air	$1.293 \cdot 10^{-3}$	0.13
H J				24.0	Ar	$1.66 \cdot 10^{-3}$	0.40
Z				$21 imes 5 \mu { m m}$	Al	2.699	0.28
	19.	XION094	9.92	$2 \times 25 \mu \mathrm{m}$	stainless steel	7.9	0.40
(Air section	10.00	8.0	air	$1.293 \cdot 10^{-3}$	0.10
C	18.	IRRAD vacuum window	10.00	0.02	AI	2.699	0.54
	17.	IRRAD vacuum window	12.71	0.02	Al	2.699	0.54
				0.069	Kapton	1.42	0.98
	16	BPM4	12.71	0.1	Cu	8.96	0.90
		Air section	17.54	483.0	air	$1.293 \cdot 10^{-3}$	6.25
				0.069	Kapton	1.42	0.98
	15.	BPM3	17.54	0.1	Cu	8.96	0.90
Ë		Air section	23.1	556.0	air	$1.293 \cdot 10^{-3}$	7.19
ස ්	14.	XSCI	23.13	0.028	plastic scint.	1.032	0.29
AL		Air section	24.87	174.0	air	$1.293 \cdot 10^{-3}$	2.25
				0.069	Kapton	1.42	0.98
	13.	BPM2	24.87	0.1	\mathbf{Cu}	8.96	0.90
		Air section	28.98	411.0	air	$1.293 \cdot 10^{-3}$	5.31
	12.	IRRAD vacuum window	28.98	0.02	Al	2.699	0.54
	11.	IRRAD vacuum window	32.48	0.02	Al	2.699	0.54
				0.069	Kapton	1.42	0.98
ſ	10.	BPM1	32.48	0.1	\mathbf{Cu}	8.96	0.90

Energy at DUT location calculated with FLUKA, and measured with silicon detector

Comparison of energy deposition spectra obtained by Si diode measurements vs. FLUKA Monte Carlo simulation results for a 1 GeV/n Pb ion beam used at CERN.

Indirect energy measurement: through energy deposition (which does not scale linearly with energy)

Strong link to WP3

HEARTS 1st Annual Meeting - 6 February 2024

Direct energy measurement: energy scan to determine amount of material needed to fully stop the beam

Strong link to WP3

HEARTS 1st Annual Meeting - 6 February 2024

Beam energy/LET summary

Already largely achieved Not achieved, but in principle not critical (i.e. more of a "nice-to-have") or achievable within HEARTS High importance limitations not resolvable within HEARTS

- Excellent control and accuracy of beam energy/LET at DUT location, being able to vary the LET between ~10 and ~40 MeVcm²/mg (and even beyond, at the cost of a reduced range in matter)
- The capability of rapidly and easily tuning the beam LET through the energy over a large range and despite the single ion species is a key strongpoint of HEARTS@CERN
- Limitations at the low and high LET ends are mainly physics related (i.e. hard to do better than lead, though uranium does offer some improvement)
 - High LET limit imposed by range requirement (i.e. larger LETs would be possible, but the beam would no longer be as highly penetrating)
 - Low LET limit of 10 MeVcm²/mg imposed by large ion mass ideally, levels down to 1 (or even 0.1 MeVcm²/mg, see WP5 requirements) should be achieved to cover the full LET curve, and this would only be possible through lighter ions
 - Feedback from NSRL (through HEARTS Advisory Panel): users typically require around 5 MeVcm²/mg as lowest LET point

LET vs penetration trade-off – lead on silicon

Lower LET ions

- Lighter ions are being integrated in the CERN physics program (i.e. for LHC and the SPS North Area). However, these would be used **sequentially**, as it takes several weeks to change between ions, which is not practical for radiation effects testing
- A quick (few hours max) change between ions would only be possible with a significant upgrade of the ion source and ion injector chain – synergies with other CERN activities for possible upgrade are currently being studied
- However, one could envisage changing rapidly between ions and protons, in such a way that users interested in performing both ion and proton testing "in one go", with protons only being used in the case of low (~10 MeVcm²/mg) LET sensitivity with ions
 - Possible development activities in this direction already in 2024

Beam Intensity and Flux

Amount of extracted beam controlled through RFKO gain

- Initial ion intensity in PS is "fixed" to 1e10 or 7e10 charges, but fraction of extracted beam can be controlled through the RFKO knob
- Large dynamic range between min and max flux achievable with this technique, and accurately measurable by the beam instruments
- Knowing the dependency of the extracted intensity from the PS to the RFKO gain, a variable gain during the spill could help make the flux more uniform within the spill

PS BCT trace with a low RFKO gain.

PS BCT trace with a high RFKO gain.

Amount of extracted beam controlled through RFKO gain

Flux calibration for different energies

Flux as a function of XSEC070 plot.

Calibration factor for XSEC070 as a function of kinetic energy.

SEC70

27

Repeatability

Examples below are "good" cases of repeatable intensity versus RFKO gain independently of super-cycle composition, and low spill-to-spill variability within a run – not always the case in 2023 (also because it was not always considered as objective), but we are confident to achieve it more systematically in the future

Extracted charges during a typical spill of 580 [ms]² as a function of RFKO gain.

Sum of the uncalibrated intensity measured on XSEC070. This figure shows the run ID with the lowest intensity variability during the 2023 HEARTS run.

Flux per spill x spill frequency = flux per unit time

HEARTS 1st Annual Meeting - 6 February 2024

HEARTS

Intensity/flux summary

- Good control and accuracy of beam flux thanks to RFKO extraction, with RFKO gain as a knob
- Reasonably good spill-to-spill repeatability and predictable flux dependence on RFKO gain within given experimental campaign → some margin for improvement
- Large dynamic range of spill fluxes, from ~10² ions/cm²/spill to few 10⁵ ions/cm²/spill
- This is obtained with a relatively low transmission (i.e. number of ions arriving at DUT plane vs. number of extracted ions from PS), estimated at around 5-10% to be seen if this is intrinsic to the beam line and beam type, or if there is margin for improvement (possible sources of low transmission: BHZ02 not always degaussed; BHZ01 not in vacuum)
- Still, the spill duty cycle is quite short, as we only receive one ~300ms spill every 10-20s, which can be limiting, as the maximum average flux is lower than 10⁵ ions/cm²/s
- This is driven by the many PS destinations using beam during the same super-cycle
- One possibility for improvement could be to fit the slow extracted spill into one PS basic period, hence being able to significantly (to be quantified) increase the spills per super-cycle

LET and fluence combined → SEE cross sections

TABLE I BEAM ENERGY CONFIGURATIONS USED IN THE SEE TESTS.

Extraction energy [MeV/n]	Degrader PMMA thickness [mm]	Energy@DUT [MeV/n]	LET@DUT [MeV·cm ² /mg]
2000	0	1690	10.25
1500	0	1170	10.75
1250	0	910	11.75
1000	0	650	13.25
900	0	530	14.25
850	0	470	14.75
800	0	410	15.8
750	0	350	17.3
700	0	290	18.8
650	0	220	22.3
650	2	183	26.3
650	4	146	31.3
650	6	111	42.9
650	7	85	66.5

LET and fluence validation: SEU cross sections

Degraded energies from 750 and 1000 MeV/n, Cypress

LET and fluence validation: SEU cross sections

LET and fluence validation: SEU cross sections

Degraded energies from 750 and 1000 MeV/n, Renesas

HEARTS 1st Annual Meeting - 6 February 2024

Beam Profile

Tunable beam size through beam optics

Beam size measurement on OCTAVIUS array with a large optics at 1 GeV/u.

sum of all spills

Figure 23: Beam size measurement on OCTAVIUS array using a small optics (no collimator) at 2 GeV/u.

Good beam size agreement between measurements and simulations, which is important for further optimization

Strong link to WP3

Our approach is to use large, Gaussian beams and cut off the edges with a mask near the DUT

Beam profile summary

- The beams can be made large, but are Gaussian, meaning that the homogeneous flux region (e.g. within ±10%) is confined to the center of the beams
- The tails of the beam are not easily exploitable, as one would need to consider a flux and dosimetry as a function of the x-y position of the devices
- Therefore, the approach is rather to work with large Gaussian profiles, and cut the edges with a mask, **keeping only the central, homogeneous part**
- This is quite inefficient flux-wise, as we end up using only a small fraction of the beam (e.g. magnetic scanning [GSI] or octupole convolution of Gaussian into uniform beam [NSRL] are more efficient)
- Trade-off between homogeneity, beam size and flux, in which having large, homogeneous, high flux beam is not possible (nor is it foreseen to be within the HEARTS scope and timeframe)
- Still, we expect that a suitable working point can be found for most user tests

Physical access to experimental area

Residual dose levels

HEARTS

Summary of physical access to the experimental area

- HEARTS users can request the start/stop of the beam anytime, and independently to all other CERN users
 - Currently done by calling PS Control Room, but we are working on beam on/off button from user control room (as well as condition to stop beam after certain time or fluence)
- Reasonably **high activation levels in CHARM** due to proton-on-target operation and fact that ion run takes places at the end of the (operational) year
 - Hence the importance of working in low dose areas whenever possible, etc.
- These levels are not impacted by ion operation, therefore there is nothing to be gained by "waiting" after an irradiation, and the modification in the ventilation systems allows for access just ~5 min after beam off
- Access to internal area requires 1-day in-person controlled area Radiation Protection (RP) course (valid for 3 years, renewable online), plus an RP agent to join the access → this presently limits accesses to working hours (and, "standard" user operation requires frequent access)

Yearly schedule

HEARTS

HEARTS 1st Annual Meeting - 6 February 2024

Injector schedule in 2023

													End SPS-N Protons
I	Start Linac 3		Physics : HIE-ISO	start LDE	Aug	loi L	ns to EIR	lons to PS	Ions to protor SPS to Sep to	n beams LHC	Pb to	Physi ions LHC F LHC	ts start Pb ions t b ions SPS-NA
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	* → 3	10	\diamond	17 🔶 24			14	21			♦ 11		Ded. Pb Comm 8:00 - 20:00 25
Tu		♦	<	\diamond	\diamond	♦			♦	Ded. Pb Comm 8:00 - 20:00	Ded. Pb Comm 8:00 - 20:00		*�
We	Ded. Inj. MD 8:00 - 18:00	Ded. Inj. MD 8:00 - 18:00	Par. PSB/PS MD 8:00 - 18:00	Ded. Inj. MD 8:00 - 18:00	Ded.Inj. MD 8:00 - 18:00	Ded. Inj. MD 8:00 - 18:00	¥	m Ded. Inj. MD 8:00 - 18:00	m Ded. Inj. MD 8:00 - 18:00	Ded. Pb Comm 8:00 - 20:00	Ded. Pb Comm 8:00 - 20:00	Ded. Pb Comm 8:00 - 20:00	
Th	Par. SPS MD 8:00 - 18:00	♦	adMa	Par. SPS MD 8:00 - 18:00	WAKE	Par. SPS MD 8:00 - 18:00			Par. Pb Comm. 8:00 - 20:00	Jeune G	\diamond	Par. SPS MD 8:00 - 18:00	DSO test lons
Fr	\diamond		HIH		A	A		≝	Par. Pb Comm 8:00 - 20:00	4	LHC MD Prep. 8:00 - 18:00		Rad. Survey
Sa								KE					
Su								AWA					

Physi SPS-NA	cs start A Pb ions	Pb io	ns to PS-EA	End Physics ru LHC, Pb ions NA ISOLDE, nTOF	n @ 06:0 , AWAK En , EA p+ @ NOv	nd EA Pb ions 08:00	End Physics run L4,PSB,PS) AD	@ 06:00 ELENA	Dec		End Phys CLE/	sics run AR	
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Мо	\$ ∕> ₂	9	♥ Par.SPS MD 8:00 - 18:00 16	23	Ded. L4 & PSB high beam	0 6	13	20	2	7	å ar B	11 18	2
Tu	\diamond				30.10 @06:00 01.11 @06:00	ics tests	aning BAR	BAR	BAR	aning BAR	nine for GF		
We		4	19669	Ded. Inj. MD 8:00 - 18:00		- run	phys ss run sics for Gl	5 run for G	s run sics for G	P run rsics for G	es run sics th H-	<u>si</u> 2	CS LUD
Th	Par. SPS MD 8:00 - 18:00	da ke			runni runni	+ Phy ser/o	/inter Physic + Phy Ser/c	siver H H H H	Phwise Aser/6 + Phy th H-	Phylis Aser/is th H-	Phvis Aser/6 + Phy VA wi	H Ph	Annual
Fr			A		gen te er/e-	GIE4 GIE4 3 + LE	ILDE V BASE GIF4 VA WI	<u>BASE</u> GIFI NA wi	BASE AKE LV GIE- NA wi	BASE GIE4 VA WI	BASE GIE4 ELEA	U	dosure
Sa					E win Bhys 3 Ow (F Las	ISO AW/	ELEN ISO	E	ELE AW	ELE A			
Su					Inac Sold Sold Sold Sold Sold Sold Sold Sold								

Injector schedule in 2024

	Jul Hit	sics start E-ISOLDE		Pb to	lons LEIR Aug			Pb lons to PS	Sep ^{to}	lons SPS	End 2 [0	15 ns run Stan 8:00] p-p i	rt LHC Pb ions t ref run SPS-NA
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	1	♦ 8				5	12	19		Par. Pb Comm. 8:00 - 18:00 2	ء 🔶	16	
Tu		♦	♦	♦				♦	\diamond	Par. Pb Comm. 8:00 - 18:00	♦	أ	
We	Par. PSB/P5 MD 8:00 - 18:00	m Ded.inj. MD 8.00 - 18:00	0 Ded. inj. MD 8 00 - 18:00	Ded. Inj. MD 8:00 - 18:00	/ KHE ME A	Par. PSB/PS MD 8:00 - 18:00	Par. PSB/PS MD 8:00 - 18:00	Ded.inj. MD 8:00 - 18:00	Ded. Inj. MD 8:00 - 18:00	Ded. Pb Comm 8:00 - 18:00	Ded. Pb Comm 8:00 - 18:00	Ded. Pb Comm 8:00 - 18:00	Ded. Inj. MD 8:00 - 18:00
Th	adMa	Par.SP5 MD 8:00 - 18:00	Par.SP5 MD 8:00 - 18:00	MAKE HRM test		dMat	dMa	Par.SP5 MD 8:00 - 18:00	Par. SP5 MD 8:00 - 18:00	Jeune G	Par.SP5 MD 8:00 - 18:00	LHC MD Prep. 8:00 - 18:00	DSO test lons
Fr	Hill	₹	₹	LHC MD Prep. 8:00 - 18:00		HIRA	HIR	₹	₹		₹	7//////	Rad. Survey
Sa	0				~~~~~		8					Section 1	•/////
Su													

End Physics

Physics SPS-NA Pb	start Pb i ions Oct to L	ons Physics s HC LHC Pb in	tart Physics ons PS-EA P	start End o b ions [06	f run ^{00]} OV				Dec				
Wk	40	41	42	43	44	45	46	47	48	49	50	51	52
Мо	XX////>		LHC MD Prep. 8:00 - 18:00 14	1 21	¥ 28	4	11	18	25	2	9	16	23
Tu	84///	\diamond	UNE KAD'S		Rad. Surve y								
We	Ded. Inj. MD 8:00 - 18:00	•	Ded. Inj. MD 8:00 - 18:00										
Th	Par.SP5 MD 8:00 - 18:00							EYI	TS				Annual Closure
Fr	<i>\$\$1117</i> 7	LHC	Pb-Pb										
Sa		SPS-NA F	Pb ions run										
Su	•												

Yearly schedule summary

- Ions are typically present in the PS for ~2 months per [operational] year (September, October)
- As of the moment ions are setup in the PS, HEARTS@CERN ion beam commissioning can start, especially thanks to the option of sending ion beams to the East Area dump (i.e. no direct interference with T8)
- Beams can also start to be sent to T8 during a few hours per week, which is very useful for the commissioning (and which relies on very strong coordination with IRRAD and CHARM)
- However, this is typically only the case for a few weeks, as the installation of the cryostat in IRRAD, which is incompatible with ion operation, typically takes place soon after the ions are setup → this constraint could be removed by moving the DUT location further upstream
- The IRRAD and CHARM facilities are heavily overbooked for detector and accelerator sensors and electronics, with no margin to expand ion runs
- In other words, substantially increasing the high-energy heavy ion beam time would require a dedicate ion beam line and experimental area (which would also significantly alleviate the RP – and related access - constraints)

In summary...

- We are, already at this stage, confident in being able to offer electronics testing users LET and flux values in a large enough range, and with the necessary level of accuracy
 - Still, we are somewhat limited on the high average flux end, mainly due to the low transmission and low repetition rate
 - The lowest LET might be too large for some applications combining high-energy ions with high-energy protons in same experimental campaign could at least partially mitigate this, as fast changes between ions is not foreseeable in the near future
- Given the Gaussian profile of the beam and despite its large size (e.g. in terms of FWHM), the surface we can cover with a homogeneous flux (~5 cm side) is not enormous – larger areas will be investigated, at the cost of lower fluxes
- Exploitable beam time for user testing is currently quite limited, mainly due to 2 weeks of ion beams per year constraint, but also due to accesses currently only being possible during working hours (we are in touch with RP about possible solutions to alleviate this second constraint)
- We are confident in providing users with clear and user-friendly procedures to register for CERN access, arrange the shipment of their equipment, prepare their setups in a way that complies with the facility mechanical and electrical interfaces, etc., though the **commercial access procedure** is still to be defined (also work in progress, with dedicated taskforce to be kicked-off early this year)
- We very much look forward to 2024 and to having the points above assessed independently by external (to CERN) electronics testing users

Many thanks for your attention!

Funded by the European Union

HEARTS is a project funded by the European Union under GA No 101082402, through the Space Work Programme of the European Commission.

Beam commissioning in T8 on Sept 6th, 2023

50

Beam optics studies and measurements

51

Beam energy and flux operator GUI

CHIMERA/HEART	S Energy GUI	+ _ O X
Selector: CPS.USER.MD3 Bending angle [mrad]: 0.047 I Auto trim Dump magnets		Read B-field Current B-field = 2566.5 [G] Ekin = 0.75 [GeV/u] Brho = 17.986 [GeV/c]
New Ekin [GeV/u]: Range = [0.65 - 2.7]	Set Ekin	Set Dump Magnets
Start Ekin [GeV/u]: 0.65 End Ekin [GeV/u]: 2.7 Steps: 3 Repetition: 1 Start scan Stop scan		Error: Ekin out of range or non-float Progress: 0% Expected End Time:
New Gain: Range = [0.0 - 1.0]	Set Gain	

HEARTS energy and flux GUI

1000ms spill in development

HEARTS 1st Annual Meeting - 6 February 2024

PS ion intensity before extraction

HEARTS 1st Annual Meeting - 6 February 2024

Spill time profile quality

Spill time profile quality

HEARTS 1st Annual Meeting - 6 February 2024

Accumulated fluence at DUT location

HEARTS 1st Annual Meeting - 6 February 2024

SEE + detector setups, and degrader/mask system

