A tour of pulsar timing and PTA noise modeling
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A PTA data analysis pipeline
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Pulsar Average Profile with L and V
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Pulsar Time-Phase Plot
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Measuring phase and time of arrival
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Dispersion in the interstellar medium
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Two approaches to TOA generation

Narrowband Wideband
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From TOAs to timing residuals

ECom pute phase @ time ofarrm

Delay function: convert
observatory time to “pulsar time”

o= o0t 1)
/

Phase function: account for

rotation of the pulsar

Timing model =
\\delay function + phase function /

~

should be a (specific) integer

o h

/Z. Compute phase residual:

Phase @ time of arrival

Once the pulsar has been “phase connected”,
we can just use the nearest integer for n.

~

3. Convert phase residual to time residual:

At = 29

\_ P /




The phase function: spindown
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The delay function: clock corrections

UTCin TDB/TCB out
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Observatories rely on masers djlta_m_utc TCG detta_tdb_tt

and GPS satellites to keep
nanosecond-accurate time.



The delay function: position, parallax and proper motion

e Earth's orbit produces a sinusoidal change in path length = delay.

e Theamplitude of the sinusoid is determined by the pulsar’s ecliptic
latitude, and the phase by its ecliptic longitude. So pulsar timing can be

used to measure these precisely.

® Quadratic changes in distance across the orbit
allow parallax to be measured.
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The delay function: the Solar System ephemeris
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BayesEphem (Vallisnerietal. 2020)

Posterior probability density of GW stochastic-background amplitude, NANOGrav 11-yr dataset
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The delay function: binary orbit modeling

® Many MSPs are in binaries, so we have to
model their orbits too!

e Several different binary models are used,
depending on orbital eccentricity (often
very small, but still measurable) and

e/
: : R e ¢ ———=wal
inclusion of relativistic effects. NN %

® |nmost precise pulsars, necessary to
include “Kopeikin terms” (Kopeikin 1995,
1996) such as annual-orbital parallax.






The PTA “noise budget”

Noise sources:

Radiometer noise

Pulsejitter

Spin noise

Orbital variations

Dispersion measure variations
Interstellar scintillation
Solar wind

Solar system ephemeris errors
Polarization miscalibration
Clock corrections

RFI

Frequency
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Propagation, dispersion, scattering

Solar system
barycenter —

Clock

Receiver ?
L}

TOAs,
DMs,
Dynamic
spectra




Noise source Origin Time correlations Frequency dependence | Spatial correlations
or correlations

Pulse jitter Pulsar No (white) Yes (correlated) No

Spin noise Pulsar Yes (red) No (achromatic) No

Orbital variations Pulsar system | Yes (red) No (achromatic) No

DM variations ISM Yes (red) Yes (v?) No

Diffractive scintillation ISM No (white) Yes (V*, x=4) No

Solarwind Solar system Yes (red) Yes (v?) Yes (solar elongation)

Solar system ephemeris Solar system Yes (red) No (achromatic) Yes (dipolar)

Polarization calibration Telescope Either Yes (correlated) No

Clock corrections Telescope Yes (red) No (achromatic) Yes (monopolar)

RFI Telescope No (white) No (uncorrelated) No

Gravitational waves GW sources Yes (red) No (achromatic) Yes (quadrupolar)




Pulse jitter
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Spin noise

Some (if not all) pulsars have
intrinsic red noise due to
rotational irregularities
(changes in coupling between
the crust and interior, or
magnetic torque fluctuations).

This is more significantin
canonical pulsars, but does show
up at a lower level in MSPs.

Importantly, it is not correlated
between pulsars.
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DM variations

Dispersion measure (DM)
changes with time as a result of
changes to the electron density
along the line of sight.

To achieve high timing precision,
this effect must be removed
from the TOAs.

NANOGrav’s approach to this so
far has been to fit a piecewise
constant model (“DMX?).

ADM (1072 pccm®)
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The solar wind

® Onenotable source of DM
variations comes from close to
Earth: the solar wind.

® The effect of the solarwind on

DM is greatest when the line of
sight passes close to the Sun. PSR11744-1134

1.0 . DM variations (DM GP)

e The DM change can be
predicted, assuming a

0.5 1

A DM (1073 p/cm3)
&

spherically-symmetric, static

wind. But reality is more
complicated.



Interstellar scintillation

In addition to being dispersed, pulsar emission is
also scattered by density fluctuations in the ISM.

This leads to a characteristic pattern of brighter
and dimmer patches (“scintles”) as a function of

frequency and time.

Additionally, it leads to pulse broadening, which
is more pronounced at lower frequencies.
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The secondary spectrum and scintillation arcs

Frequency (GHz)

dynamic spectrum —> 2D Fourier Transform —> secondary spectrum
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The phenomenological white noise model

Covariance matrix of TOA residuals [CePoch(ty) 0 e 0
\ 0 Cepoch(t2) L 0
C = , . :
EFAC (F) is an overall scaling factor. 0 0 .. Cepoc.h (tn)
'Fz[ag/N(Vl);Q2]+j2 o J? T jz l
Cepoch _ 71 PR ) + @+ T2 - J
! J? J? F2log n(vn) + Q%1 + T7.

EQUAD (Q) represents systematic uncertainty not T
ECORR (J) introduces correlations within an epoch.

accounted for by the TOA estimation likelihood.




red_noise_logl0_A

Red noise modeling

e Wetypically treatred noise as having
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Sensitivity curves
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Conclusions: Getting better timing precision

® PTAsdont build our GW detectors, we find them in nature.

e That's great for our budgets, but makes understanding our
detectors harder.

e Theupsideisthatour “detector characterization” is also
astrophysics!

e Toachieve high timing precision, we have to understand all
the effects that compete with our signal, and remove them

to the best of our ability.



Thank you!




Then (2020) Now (2023)
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Current baseline is 2004-07-30 — 2023-03-08:
18.6 years!



White noise residuals Red noise residuals

Radiometer noise Pulse Jitter DISS Spin noise + DM Va;i?flons +GWs (jthPaSt'c)



