PTA Workshop, University of Pittsburgh

Multi-messenger Science with Supermassive Black Hole Binaries

Tingting Liu West Virginia University

Credit: NASA GSFC/Scott Noble

Credit: NANOGrav/Tonia Klein

Outline

- Electromagnetic signatures of SMBHBs
 - Theory and observations

Outline

- Electromagnetic signatures of SMBHBs
 - Theory and observations
- Simultaneous EM-GW observations of SMBHBs
 - Multi-messenger science with PTAs

a cosmic dance for two (supermassive black holes)

kpc ~ size of a galaxy pc ~ distance between stars milli-pc ~ distance light travels in ~1 day

Anatomy of an SMBHB

Adapted from d'Ascoli+2018 see also: Farris+2014, Muñoz & Lai 2016, Tang+2017, Bowen+ 2018, Paschalidis+2021, Combi+2022, Avara+2023 ...

Credit: NASA GSFC https://www.youtube.com/watch?v=i2u-7LMhwvE

Electromagnetic signatures

Spectra

EM imprint of the disk structure

also: BH-disk impact (e.g., Lehto & Valtonen 1996), tidal disruption by an SMBHB (e.g., Ricarte+2014), microlensing (e.g., Millon+2022)

Variability (light curves)

EM imprint of the orbital motion

 OJ 287 – "Rosetta stone" of SMBHBs? Theory

Valtonen+2016

Predicts: pair of flares due to BH-disk impact

• OJ 287 – "Rosetta stone" of SMBHBs?

Theory

Predicts: pair of flares due to BH-disk impact

• OJ 287 – "Rosetta stone" of SMBHBs?

Predicts: pair of flares due to BH-disk impact

OJ 287 – "Rosetta stone" of SMBHBs?

Theory

Observations

2000

50000

55000

Predicts: pair of flares due to BH-disk impact

OJ 287 – "Rosetta stone" of SMBHBs?
 Theory C

Predicts: pair of flares due to BH-disk impact

Valtonen+2008a (outburst in 1983)

OJ 287 – "Rosetta stone" of SMBHBs?

Theory

Observations

Predicts: pair of flares due to BH-disk impact

• OJ 287 – "Rosetta stone" of SMBHBs?

Theory

OJ 287 – "Rosetta stone" of SMBHBs?

Theory

Predicts: pair of flares due to BH-disk impact

OJ 287 – "Rosetta stone" of SMBHBs?

Theory

OJ 287 – "Rosetta stone" of SMBHBs?

Theory

Binary parameters

Table 2. Independent and Dependent Parameters of the BBH System in OJ 287 According to our Orbit Solution					
(1)	Parameter (2)	Value (3)	Unit (4)	Error (5)	
	m_1	18348	10^6M_{\odot}	±7.92	
	m_2	150.13	10^6M_\odot	± 0.25	
	χ_1	0.381		± 0.004	
	h	0.900		± 0.001	
Independent	d	0.776		± 0.004	
	$\Delta \Phi$	38.62	deg	± 0.01	
	Θ_0	55.42	deg	± 0.17	
	e_0	0.657		± 0.001	
	$\gamma_{ m obs}$	1.304		± 0.008	
Derived	$P_{ m orb}^{2017}$	12.062	year	± 0.007	

0.00099

 $\dot{P}_{\rm orb}$

Predicts: pair of flares due to BH-disk impact

Dey+2018

 ± 0.00006

Relativistic beaming

Predicts: smooth, quasi-sinusoidal light curve profile, UV-optical variability amplitude ratio

Observations

D'Orazio+2015 (CRTS light curve from Graham+2015a, UV light curves from GALEX)

Relativistic beaming
 Theory

Predicts: smooth, quasi-sinusoidal light curve profile, UV-optical variability amplitude ratio

Binary parameters

D'Orazio+2015

Binary self-lensing

Theory

Hu+2020 (Kepler/K2 light curve from Smith+2018a)

Binary self-lensing

Theory

Binary parameters

Parameter	Meaning	Spikey
v_z [c]	velocity of barycenter along line of sight	$-0.003^{+0.000}_{-0.001}$
ω [rad]	argument of periapse	$1.387\substack{+0.026\\-0.034}$
e	eccentricity	$0.579\substack{+0.011\\-0.010}$
T [yrs]	period	$1.155\substack{+0.011\\-0.011}$
I [rad]	inclination	$1.410\substack{+0.008\\-0.008}$
$M_1~[M_\odot]$	mass of primary BH	$3.281^{+0.393}_{-0.330}\times10^{7}$
$M_2 \; [M_\odot]$	mass of secondary BH	$2.101^{+0.420}_{-0.419}\times10^{7}$
f_L	luminosity ratio	$0.575\substack{+0.419 \\ -0.392}$
t_0 [yrs]	arbitrary reference time	$1.702\substack{+0.011\\-0.011}$
lpha	spectral index	$0.825\substack{+1.001\\-2.575}$

Table 1. Light curve best-fit model parameters and assumed priors.

Hu+2020

Predicts: sharp flares

Binary-modulated accretion
 Theory

Observations

Predicts: bursty, `sawtooth' light curve profile

Liao+2020 (DES+SDSS)

Binary-modulated accretion

Systematic searches for periodic AGN in time-domain surveys – hundreds of candidates

Systematic searches for periodic AGN in time-domain surveys – hundreds of candidates

a gravitational wave siren song

Multi-messenger SMBHB searches

- Targeted searches
 - Searching for GWs at the known sky location of the (EM-identified) source
 - Using known source parameters (e.g. mass, frequency) as priors
 - Combining GW and EM information

Multi-messenger SMBHB searches – upper limits

Targeted searches increase PTA sensitivity by ~ an order of magnitude

 Targeted searches increase source *detectability and parameter measurability* by ~ an order of magnitude

 Targeted searches increase source *detectability and parameter measurability* by ~ an order of magnitude

 Targeted searches increase source *detectability and parameter measurability* by ~ an order of magnitude

 Targeted searches increase source *detectability and parameter measurability* by ~ an order of magnitude

 Targeted searches increase source *detectability and parameter measurability* by ~ an order of magnitude

 Targeted searches increase source *detectability and parameter measurability* by ~ an order of magnitude

 Targeted searches increase source *detectability and parameter measurability* by ~ an order of magnitude

Individual sources may be detectable within the next few years – decade

 Next-generation PTA experiment with the Deep Synoptic Array-2000 (~2026–) will significantly enhance single source detection prospects

~150 millisecond pulsars (~2x NANOGrav) with ~400 ns timing noise (~1/2x NANOGrav)

- Targeted observations of an intermediate-SNR source
 - Measurement uncertainty of GW amplitude~20%
 - EM: ~100%
 - GW frequency: ~0.5%
 - EM: a factor of a few no constraints

- Targeted observations of an intermediate-SNR source
 - Measurement uncertainty of GW amplitude~20%
 - EM: ~100%
 - GW frequency: ~0.5%
 - EM: a factor of a few no constraints

Understanding binary accretion with multi-messenger observations

- Accretion onto binary is periodically modulated by binary orbit
 - -> Observable AGN periodicity at ~binary orbital frequency
- Dependence of accretion pattern on mass ratio

-> Need GW info to break degeneracy (and test predictions)

Takeaways

- SMBHBs (binary AGN) are variable, multi-wavelength, and multi-messenger objects
- The science of SMBHBs is rich
 - The role of mergers in SMBH growth
 - Laboratories for accretion physics in dynamic spacetimes
 - EM counterparts to low-frequency GW sources
- 2020s/2030s will be the golden age for studying SMBHBs
 - Rubin LSST
 - DSA-2000
 - Joint EM-GW observations

