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Recently NANOGrav, the EPTA, the InPTA, the PPTA, and the CPTA all published
papers where they present evidence for a gravitational wave background.
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Figure credit: G. Agazie et al. (The NANOGrav Collaboration), ApdL 951, L8 (2023).



The NANOGrav 15-year Data Set

Leads: Joe Swiggum and Thankful Cromartie

68 pulsars observed for up to 15.9 years
(67 pulsars used for GW searches).
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Figure credit: G. Agazie et al. (The NANOGrav
Collaboration), ApdL 951, L8 (2023).




Pulsar Timing
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Observed times of arrival are fit to a
timing model to produce residuals.
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Figure credit: G. Agazie et al. (The NANOGrav
Collaboration), ApdL 951, L9 (2023).




Pulsar Timing

Dispersion
J1 999 — 3744 GAsp : GUPPI/YUPPI measure

v

e Rcsiduals

{  NBDMX
' WB DMX

2 - . e -

variations

NB & WB DMX
103 pc cm ]

All NB TOA
Residual [us]
|
=
| |

|
\®)
-
|

(S}
|

Avg. NB TOA
Residual [us]
-

1

\ Averaged

residuals

|
)
I




Pulsar Timing
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Pulsar 1 Pulsar 2 Pulsar 3
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GWB Signal Model

Gravitational waves induce correlated
changes in the pulse times of arrival
(Hellings & Downs, 1983).
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Figure credit: J. Hazboun



GWB Signal Model

Gravitational waves induce correlated changes in the pulse times of arrival

(Hellings & Downs, 1983).
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Figure credit: J. Hazboun
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Correlated Noise Sources

Some noise sources can induce a
common spatially-correlated signal
(clock error, ephemeris error, etc.)
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Non-Einsteinian Polarization Modes

——— P°'ay”zat;°“ In GR, there are only two GW polarizations. Alternate
e theories of gravity may allow other polarizations to exist.

P TAs can put constraints on the power in alternate
polarizations (Chamberlin & Siemens 2012; Cornish,

O’Beirne, Taylor, and Yunes 2018)
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Figure credit: C. Will (2014)



Evidence for HD Correlations

Leads: Sarah Vigeland and Stephen Taylor

y varied
Bayesian analyses prefer a common red
process with HD correlations. ~
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Bayes factors calculated using thermodynamic integration, product space sampling.

Figure credit: G. Agazie et al. (The NANOGrav Collaboration), ApdL 951, L8 (2023).
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Evidence for HD Correlations

0.8 Frequentist optimal statistic
06 used in two ways:
0.4 (1) detection statistic
IS (2) binned estimator
EJ) 0.2

Binned estimator (left)
iIncludes pair covariance
(Allen & Romano 2023).
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Figure credit: G. Agazie et al. (The NANOGrav Collaboration), ApdL 951, L8 (2023). 13



HD Correlation Significance

The false alarm probabilities are *10-3 (3o Gaussian-equivalent) for the Bayesian
analysis and ~10-4 (40 Gaussian-equivalent) for the frequentist analysis.
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Spectral Characterization

Hellings—-Downs spectrum Evidence of a common
Power-law posterior spectrum process with HD
correlations.

6

== == Median power-law amplitude; Y= 13/3

Spectrum transitions to flat at
S\ \ ~28 nHz (14 freq bins).
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Figure credit: G. Agazie et al. (The NANOGrav Collaboration), ApdL 951, L8 (2023). 15



Spectral Characterization

Under default data model, the power-law PSD exponent prefers <13/3
(circular SMBBHS).

Power-law parameter posteriors consistent when using different DM
models, but using DMGP results in steeper spectral index.
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Figure credit: G. Agazie et al. (The NANOGrav Collaboration), ApdL 951, L8 (2023).




Cross-Validation: Dropout Analysis

A dropout factor measures how much each
individual pulsar supports the presence of
the common signal.

The analysis shows support for an
uncorrelated common process in 20 pulsars
(dropout factors > 2), while only one pulsar
has a dropout factor < 0.5.
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o o 0 o show support (dropout factors > 2) while

log, (Dropout Factor) three have a drOpOUt factor < 0.5.

Figure credit: G. Agazie et al. (The NANOGrav Collaboration), ApdL 951, L8 (2023). 17



Cross-Validation: Telescope Comparison

We split the data into two data sets: one containing only observations made
with Arecibo, and one containing only observations made with Green Bank.
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Both show evidence of a common
process. Both show evidence of HD
correlations at a reduced
significance than the full data set.

Arecibo: S/N 2.9
GBT: S/N 3.3
Full data set: S/N 5.0

he NANOGrav Collaboration), ApdL 951, L8 (2023). 18



Evidence for an

Additional Correlated Process

CURN
HD

log; \/‘1)2 / s

Figure credit: G. Agazie et al. (

Some evidence that a monopole-correlated signal is
present in addition to a HD-correlated signal.

Multiple component optimal statistic analysis
(Sardesai & Vigeland 2023) shows preference for HD
+ monopole correlations over HD only.

Bayesian analyses have BF ~1-10 for

monochromatic-monopole signal at f=4 nHz in
addition to HD-correlated signal.

he NANOGrav Collaboration), ApJdL 951, L8 (2023).
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Implications for SMBBHSs

Observed PSD is consistent with a GWB
produced by SMBBHSs

Some preference for interacting models
versus GW-only evolution models

Amplitude is high, but within the range of
expectations. Implies some combination of
relatively high masses, high rates of galaxy

{---15yr: HD-DMGP

et N T T mergers, and efficient binary inspiral
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Figure credit: G. Agazie et al. (The NANOGrav Collaboration), ApdL 952, L37 (2023). 20



Implications for New Physics

| eads: Andrea Mitridate and Kai Schmitz
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Figure credit: A. Afzal et al. (The NANOGrav Collaboration), ApdL 951, L11 (2023). 21




Limits on Anisotropy

Lead: Nihan Pol

A GWB from SMBBHs should have some

amount of anisotropy since it is made up

S Ty LB of GWs from a finite number of individual
o f3=5.9nz o o fa=7.9 nHz o bmanes

We place limits on the anisotropy of the
GWB using the 15yr data set.
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Figure credit: G. Agazie et al. (The NANOGrav Collaboration), ApdL 956, L3 (2023). 22



GWs from Individual SMBBHs

Leads: Bence Betsy and Neil Cornish

| —— CURN+CW vs. CURN
| —— CURN-+CW vs. CURN (w/o J1713+0747)

We searched for GWs from

10°- HD+CW vs. HD E
= § g individual SMBBHS in circular
g 01 J1713+0747 binary period E orbits.
; o WF__F__ No significant evidence for
| i GWSs from individual SMBHBs
17 M U S A N S S IR in addition to a GWB.
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Figure credit: G. Agazie et al. (The NANOGrav Collaboration),
ApdJdL 951, L50 (2023).
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We coordinated the release of 18 papers from

NANOGrayv, the EPTA, the InPTA, the PPTA, and the CPTA.
arXiv:2306.16213 to 2306.16230

'he NANOGrav 15-year Data Set: Evidence for a Gravitational-Wave Background

'he second data release from the European Pulsar Timing Array lll. Search for gravitational wave signals

» Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array

. Searchmg for the Nano-Hertz stochastic Gravitational wave background with the Chinese Pulsar Timing Array Data Release |
'he NANOGrav 15-year Data Set: Observations and Timing of 68 Millisecond Pulsars

- The NANOGrav 15-year Data Set: Detector Characterization and Noise Budget

- The NANOGrav 15-year Data Set: Search for Signals from New Physics

- The NANOGrav 15-year Data Set: Constraints on Supermassive Black Hole Binaries from the Gravitational Wave Background
- The NANOGrav 15-year Data Set: Search for Anisotropy in the Gravitational-Wave Background

- The NANOGrav 15-year Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries
- The NANOGrav 15-year Gravitational-Wave Background Analysis Pipeline

ne second data release from the European Pulsar Timing Array |. The dataset and timing analysis

ne second data release from the European Pulsar Timing Array |l. Customised pulsar noise models for spatially correlated
gravitational waves

- The second data release from the European Pulsar Timing Array IV. Search for continuous gravitational wave signals

- The second data release from the European Pulsar Timing Array V. Implications for massive black holes, dark matter and the
early Universe

The second data release from the European Pulsar Timing Array VI: Challenging the ultralight dark matter paradigm

The Gravitational-wave Background Null Hypothesis: Characterizing Noise in Millisecond Pulsar Arrival Times with the Parkes
Pulsar Timing Array

» The Parkes Pulsar Timing Array Third Data Release
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log19 ASD, (sect/?)

The IPTA has submitted a paper comparing the GWB results from

the EPTA+INPTA, NANOGrav, and PPTA data sets.
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Figure credit: G. Agazie et al. (The IPTA Collaboration), arXiv:2309.00693
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Conclusions
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o \;zy-’/ Y 1 The NANOGrav 15-year data set shows evidence of
Pl e HD correlations with false alarm probabilities of 103 to
Separation Angle Between Pulsars, &, [degrees] 10-4 (3_40- GaUSS|an eqU|Va|ent)

- 4 This signal extends over low frequencies (2 - 28 nHz),
| R < and is consistent with an astrophysical population of
- ‘ SMBBHSs, but exotic sources cannot be ruled out.
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