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NANOGrav fundamentally relies on
“pulsar timing” for its GW project.

Pulsar timing is “so good” that you
can (and must!) study:

- astrometry

- Irregularities in spin

- dispersion variations

- pulsar-based timescales

- strong-field gravity

- variations in radio polarization

- mass and geometric information
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A Brief History of Neutron Stars

e Milestones for our understanding of neutron
stars and their interiors:

e 1933: neutron discovered : *
(J. Chadwick)

e 1934: neutron stars (NSs) proposed u
(W. Baade, F. Zwicky) \
e 1939: first equation of state (EoS) : ©

proposed (R. C. Tolman; J. R. e . | p
Oppenheimer & G. M. Volkoff) . .

e 1966: pre-observation summary of _ _
nuclear physics relevant to neutron Supernova in NGC4157, discovered by

stars (J. A. Wheeler) F. Zwicky in 1937
(Credit: CalTech / Palomar)

e 1967: first pulsar discovered!
(J. Bell-Burnell, A. Hewish)



History of NS-EoS Theory, |

Phase I- Low Density Regime
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At supra-nuclear densities (lll above), NSs are believed to consist of: unbound nucleons, strange-carrying
baryons (e.g., hyperons), quarks, Bose-Einstein condensates, etc. (Credit: M. Carmell.)



1

(
(

-
FC

»
5Q
SO
=
SQ

History of NS-EoS Theory, I
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Development of particle physics and QCD led to a diverse range of possibilities
for NS compositions, due to uncertainties in strong, many-body interactions.



History of NS Observations

e The first binary pulsar, PSR
B1913+16, found by Hulse &
Taylor (1975) to orbit another NS.

e Timing measurements yielded
orbital deviations explained by
general relativity (Taylor &
Weisberg, 1982).
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e Masses of both neutron stars
determined down to 0.003 solar
masses.

Orbital decay in PSR B1913+16
(Taylor & Weisberg, 1982)
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Radio Timing of Binary Pulsars

Pulsar timing: see talk by R. Jennings!

“Most robust” method of obtaining
macroscopic NS parameters.

mass uncertainties ~ 0.00001—0.1 solar
masses.

Common post-Keplerian effects:
*» orbital decay

* apsidal motion

* time dilation + gravitational
redshift Measurement of 6 PK effects in

the double-pulsar system

* the Shapiro time delay (Kramer et al., 2021)
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Bill Saxton (NRAO/AUI/NSF)



Optical Spectroscopy of WD
Companions to Binary Pulsars

e White dwarfs (WDs) that are bright enough
(magnitude < 23) can be observed with
spectrographs.

e Doppler shift of emission lines —> projected
radial velocity —> mass ratio (when
combined with radio timing).
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e Additional WD parameters (e.g., surface
gravity and temperature from shape of
spectral features, radius from WD-EoS
models) can be obtained, but these are
model-dependent.

e NS mass uncertainties ~ 0.1 Msun or larger. Observed and models hydrogen
Balmer lines in the WD companion to

PSR J1911-5958A (Bassa et al., 2006c¢)



Optical Modeling of "Black
Widow” Pulsars

JOA52-0607

o

Redicual Magnitude
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Orbital Phase Orhital Phease

Similar observations can be conducted for “black-widow” pulsars, where modeling
of spectral features and light-curve variations (the latter being model-dependent)
have been shown to yield mass and geometric information. (Above: Romani et al., 2022.)




Modeling GW Waveforms

Normalized amplitude
2 4

* Gravitational waves (GWs) have e
been detectable with LVK as of
2015.

LIGO-Livingston

 Waveform modeling can
account for point-particle and
spin effects to measure
component masses.
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Virgo

e [idal deformability can be
observed as departure in late-
time orbital decay of inspiral —> 0 o
direct constraint on radius. Time (seconds)

Detection of GW170817 (Abbott et al., 2017a)



The Neutron Star Interior Composition Explorer (NICER) recently measured
the mass and radius of PSR J0030+0451 - - through
X-ray lightcurve modeling (e.g., Miller et al., 2019; Riley et al., 2019).
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NS-Mass Summary & Statistics

JO740--6620 residuals

e There are ~60 NS masses Full relativistic wodd
measured (53 come from radio-
timing / WD modeling).
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e All precise measurements (5% or
better) come from timing.
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* majority of these come from
the Shapiro time delay.

e There are clear trends that , .
Al 1.2 .4 HKi
correlate with companion types Orbital phase

(and therefore evolutionary

history). Shapiro delay in the PSR J0740+6620
binary system (Cromartie et al., 2020;
Fonseca et al., 2021).




NS Masses from Timing

J0740+6620
I
I
1 | I I
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X grid of Shapiro parameters obtained using mass function
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Mass and geometry from the Shapiro time delay in PSR J0747+6620
(Cromartie et al., 2020)




NS Masses from Optical Modeling of
WD Companions
N

\ rocaobility density
Pulsar Mass (M) '

Constraints from spectroscopic measurements (red circles) for
WD companion to PSR J0348+0432 (Antoniadis et al., 2013)
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Mass distribution of neutron stars in binary pulsar systems
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Pulsar Mass Summary

Mass distribution of neutron stars in binary pulsar systems
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Credit: V. V. Krishnan, P. C. C. Freire




Masses In the Stellar Graveyard
LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes EM Neutron Stars




Black-Widow Masses

PSR B1957+20

e Black-widow masses from
radio+optical measurements:

Weighted Counts

e B1957+20: (2.4 +/- 0.1) M,

[van Kerkwijk et al., 2011]
0.00 025 0.50
Orbital Phase

[Linares et al., 2018]
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e Recent work indicates that gamma-
ray constraints on inclination in
these systems produce inconsistent
results:

P
-

Weighted Counts

N
~
| S

—0.25 0.00 0.25 050 0.75
Orbital Phase

e B1957+20: (1.81 +/- 0.04) M,
Clark et al. (2023)
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Census of Pulsar Masses

CNS syatara
BN non-recycled FSR
(second—born NS)

B recycled PSR

(“irst=20orn NS)

Likelihood

Number

HMXBs +
slow PSRs

reeysled PSR?
NS/WE ?

1.2 1.4 16 1.8 20 14 15 16 17 18

Mass (M. )

NS mass  (Mg)
5 [ O B

KR5+WD systems

B non recycled FSR

recycled PSR

Numner

1
15 16 1.7

NS moss fMe )

Ozel et al. (2012) Tauris et al. (2017)



NS/WD Masses & Correlations

Fonseca et al. (2016) Nadi¥L il
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204341711 '
F]1910-5959A  —@— Binary pulsars with low-mass WDs
—a—i & 10247-25B i :
J1012+5307 tend to exhibit correlations between
&Y 11738+0333 orbital parameters that arise after
J0751-1807 long-term mass transfer.(Red points:

101 § D3e+0432 obtained by NANOGrav.)
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High-mass NSs Constrain EoSs

WEF? AP4 L’ g

| PSR J0348+0432

11 12

Radius (km)

High-mass NSs are most valuable for EoS science since all EoSs terminate at a
specific, maximum NS mass. (Credit: N. Wex, P. C. C. Freire.)




NANOGrav+NICER Constraint on
the Radius for PSR J0740+6620

mp = 2.08 £ 0.07 MQ . APR

- HLPS soft
HLPS int.
HLPS stiff

— 1.30
_R,=12395 %R,
\‘

11 12 13 14 15
Radius (km)

NANOGrav measured the mass of PSR J0740+6620 to ~4% (left; Fonseca et al., 2021),
which was then used by NICER to directly measure the radius to ~10% (right; Riley et al., 2021).



Multi-Messenger EoS Constraints

Prioreonstruction

A Chiral effective fie'd theorys
ELYS derives with the <hus EF1

e NS-mass measurements are
growing in number due to
multi-messenger
opportunities.

e The union of high-mass
outliers and radii
measurements allow for
unprecedented EoS tests (see
right).

Use of radio-timing/X-ray/GW measurements
or limits on NS mass/radius to constrain EoS
(Dietrich et al., 2020)



Conclusion & Future Prospects

NANOGrav will produce more Shapiro-
delay measurements, fold in non-
timing constraints on companion mass
and inclination (e.g., scintillation).

Next-generation radio observatories
will yield 50-100 more Shapiro-delay
measurements.

Long-term timing of DNS systems will
yield first measurement of NS moment
of inertia (e.g., Kramer et al., 2021).

Next-generation X-ray observatories
expected to yield ~20 NS radii.

Constraint on the moment of inertia for
PSR J0737-3039A (Kramer et al., 2021).



