PULSAR TIMING PROBES OF SMALL SCALE STRUCTURE

HARIKRISHNAN RAMANI STANFORD

ARXIV:1901.04490 WITH JEFF DROR, TANNER TRICKLE, KATHRYN ZUREK ARXIV:2005.03030 WITH TANNER TRICKLE, KATHRYN ZUREK

DARK MATTER

- Overwhelming evidence for Dark Matter (DM)
- Only through Gravitational Interactions
- Direct/Indirect/Collider efforts set stringent limits
- Nightmare Scenario: Only Gravitational Interactions

PROBING THE NIGHTMARE SCENARIO

- Extremely difficult
- Could learn about underlying particle physics purely from gravity?
- Look for gravitationally collapsed structure, substructure etc

HIERARCHICAL STRUCTURE FORMATION

- Over-densities predicted by primordial power spectrum P(k)
- Collapse when reaching criticality
- Comoving wavenumber k determines mass of collapsed structure
- Smaller structure collapse first, act as seeds for larger structure
- Smallest structures (clumps/substructure/minihalos) can make up intra-galactic structure

WHAT DO WE KNOW TODAY? WHAT CAN BE GLEANED IN THE FUTURE?

LOW MASS HALOS: DIFFICULT

ACDM+SCALE INVARIANT POWER

ACDM+SCALE INVARIANT POWER

ACDM+EXCESS POWER

HALO MASS FUNCTION

LARGE SUBSTRUCTURE AT SMALL SCALES?

- Enhanced Primordial Power Spectrum
- Long Range Self-Interactions Earlier collapse
- Early Matter Domination
- Strong short-range interactions (SIDM) + Gravothermal Collapse
- Dissipative Dark Matter
- Dark Nucleosynthesis

HOW TO LOOK FOR?

- Usual Answer: Lensing.
- Lensing only sensitive to extremely dense halos
- PBHs/MACHOS/Stars
- More diffuse objects?

PULSAR TIMING ARRAYS

PULSAR TIMING

- Phase: $\phi(t) = \phi_0 + \nu t + \frac{1}{2}\dot{\nu}t^2 + \frac{1}{6}\ddot{\nu}t^3 + \dots$
- ν ~ kHz
- $\dot{\nu}/\nu$ ~ 10⁻²³ to 10⁻²⁰ Hz
- $\ddot{\nu}/\nu$ < 10⁻³¹ Hz², not included in fits
- After fitting away the period and derivative, residuals are remarkably small* (and stable).

$$t_{\rm RMS} \equiv \sqrt{\frac{1}{N} \sum_n (t_n^{\rm data} - t_n^{\rm fit})^2}$$
 ~ 50 ns

*in reality, some other delays, shall describe a relevant few later

CONSIDER MONOCHROMATIC PBH DISTRIBUTION WITH MASS MPBH

That make up a fraction f_{DM} of the local DM density

DOPPLER DEL

- Recognize the ratio $\frac{\delta \nu}{\nu}$ is v_{rel}/c
- Thus sensitive to tiny accelerations

$$\left(\frac{\delta\nu}{\nu}\right)_D = \mathbf{\hat{d}} \cdot \int \nabla\Phi \ dt,$$

 velocity shape for a point object transit looks like:

$$\begin{pmatrix} \frac{\delta \nu}{\nu} \\ \nu \end{pmatrix}_{D} = \frac{GM}{v^{2}\tau_{D}} \frac{1}{\sqrt{1+x_{D}^{2}}} \begin{pmatrix} x_{D}\hat{\mathbf{b}} - \hat{\mathbf{v}} \end{pmatrix} \cdot \hat{\mathbf{d}}$$
Impact parameter
Signal period
Dimensionless time variable
$$|\mathbf{b}| = \tau v$$

DYNAMIC VS STATIC

Characteristic signal period

Dynamic if

 $\Delta t \ll \tau \ll T$

Cadence

Total Time of observation

Static otherwise

 $\tau \gtrsim T$

DETECTING DYNAMIC SIGNALS

- Similar to a bump hunt / LIGO signal / Microlensing signal
- Doppler leaves a permanent imprint
- Shapiro Blip (As we will see)
- SNR is a solved problem in signal processing.

Fourier transform of Signal

$$\mathrm{SNR}^2 = 4 \int_0^\infty df \frac{|\widetilde{h}(f)|^2}{S_{\dot{\delta}t}(f)}$$

Cadence ~ 2 weeks
$$\label{eq:cadence} \int S_{\dot{\delta t}}(f) \equiv 8\pi^2 t_{\rm RMS}^2 \Delta t\,f^2$$

PULSAR TERM VS EARTH TERM FOR DOPPLER

•

•

•

p

E

t parameter smallest for one lucky

tivity far higher for earth term

regrounds

BOUNDS FROM DYNAMIC SIGNALS (DOPPLER)

 At some Mass M, even the nearest PBH starts failing dynamic constraint.

$$f_{\rm D, \ dyn}^R \lesssim 3 \left(\frac{M}{10^{-7} M_{\odot}}\right) \left(\frac{200}{N_P}\right) \left(\frac{20 \ {\rm yr}}{T}\right)^3$$

Earth term has Np=1

BOUNDS FROM DYNAMIC SIGNALS (DOPPLER)

 At some Mass M, even the nearest PBH starts failing dynamic constraint.

$$f_{\rm D, \ dyn}^R \lesssim 3 \left(\frac{M}{10^{-7} M_{\odot}}\right) \left(\frac{200}{N_P}\right) \left(\frac{20 \ {\rm yr}}{T}\right)^3$$

Earth term has Np=1

BOUNDS FROM DYNAMIC SIGNALS (DOPPLER)

 At some Mass M, even the nearest PBH starts failing dynamic constraint.

$$f_{\rm D, \ dyn}^R \lesssim 3 \left(\frac{M}{10^{-7} M_{\odot}}\right) \left(\frac{200}{N_P}\right) \left(\frac{20 \ {\rm yr}}{T}\right)^3$$

Earth term has Np=1

SHAPIRO DELAY

- Similar to Sachs-Wolfe effect
- In frequency domain given by,

 $\left(\frac{\delta\nu}{\nu}\right)_S = -2\int \mathbf{v}\cdot\nabla\Phi \ dz$

For a point object,

t

BOUNDS FROM DYNAMIC SIGNALS (SHAPIRO)

• For small enough au_{\min} ,

$$\mathrm{SNR} = 4 \frac{GM}{c^6 t_{\mathrm{rms}}} \sqrt{\frac{T}{\Delta t}}$$

Low enough masses are simply incapable of producing signal
RHS just like before, f ~ M,

SHAPIRO SIGNAL SELDOM HAVE AN EARTH TERM: SAMPLING VOLUMES DO NOT OVERLAP

FRACTION VS M SCALING - DYNAMIC LIMIT

SIGNAL TO NOISE RATIO (STATIC SIGNALS)

Signal Duration \gg Time of observation

- Taylor expand signal
- A constant first derivative i.e. spin-down already observed (incalculable from first principles).
- Subtracted as part of the fitting procedure.
- Second derivative much less common.
- Non-observation of second derivative can be used to set constraints.

FRACTION VS M SCALING -STATIC

BARYONS

Parameter	Co	omponents ^a	Totals ^a
Dark sector:			0.954 ± 0.003
Dark energy	0.	$.72 \pm 0.03$	
Dark matter	0.	$.23 \pm 0.03$	
Primeval gravitational waves		$\lesssim 10^{-10}$	
Primeval thermal remnants:			0.0010 ± 0.0005
Electromagnetic radiation		$10^{-4.3\pm0.0}$	
Neutrinos		$10^{-2.9\pm0.1}$	
Prestellar nuclear binding energy		$10^{-4.1\pm0.0}$	
Baryon rest mass:			0.045 ± 0.003
Warm intergalactic plasma	0.0	040 ± 0.003	
Virialized regions of galaxies	0.024 ± 0.005		
Intergalactic	0.016 ± 0.005		
Intracluster plasma	0.00	0.00000000000000000000000000000000000	
Main-sequence stars: spheroids and bulges	0.00	015 ± 0.0004	
Main-sequence stars: disks and irregulars	0.000	055 ± 0.00014	
White dwarfs	0.000	036 ± 0.00008	
Neutron stars	0.000	005 ± 0.00002	
Black holes	0.000	007 ± 0.00002	
Substellar objects	0.000	0.00000000000000000000000000000000000	
H I + He I	0.000	062 ± 0.00010	
Molecular gas	0.000	0.00000000000000000000000000000000000	
Planets		10^{-6}	
Condensed matter		$10^{-5.6\pm0.3}$	
Sequestered in massive black holes	10	$^{-5.4}(1+\epsilon_n)$	

BARYONS

Parameter		Components ^a	Totals ^a
Dark sector:			0.954 ± 0.003
Dark energy		0.72 ± 0.03	
Dark matter		0.23 ± 0.03	
Primeval gravitational waves		$\lesssim 10^{-10}$	
Primeval thermal remnants:			0.0010 ± 0.0005
Electromagnetic radiation		$10^{-4.3 \pm 0.0}$	
Neutrinos		$10^{-2.9\pm0.1}$	
Prestellar nuclear binding energy		$-10^{-4.1\pm0.0}$	
Baryon rest mass:			0.045 ± 0.003
Warm intergalactic plasma		0.040 ± 0.003	
Virialized regions of galaxies	0.024 ± 0.005		
Intergalactic	0.016 ± 0.005	-	
Intracluster plasma		0.0018 ± 0.0007	
Main-sequence stars: spheroids and bulges		0.0015 ± 0.0004	
Main-sequence stars: disks and irregulars		0.00055 ± 0.00014	
White dwarfs		0.00036 ± 0.0008	
Neutron stars		0.00005 ± 9.00002	
Black holes		0.66007 ± 0.00002	
Substellar objects		0.00014 ± 0.00007	
H I + He I		0.00062 ± 0.00010	
Molecular gas		0.00016 ± 0.00006	
Planets		10 ⁻⁶	
Condensed matter		$10^{-5.6\pm0.3}$	
Sequestered in massive black holes		$10^{-5.4}(1+\epsilon_n)$	

BARYONS

Parameter		Components ^a	Totals ^a
Dark sector:			0.954 ± 0.003
Dark energy		0.72 ± 0.03	
Dark matter		0.23 ± 0.03	
Primeval gravitational waves		$\lesssim 10^{-10}$	
Primeval thermal remnants:			0.0010 ± 0.0005
Electromagnetic radiation		$10^{-4.3 \pm 0.0}$	
Neutrinos		$10^{-2.9} \pm 0.1$	
Prestellar nuclear binding energy		$-10^{-4.1\pm0.0}$	
Baryon rest mass:			0.045 ± 0.003
Warm intergalactic plasma		0.040 ± 0.003	
Virialized regions of galaxies	0.024 ± 0.005		
Intergalactic	0.016 ± 0.005		C1 11
Intracluster plasma		0.0018 ± 0.0007	Static
Main-sequence stars: spheroids and bulges		0.0015 ± 0.0004	
Main-sequence stars: disks and irregulars		0.00055 ± 0.00014	
White dwarfs		0.00036 ± 0.0008	
Neutron stars		0.00005 ± 9.00002	
Black holes		0.00007 ± 0.00002	
Substellar objects		0.00014 ± 0.00007	
H I + He I		0.00062 ± 0.00010	
Molecular gas		0.00016 ± 0.00006	
Planets		10^{-6}	
Condensed matter		$10^{-5.6 \pm 0.3}$	
Sequestered in massive black holes		$10^{-5.4}(1+\epsilon_n)$	

BARYONS

Parameter		Components ^a	Totals ^a
Dark sector:			0.954 ± 0.003
Dark energy		0.72 ± 0.03	
Dark matter		0.23 ± 0.03	
Primeval gravitational waves		$\lesssim 10^{-10}$	
Primeval thermal remnants:			0.0010 ± 0.0005
Electromagnetic radiation		$10^{-4.3 \pm 0.0}$	
Neutrinos		$10^{-2.9} \pm 0.1$	
Prestellar nuclear binding energy		$-10^{-4.1\pm0.0}$	
Baryon rest mass:			0.045 ± 0.003
Warm intergalactic plasma		0.040 ± 0.003	
Virialized regions of galaxies	0.024 ± 0.005		
Intergalactic	0.016 ± 0.005		C1 11
Intracluster plasma		0.0018 ± 0.0007	Static
Main-sequence stars: spheroids and bulges		0.0015 ± 0.0004	
Main-sequence stars: disks and irregulars		0.00055 ± 0.00014	
White dwarfs		0.00036 ± 0.00008	
Neutron stars		0.00005 ± 9.00002	
Black holes		0.69997 ± 0.00002	
Substellar objects		0.00014 ± 0.00007	
H I + He I		0.00062 ± 0.00010	
Molecular gas		0.99016 ± 9.00006	
Planets		10 ⁻⁶	
Condensed matter		$10^{-5.6 \pm 0.5}$	
Sequestered in massive black holes		$10^{-5.4}(1+\epsilon_n)$	

BARYONS

Parameter		Components ^a	Totals ^a
Dark sector:			0.954 ± 0.003
Dark energy		0.72 ± 0.03	
Dark matter		0.23 ± 0.03	
Primeval gravitational waves		$\lesssim 10^{-10}$	
Primeval thermal remnants:			0.0010 ± 0.0005
Electromagnetic radiation		$10^{-4.3 \pm 0.0}$	
Neutrinos		$10^{-2.9\pm0.1}$	
Prestellar nuclear binding energy		$-10^{-4.1\pm0.0}$	
Baryon rest mass:			0.045 ± 0.003
Warm intergalactic plasma		0.040 ± 0.003	
Virialized regions of galaxies	0.024 ± 0.005		
Intergalactic	0.016 ± 0.005		C1 11
Intracluster plasma		0.0018 ± 0.0007	Static
Main-sequence stars: spheroids and bulges		0.0015 ± 0.0004	
Main-sequence stars: disks and irregulars		0.00055 ± 0.00014	
White dwarfs		0.00036 ± 0.0008	
Neutron stars		0.00005 ± 0.00002	
Black holes		0.00007 ± 0.00002	
Substellar objects		0.00014 ± 0.00007	
H I + He I		0.00062 ± 0.00010	
Molecular gas		0 00010 ± 0 00006	Dunamic
Planets		10 ⁻⁶	Dynamic
Condensed matter		$10^{-5.6 \pm 0.5}$	
Sequestered in massive black holes		$10^{-5.4}(1+\epsilon_n)$	

SOURCES OF BACKGROUND

- Glitches: Sudden increase in frequency, followed by a slow relaxation (days-year). Reduced significantly for Earth Term
- We considered a simplistic white noise
- In reality:
- Dispersion through interstellar medium frequency dependent and red
- Some pulsars also suffer from intrinsic red noise
- Next step: use collaboration code to check signal survival

MONTECARLO SIMULATION

- Assume PBHs randomly distributed
- Isotropic Maxwell distribution with velocity truncated at vesc.
- Simulate N_P randomly distributed pulsars at appropriate distances.
- Simulate order O(10⁵) universes and require more than 95% universes pass SNR cut.

OPTIMISTIC ASSUMPTIONS

- N_P = 1000
- T = 30 yr
- t_{rms} = 10 ns
- $\Delta t = 1$ week
- z₀ = 10 kpc
RESULTS FOR PBH : OPTIMISTIC

Lensing constraint from Subaru, Machos, Eros, Ogle (MEO) and SN lensing

MORE DIFFUSE OBJECTS

- We have seen point-like objects till now.
- If size of the object < impact parameter,
 Newton's shell theorem: treat object as point like
- Signal loss if object size > impact parameter.
- Can get conservative estimate with M_{enc}(b).

EXTENDED OBJECTS

• Parametrize the profile as NFW.

$$\rho(r, M_{\rm vir}) = \frac{\rho_s}{\left(r/r_s\right)^{\alpha} \left(1 + r/r_s\right)^{\beta}}$$

 $\alpha = 1, \ \beta = 2$

 $r_{\rm vir} \equiv (3M_{\rm vir}/800\pi\rho_c)^{1/3}$

$$c \equiv r_{\rm vir}/r_s$$

Retrieve PBH in the large c limit

COMPARISON TO MICROLENSING

Microlensing constraints from looking at M31/LMC

IMPACT PARAMETER: PTA VS LENSING

NANOGRAV ANALYSIS

NANOGRAV PIPELINE

- Mock Data analysis. arXiv: 2104.06717 (Lee, Taylor, Tricke, Zurek)
- Includes subtractions of known background sources

CURRENT DATA RELEASE

 arXiv: 2306.16219 [The NANOGrav 15-year Data Set: Search for Signals from New Physics]

OUTLOOK

- MSPs across the GC?
- in DM rich environments?
- Extra galactic MSPs?
- Non-gravitational long range forces?

- Better understanding of subhalos today given an initial Power Spectrum
- Limits on subhalos today into limits on primordial power spectrum?
- Understanding better the map between substructure or the lack thereof today and particle physics models.

CONCLUSIONS

- Pulsar timing can probe structure at a wide range of small scales.
- Doppler and Shapiro delays, especially in the dynamic regime, can provide a compelling discovery signal for DM subhalos.
- Probing CDM subhalos could be viable.

BACKUP

COMPARISON TO MOCK DATA

BAYESIAN ANALYSIS

Error bands correspond to f=1 and f=0.3

EXTENDED HALO MASS FUNCTION

- Assume typical scale-free Halo mass function from Press-Schechter.
- dn/dM ~ M⁻²
- Abrupt cutoffs: M_{min}, and M_{max}
- Equal amount of DM in every decade of masses,
- Even large M_{max}/M_{min} can be probed using sensitivity solely in a small subset window.

LIMIT SETTING PARAMETERS

- Set Limits for
- c, the concentration parameter
- f the fraction of dark matter that has not disrupted
- Ignoring tidal disruption and sweeping it into c and f

GOAL: C=100

EXTENDED HMF

BOUNDS FROM DYNAMIC SIGNALS (DOPPLER)

• For Doppler

$$\mathrm{SNR}_D = \frac{1}{2\sqrt{3}} \frac{GMT^{\frac{3}{2}}}{c t_{\mathrm{rms}} v^2 \sqrt{\Delta t} \tau}$$

$$au_{
m min} \propto \sqrt{rac{M}{f}}$$

 Requiring the closest approaching PBH to have SNR>4.

• f scales as 1/M $f_{\rm D, \, dyn}^L \lesssim 0.01 \left(\frac{10^{-9} M_{\odot}}{M}\right)$

$$\xi_{\rm dyn} \lesssim 0.01 \left(\frac{10^{-3} M_{\odot}}{M}\right) \left(\frac{200}{N_P}\right) \left(\frac{20 \text{ yr}}{T}\right)$$

Earth term scales the same way

At some Mass M, even the nearest PBH starts failing dynamic constraint.
This condition on f scales as M

$$f_{\rm D, \ dyn}^R \lesssim 3 \left(\frac{M}{10^{-7} M_{\odot}}\right) \left(\frac{200}{N_P}\right) \left(\frac{20 \ {\rm yr}}{T}\right)^3$$

Earth term has Np=1

BOUNDS FROM DYNAMIC SIGNALS (DOPPLER)

For Doppler

$$\mathrm{SNR}_D = \frac{1}{2\sqrt{3}} \frac{GMT^{\frac{3}{2}}}{c t_{\mathrm{rms}} v^2 \sqrt{\Delta t} \tau}$$

 Requiring the closest approaching PBH to have SNR>4.

• f scales as 1/M $f_{\rm D, \ dyn}^L \lesssim 0.01 \left(\frac{10^{-9} M_{\odot}}{M}\right) \left(\frac{200}{N_P}\right) \left(\frac{20 \ {\rm yr}}{T}\right)^4$

Earth term scales the same way

At some Mass M, even the nearest PBH starts failing dynamic constraint.
This condition on f scales as M

$$f_{\rm D, \ dyn}^R \lesssim 3 \left(\frac{M}{10^{-7} M_{\odot}}\right) \left(\frac{200}{N_P}\right) \left(\frac{20 \ {\rm yr}}{T}\right)^3$$

Earth term has Np=1

BOUNDS FROM DYNAMIC SIGNALS (DOPPLER)

For Doppler

$$\mathrm{SNR}_D = \frac{1}{2\sqrt{3}} \frac{GMT^{\frac{3}{2}}}{c t_{\mathrm{rms}} v^2 \sqrt{\Delta t} \tau}$$

 Requiring the closest approaching PBH to have SNR>4.

• f scales as 1/M $(10^{-9} M_{\odot}) (200) (20 \text{ yr})$

$$f_{\rm D, \, dyn}^L \lesssim 0.01 \left(\frac{10^{-9} M_{\odot}}{M}\right) \left(\frac{200}{N_P}\right) \left(\frac{20 \, {\rm yr}}{T}\right)$$

Earth term scales the same way

At some Mass M, even the nearest PBH starts failing dynamic constraint.
This condition on f scales as M

$$f_{\rm D, \ dyn}^R \lesssim 3 \left(\frac{M}{10^{-7} M_{\odot}}\right) \left(\frac{200}{N_P}\right) \left(\frac{20 \ {\rm yr}}{T}\right)^3$$

Earth term has Np=1

STATIC SIGNAL SENSITIVITY

Doppler

Shapiro

$$\frac{\ddot{\nu}}{\nu} \simeq \frac{2GMv}{r_{\min}^3} \sim 3 \times 10^{-32} \left(\frac{N_P f}{200}\right) \text{ Hz}^2 \qquad \qquad \frac{\ddot{\nu}}{\nu} \simeq \frac{16GMv^3}{r_{\times,\min}^3} \\ \sim 8 \times 10^{-33} \left(\frac{N_P f}{200}\right)^{\frac{3}{2}} \left(\frac{M_{\odot}}{M}\right)^{\frac{1}{2}} \left(\frac{d}{\text{kpc}}\right)^{\frac{3}{2}} \text{ Hz}^2$$

Uncertainty in second derivative purely from rms fluctuations

$$\sigma_{\ddot{\nu}/\nu} = 6\sqrt{\frac{2800\Delta t}{T}}\frac{t_{\rm RMS}}{T^3}$$

$$f_{\rm D, \ stat} \lesssim 0.4 \left(\frac{200}{N_P}\right) \left(\frac{20 \ {\rm yr}}{T}\right)^{\frac{1}{2}}$$

 $f_{\rm S, \ stat} \lesssim \left(\frac{200}{N_P}\right) \left(\frac{M}{M_{\odot}}\right)^{\frac{1}{3}} \left(\frac{20 \ {\rm yr}}{T}\right)^{\frac{7}{3}} \left(\frac{\rm kpc}{d}\right)$

Notice no M dependence here

SENSITIVITY TO DIFFUSE HALOS

Limits iff red line intersects a probe radius

STOCHASTIC SIGNAL

- Multiple events at lower masses which do not pass the threshold SNR individually
- Lose ability to fit for deterministic signal shape

STOCHASTIC SIGNAL

- Multiple events at lower masses which do not pass the threshold SNR individually
- Lose ability to fit for deterministic signal shape

STOCHASTIC SNR

$$\begin{split} \langle \delta\phi(t)\delta\phi(t')\rangle &= \sum_{i=1}^{N} \langle \delta\phi_i(t)\delta\phi_i(t')\rangle + \sum_{i\neq j}^{N(N-1)} \langle \delta\phi_i(t)\delta\phi_j(t')\rangle \equiv R_1(t,t') + R_2(t,t') \\ & 1 \text{-halo} \quad 2\text{-halo} \\ \text{SNR}_P^2 &= \frac{N_P}{2\widetilde{N}^2} \int dt dt' \langle R_I^{\text{sub}}(t,t')^2 \rangle_{\mathcal{P}} \\ \text{SNR}_E^2 &= \frac{N_P(N_P - 1)}{2\widetilde{N}^2} \int dt dt' \left\langle R_{IJ}^{\text{sub}}(t,t')^2 \right\rangle_{\mathcal{P}} \\ \end{split}$$

Deterministic Signal: care about the single closest event. A random "Best pulsar" exists

Stochastic signal:

Pulsar Term - N_P pulsars accumulating more statistics Earth Term - can cross-correlate across pulsars with angular correlations.

> For the highest single die roll, helps to roll die several times, For sum of 100 die rolls, no point repeating the 100 roll.

DOPPLER SUMMARY

Stochastic Signal: Random walk in velocity

SHAPIRO SUMMARY

Stochastic Signal: Random addition of blips

- To determine typical timescale, let us determine approach
- Cross-section for Doppler, is a circle.
- Remembering $|\mathbf{b}| = \tau v$

$$\tau_{\rm min} \simeq \frac{1}{v} \sqrt{\frac{M}{N_P f \rho_{\rm DM} v T}}$$
$$\sim \frac{20 \text{ yr}}{\sqrt{N_P f}} \left(\frac{M}{10^{-9} M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{20 \text{ yr}}{T}\right)^{\frac{1}{2}}$$

 N_P pulsars N_P x cross-section

Number of pulsars

- To determine typical timescale, let us determine approach
- Cross-section for Doppler, is a circle.
- Remembering $|\mathbf{b}| = \tau v$

$$\tau_{\min} \simeq \frac{1}{v} \sqrt{\frac{M}{N_P f \rho_{\rm DM} v T}}$$
$$\sim \frac{20 \text{ yr}}{\sqrt{N_P f}} \left(\frac{M}{10^{-9} M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{20 \text{ yr}}{T}\right)^{\frac{1}{2}}$$

Number of pulsars

- To determine typical timescale, let us determine approach
- Cross-section for Doppler, is a circle.
- Remembering $|\mathbf{b}| = \tau v$

$$\tau_{\rm min} \simeq \frac{1}{v} \sqrt{\frac{M}{N_P f \rho_{\rm DM} v T}}$$
$$\sim \frac{20 \text{ yr}}{\sqrt{N_P f}} \left(\frac{M}{10^{-9} M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{20 \text{ yr}}{T}\right)^{\frac{1}{2}}$$

 N_P pulsars N_P x cross-section

Number of pulsars

- To determine typical timescale, let us determine approach
- Cross-section for Doppler, is a circle.
- Remembering $|\mathbf{b}| = \tau v$

$$\tau_{\rm min} \simeq \frac{1}{v} \sqrt{\frac{M}{N_P f \rho_{\rm DM} v T}}$$
$$\sim \frac{20 \text{ yr}}{\sqrt{N_P f}} \left(\frac{M}{10^{-9} M_{\odot}}\right)^{\frac{1}{2}} \left(\frac{20 \text{ yr}}{T}\right)^{\frac{1}{2}}$$

 N_P pulsars N_P x cross-section

Number of pulsars

SHAPIRO CROSS-SECTION

• Cross-section for Shapiro is a rectangle

$$\tau_{\rm min} \simeq \frac{2}{v} \frac{M}{N_P f \rho_{\rm DM} v T d},$$
$$\sim \frac{20 \text{ yr}}{N_P f} \left(\frac{M}{10^{-4} M_{\odot}}\right) \left(\frac{20 \text{ yr}}{T}\right) \left(\frac{\text{kpc}}{d}\right)$$

DYNAMIC BACKGROUNDS

- Dynamic signal more spectacular than static signal.
- Shape differences could help differentiate from glitches etc.
- DM signals are non-dispersive
- Baryonic structure too few at these masses

Dispersion used in Microlensing to differentiate lensing blip from a dispersive blip

STATIC BACKGROUNDS

- A few pulsars already display non-zero second derivative.
- Will need to supplement with E&M observations to subtract known nearby objects.

