(part of) WP-2 : Atomic, Nuclear and Molecular Systems in Traps & Beams

Ben Ohayon Technion IIT, Haifa, Israel bohayon@technion.ac.il

WP-2 : Atomic, Nuclear and Molecular Systems in Traps & Beams

Current structure:

- 2a : Exotic systems in traps and beams
- 2b : Atom Interferometry
- 2c : Clocks: development, distribution, networking (Steven Worm)

Does this structure make sense?

WP-2a: Exotic systems in traps and beams

- 2a_a: Extension and improved manipulation of exotic systems (experiment)
- 2a_b: Bound state calculations (theory)
- 2a_c: Extraction of constants in presence of New physics (phenomenology)

Fundamental physics at the precision frontier

Export Citation

HTML

PDF

Sensitivity:

References

•

Article

- Choose the "best behaved" system controllable, narrow transitions)
- Choose "unique" system, e.g. antim

Citing Articles (771)

Accuracy:

Choose the "best behaved" systems (cold, controllable, narrow transitions)	Compare experiment and theory digit by digit
	 Single particles, simple atoms and molecules
Choose "unique" system, e.g. antimatter	 Usually best suited for searching for new interactions mediated by heavy particles.
Measure "Zero" with the highest sensitivity	
	 Interplay with fundamental constants: Ry, alpha,
Look for differences/variations e.g. in time, space, and etc.	CODATA recommended values of the fundamental physical constants: 2018 [*]
	Eite Tiesinga, Peter J. Mohr, David B. Newell, and Barry N. Taylor
Search for new physics with atoms and molecules	Rev. Mod. Phys. 93 , 025010 – Published 30 June 2021
M. S. Safronova, D. Budker, D. DeMille, Derek F. Jackson Kimball, A. Derevianko, and	
Rev. Mod. Phys. 90 , 025008 – Published 29 June 2018	Article References Citing Articles (182) PDF HTML Export Citation

WP-2 : Atomic, Nuclear and Molecular Systems in Traps & Beams

Physics drivers

BSM physics @ Precision frontier: Sensitivity & accuracy

WP-2a : Exotic systems in traps and beams

SM: QED development

SM: Determination of fundamental constants

AMO as quantum detectors: gravitational wave detection, ...

• Missing physics drivers?

Canonical example of accuracy frontier

Theory: Bound-state calculations. Perturbative and all order QED calculations, as well as low energy nuclear structure

Experiments: Precision measurements in simple atomic systems – we emphasized a global effort on exotic bound systems

Phenomenology: Global analysis of fundamental constants In presence of new physics

• Vision: consolidate through open, dynamic web platform

Theory: Bound-state calculations. Perturbative and all order QED calculations, as well as low energy nuclear structure

Experiments: Precision measurements in simple atomic systems – we emphasized a global effort on exotic bound systems

PHYSICAL REVIEW LETTERS 130, 121801 (2023)

Self-Consistent Extraction of Spectroscopic Bounds on Light New Physics

Cédric Delaunay[®],^{1,2,*} Jean-Philippe Karr,^{3,4,†} Teppei Kitahara[®],^{5,6,7,‡} Jeroen C. J. Koelemeij[®],^{8,§} Yotam Soreq[®],^{9,∥} and Jure Zupan^{10,¶}

• Vision: consolidate through open, dynamic web platform

WP-2a_a: Extension and improved manipulation of exotic systems:

- Exploration of novel production mechanisms (e.g. using antiprotons)
- Novel species (e.g. polyatomic, laser-coolable molecular systems)
- Extension of techniques (e.g. laser cooling negatively charged systems)
- Exotic nuclei (e.g. for radioactive molecules) "beam to beaker to beam"

