
Quantum sensing in the SC platform:
(i) qubits

(ii) quantum-limited parametric amplifiers
(iii) 3D resonators



GENERAL CONSIDERATIONS ON QUANTUM SENSING WITH SC DEVICES

→ compared to WP2, not (yet) ready for building collaborations?
significant breakthroughs in the past few months

→ SC sensing technologies meant for heavier DM candidates
from a few µeV up to tens of µeV

→ the range is not that broad as for clocks or atom interferometers, but it is really well motivated
QCD lattice simulations, beyond astrophysical hints

→ in principle, there is sensitivity to test QCD benchmark models in the whole range
just need to gain a factor 103 . . .⊙⊙



(I) QUBITS: WHERE ARE WE?

◦ qubits are building blocks for single microwave photon detection (SMPD)
SMPD enables higher scan rates, allowing to gain the factor ⩾ 103 in sensitivity required at high frequency
(say, 10 GHz compared to 1 GHz, as df/dt ∝ ν−3
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https://cajohare.github.io/AxionLimits/

◦ needed: large bandwidth (> 100 MHz), operation in B fields, low dark counts (100 s−1)

⊙⊙ a number of experiments (Italy, Germany, CERN, US, Korea, Australia, Taiwan, . . . ) would benefit from
this sensing method

https://cajohare.github.io/AxionLimits/


a real (B field, tunable) DM search with a QIS device

→ itinerant vs cavity single microwave photon counter (SMPD)

SMPD

Phys. Rev. Lett. 126, 141302 (2021) 

CAVITY PHOTONSITINERANT PHOTONS

⊙ low dark counts =⇒ sensitivity

⊙ tunability
static (≃ 100 kHz), dynamical (≃ 100 MHz)
+ Josephson mixer

⊙ metrological methods from QIS field

⊙ on/off resonance studies



SMPD-HALOSCOPE experiment

⊙ hybrid (normal-superconducting) cavity
7.37 GHz, tunable, Q0 = 9 × 105 (at 14 mK,
under 2 T)

⊙ T=14 mK delfridge base temperature
@ Quantronics lab (CEA, Saclay)

⊙ a thousandfold acceleration of the search

⊙ spin-off company in 2024



(II) parametric amplifiers: where are we? df/dt ∝ V2
eff QL T−2

sys

Josephson Parametric Amplifiers (JPAs) introduce the lowest level of noise (SQL noise).
They are central in DM search for low noise readout of a cavity field and to learn about the state of qubits.

Recently developed TWPAs offer much broader amplification bandwidths (∼ GHz).

− ongoing projects within INFN (nanofab at FBK)

− ww: MIT, NIST (Boulder), Grenoble (spin-off company), Caltech



(II) 3D RESONATORS
Q3D ≃ Qa, with Qa linewidth of searched signal is no more an issue

17th Patras Workshop, Mainz 2022 D. Ahn, CAPP (Korea)

→ current challenge: getting large tuning ranges with minimum number of intruder modes

https://indico.him.uni-mainz.de/event/109/contributions/834/attachments/438/612/2022_August_PATRAS_Danho_Ahn_v7.pdf


BUILDING A DRD5 COLLABORATION

there is value in forming a collaboration to bring together additional synergy from an existing community of
pixellised-groups (table-top experiments, small-scale labs)

⊙ to make a DM search with a microwave photon counter requires a high level of QIS expertise
this entails not just knowing methods and techniques in circuit-QED but also knowing how to mount and operate of
several components in ultra-cryogenic environment

⊙ standardisation of electronics and procedures:
− noise temperature measurements (→ Education Platform WP)
− “quantum orchestration” platforms (FPGA-based controls)
− printed circuit boards: selection of radiopure materials, cleaning
− microwave setup engineering

⊙ at an even higher level: shared delfridges
larger ones, equipped with SC magnets and bucking coils, few M-cost
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noise temperature measurements


