

Hg System Operation Review

V. Graves H. Kirk

MERIT Pre-Installation Review CERN March 30, 2007

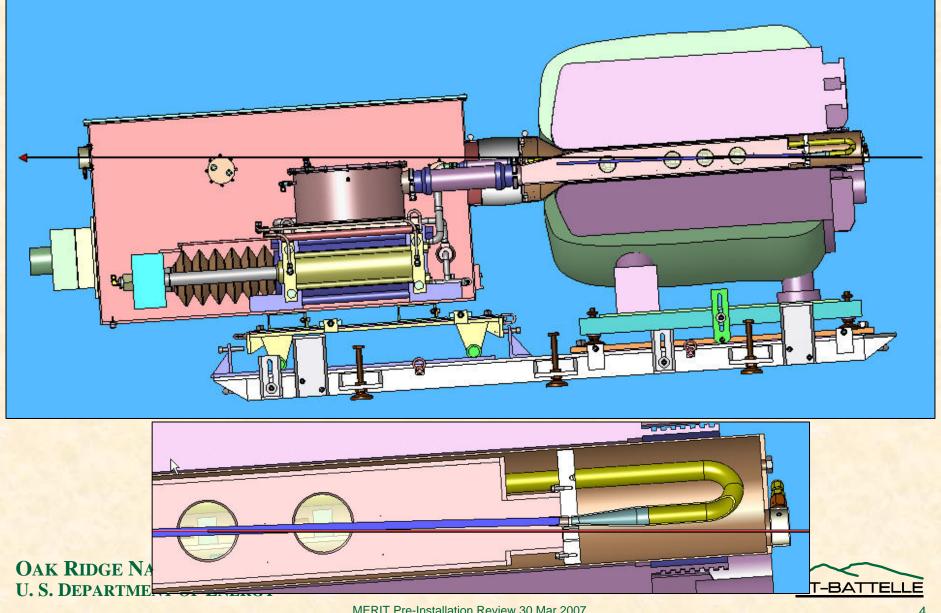
Outline

- Hg system description
- Integrated testing results
- Operational experience
- Plans at CERN

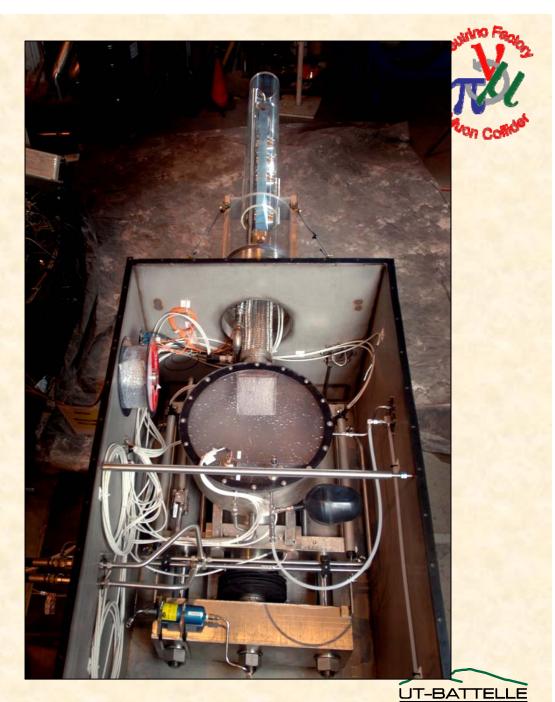
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg System Description

- Syringe pump
- Hydraulic power unit w/control system
- Optical diagnostic system
- Baseplate support structures


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

MERIT Side View



Syringe Pump System

- Primary containment
 - Hg-wetted components
 - Capacity 23liters Hg (~760 lbs)
 - Jet duration up to 12 sec
- Secondary containment
 - Hg leak/vapor containment
 - Ports for instruments, Hg fill/drain, hydraulics
- Optical diagnostic components
 - Passive optics
 - Shadow photography

Beam Windows

- Ti alloy components that directly interact with beam
- Single windows on primary, double windows on secondary

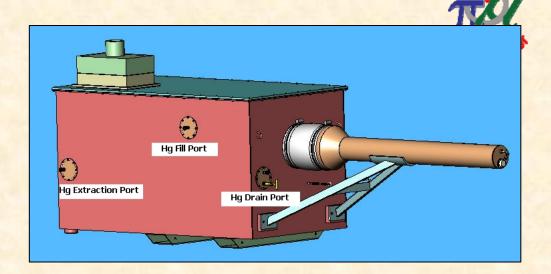
Syringe Statistics

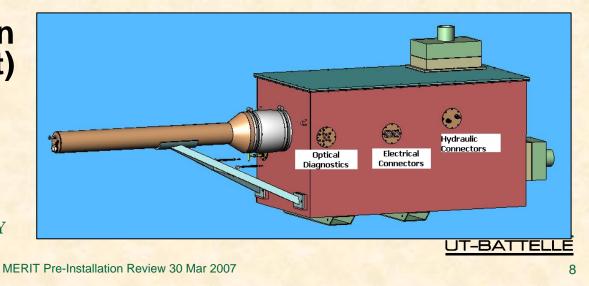
- 30hp / 4000psi / 12.9gpm hydraulic pump
- 40 gal vegetable-oil based hydraulic fluid
- Hg flow rate 1.6liter/s (24.9gpm)
- Piston velocity 3.0cm/s (1.2in/sec)
- Up to 100 bar (1500 psi) Hg pressure in cylinder
- Hg cylinder force 525kN (118kip)

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hydraulic Power Unit

- Actuates syringe drive cylinders
- Connected to secondary containment through non-magnetic hoses
- Proportional control valve provides precise hydraulic flow based on command signal from control system
- 200 bar (3000 psi) nominal operating pressure
- Incorporates relief valve to prevent over-pressure condition
- Breather-vent filter isolates reservoir air from tunnel
- Drip pan for small fluid leaks


OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



Ports

- Hydraulics
- Instrumentation
- Optical diagnostics
- Hg drain & fill (without opening secondary)
- Hg extraction (in event of major leak in primary containment)
- Passive filtration

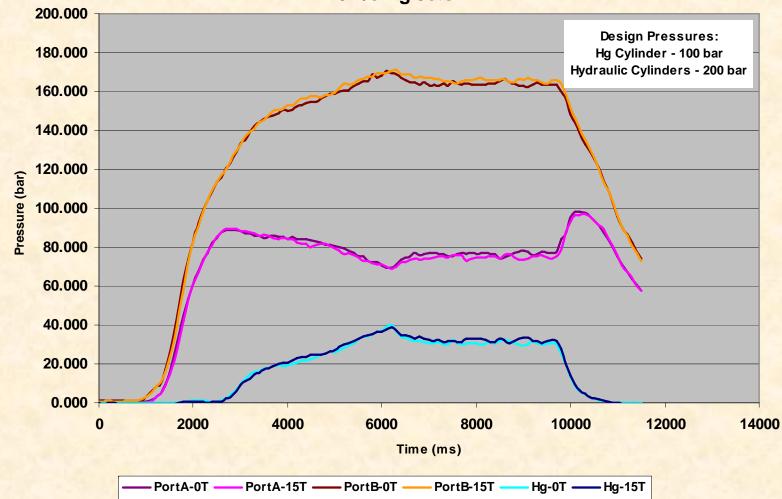
Load Testing of Common Baseplate & Target Cart

- CERN Safety Commission voiced concerns regarding analysis performed on common baseplate design
- Load test performed on structures to verify strength and test adjusting mechanisms
- Estimated component weights
 - Magnet: 12000 lbs (5440 kg)
 - Hg system (with 23liters Hg): 4000 lbs (1810 kg)
- Test weights
 - Magnet: 13600 lbs (6170 kg) = 113% estimated weight
 - Hg system: 4500 lbs (2040 kg) = 113% estimated weight

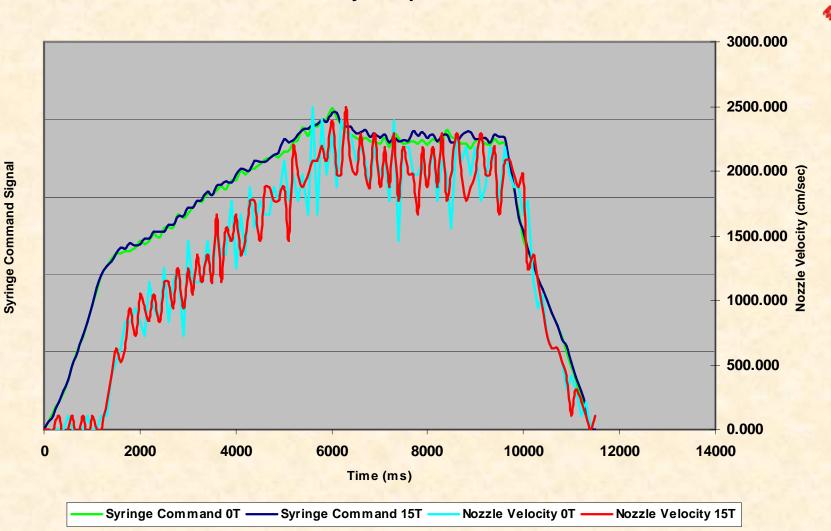
In Nominal Test Position

- Baseplate tilt ~ 66mrad
- Elevation matches CAD models

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


MIT Testing Result Summary

- Completed 14 runs with field (10-15-20 m/s jets, 5-10-15 Tesla fields)
- Syringe pump performed as expected
 - No fluid leaks during testing
- Expected increased Hg pressure due to field, but no effects observed
- Water vapor issues inside jet chamber resulted in addition of strip heater on exterior of chamber
- External bore heater had to be reconfigured due to clearance issues


Hg & Hydraulic Pressure Comparison - 0T vs. 15T 20m/s Hg Jets

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Nozzle Velocity Comparison - 0T vs. 15T

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Addition of Strip Heaters

THE PART

- Approx 0.5L water not removed from system prior to Hg operations at ORNL
- Insertion into magnet caused condensation on viewports
- Modified existing flexible heaters to prevent condensation
- New heaters and controllers procured for CERN operation

Operational Experience

- Hg fill/drain process performed twice without incident
- Small Hg leak occurred at ORNL

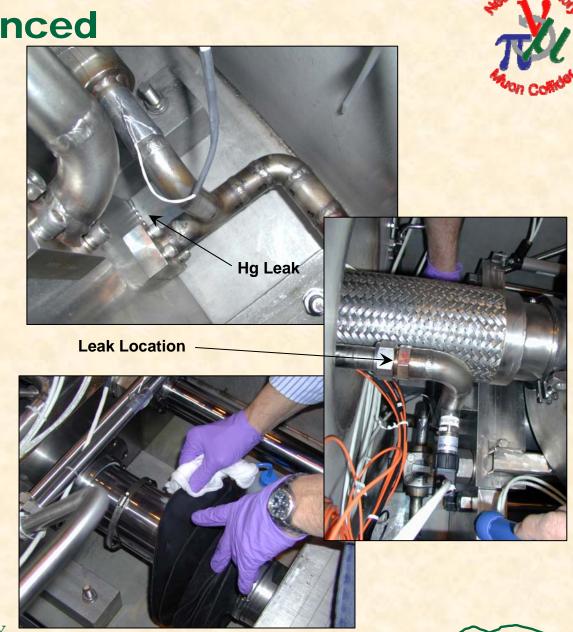
 Contained within secondary, no problems in cleanup
- Control system functions as expected
 Tested emergency stop conditions
- Hg vapor detection and capture
 - Vapor monitors work as expected
 - Local ventilation system (Scavenger) quickly removes any vapors within secondary, zero emissions detected at exhaust

Hg Fill & Drain Procedures Tested

- Two fill and drain cycles completed

 MIT cycles observed by CERN personnel
- Peristaltic pump method works well, minimizes spill risk & vapor generation
- Drain into intermediate container reduces chance of overfilling flask
- Flasks weighed empty & full to track inventory
- No spills or operational problems

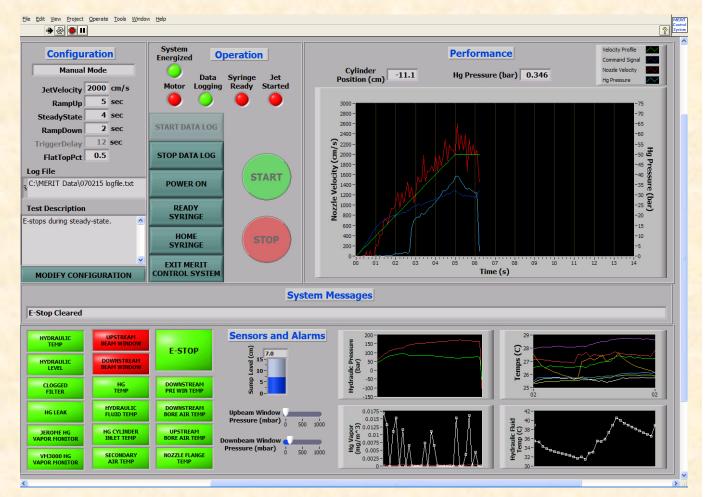
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY



Hg Leak Experienced

- Very high vapor levels inside secondary detected at ORNL
 - No vapors detected outside secondary
 - Scavenger snorkel successfully removed vapors
- Suspected Hg cylinder bellows & made effort to seal seams
 - Upon disassembly, no vapors detected inside bellows
- Small Hg leak discovered in nozzle supply threaded joint
- Successfully removed liquid and tightened joint

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


Bellows

Emergency Stops Tested

- Syringe pump stopped during 20m/s jet creation
- No detrimental effects on equipment
- No noticeable vibration or shudder

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Plans at CERN for Hg System

- Transport all equipment into TT2/TT2A
- Open secondary containment prior to Hg loading
 - Procedures in place for this operation
 - Leak check primary containment (pressure decay test without opening primary)
 - Connect optical diagnostics system & adjust viewport optics
 - Install new heater strips
 - Install umbilicals and operate optical diagnostic system
- Close secondary
 - Install other umbilicals (hydraulics, sensors, vapor monitors)
 - Load Hg
- Perform Hg system commissioning tests
 - System can be operated and tested independently of solenoid

Conclusions

- System operating characteristics have been quantified during ORNL and MIT testing
- 15T field induced no additional pressure on Hg piping, system well within design pressures
- Secondary containment has prevented vapor escape
- Valuable operational experience gained
 - Hg leak experienced
 - Detected with instrumentation, contained within secondary, successfully mitigated
 - Control system functionality proven

Backup Slides

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Operational Testing

Lifting jacks and lateral position adjustment mechanisms tested

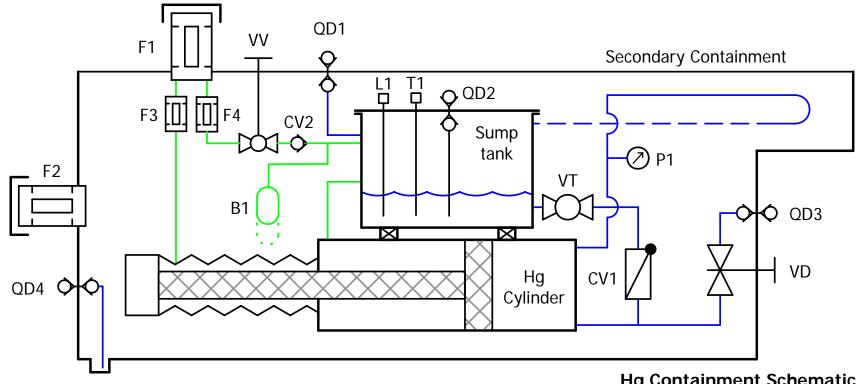
OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Roller Testing

 Loaded baseplate pushed with pallet jack while on three Hilman rollers

Leveling Jack Testing

Baseplate adequately supported by four leveling jacks



OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Hg System Schematic

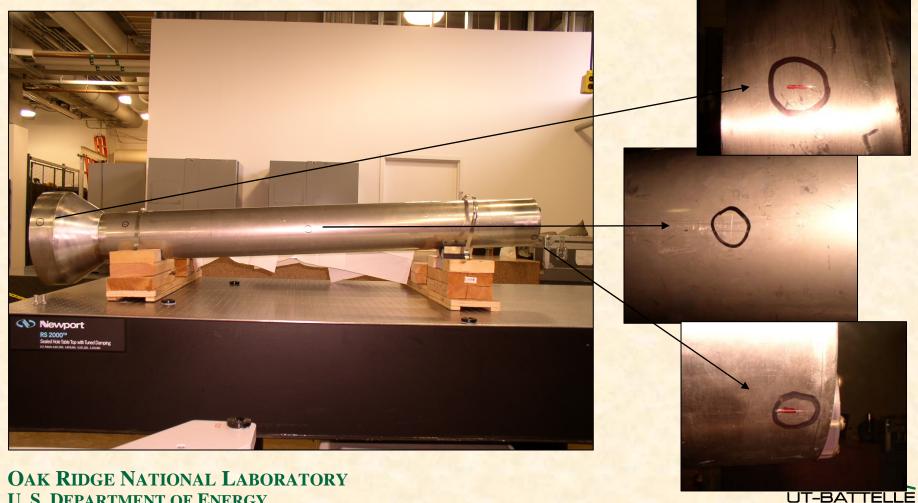
Hg Containment Schematic 8Feb2007

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Secondary Snout Fiducialized

- Marks on exterior of target snout will aid in alignment (tilt and elevation only)
- Service provided by SNS Survey & Alignment Group

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY


MERIT Pre-Installation Review 30 Mar 2007

JT-BATTEL

Installation Marks

Optical survey equipment required to see scribe marks

U. S. DEPARTMENT OF ENERGY

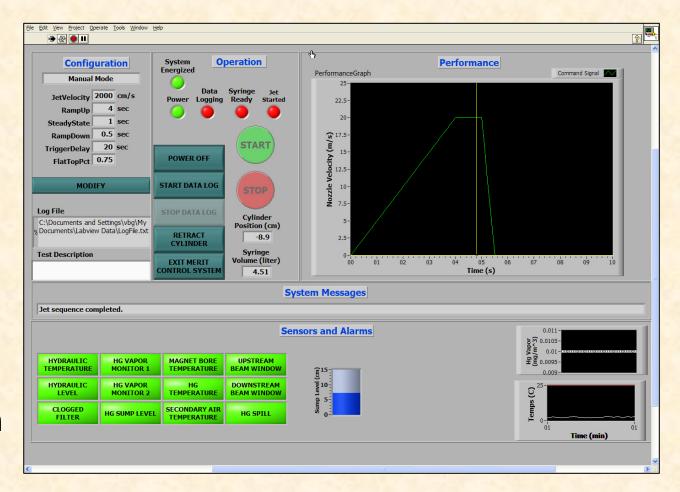
Sumptank Standpipes Added

- Testing revealed potential Hg surge under splash plate could allow Hg to exit sump tank through vents
- Additional height added to eliminate condition

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Vapor Monitor Tests

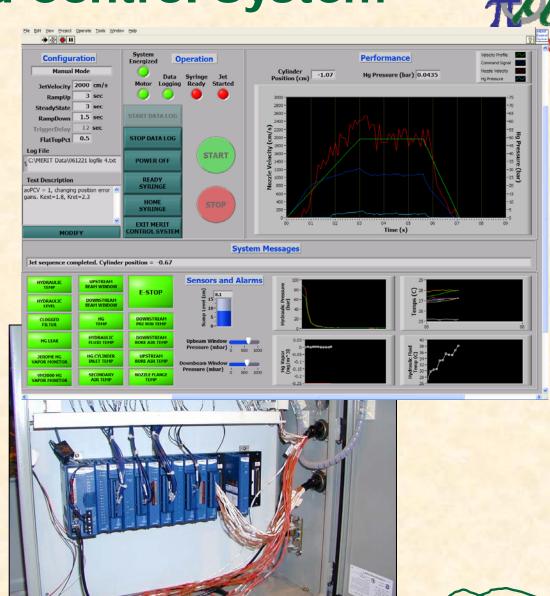
- Both vapor monitors (Jerome 431-X and Mercury Instruments VM3000) tested to verify ability to read vapors through 10m, small-dia tubing
 - Jerome samples every 5 minutes, VM3000 continuously samples
 - Both units detected elevated vapor levels
 - VM3000 within a few seconds
 - Jerome within 2 samples
- Signals integrated into Labview control system
 - VM3000 output correctly read by Labview
 - Having some difficulties with the Jerome unit, discussing with vendor tech support



Hg Syringe Control Operator Interface

The Contract

- Jet velocity profile
- Syringe control
- Performance feedback
- Data logging
- Operator messages
- Status & alarm indicators



LabView-Based Control System

- LabView on laptop computer was chosen as system controller
 - CompactFieldPoint sensor modules housed in HPU control cabinet
- Hydraulic system controlled via Labview over ethernet

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

MERIT Pre-Installation Review 30 Mar 2007

JT-BATTELLE

Instrumentation & Sensors

Controlled Components			
Hydraulic pump	Proportional control valve		
	Analog Se	nsor Inputs	
Hg discharge pressure	Hg level	Hg vapor 1	Hg vapor 2
Cylinder 1 position	Cylinder 2 position	Beam window 1 pressure	Beam window 2 pressure
Hydraulic fluid port pressures	Eight RTDs		
	Digital Ser	nsor Inputs	·
Hydraulic filter dirty switch	Hydraulic low level switch	Hydraulic fluid high temperature	Conductivity probe leak detector
Beam trigger DAK RIDGE NATIONAL I	ABORATORY		
J. S. DEPARTMENT OF ENH	ERGY	tion Review 30 Mar 2007	UT-BATTE