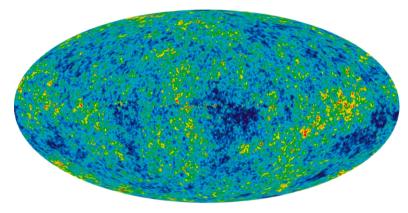
# Could the Higgs Boson be the Inflaton?

**Michael Atkins** 



arXiv:1011.4179


NExT PhD Workshop - 2011

# Outline

- Why inflation?
- The Higgs as the inflaton
- Perturbative unitarity as a tool in particle physics
- Unitarity and Higgs inflation

## Why Inflation?

•Why does the universe appear flat, homogeneous and isotropic?



Temperature of CMB is 2.725K ± 0.0002K – extremely uniform!

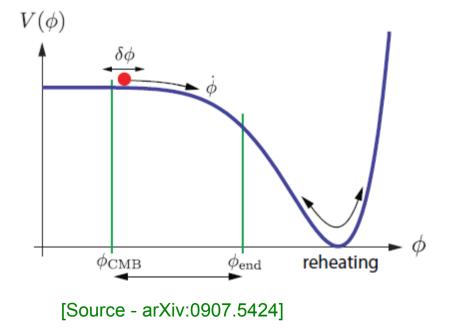
The CMB temperature fluctuations from the 7-year WMAP data

•Can be explained if the universe went through a very early period of exponential expansion - inflation.

•Inflation also explains the origin of the large-scale structure of the cosmos.

## **Slow Roll Inflation**

•Inflation is driven by a negative-pressure vacuum energy density.


•Example: slowly rolling scalar field

$$ds^{2} = -dt^{2} + a^{2}(t)d\vec{x}^{2}$$

$$\Rightarrow \quad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p)$$

$$if \quad \dot{\phi}^{2} < V(\phi) \implies \qquad \frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) > 0$$

$$\boxed{accelerated expansion}$$



CMB fluctuations are created by quantum fluctuations  $\delta \varphi$  about 60 *e*-folds before the end of inflation.

## **Higgs Inflation**

The standard model Higgs potential is not flat  $V = \lambda_H \left( \mathcal{H}^{\dagger} \mathcal{H} - \frac{v_H^2}{2} \right)^2$ 

However, scalar fields can (should?) be non-minimally coupled to gravity

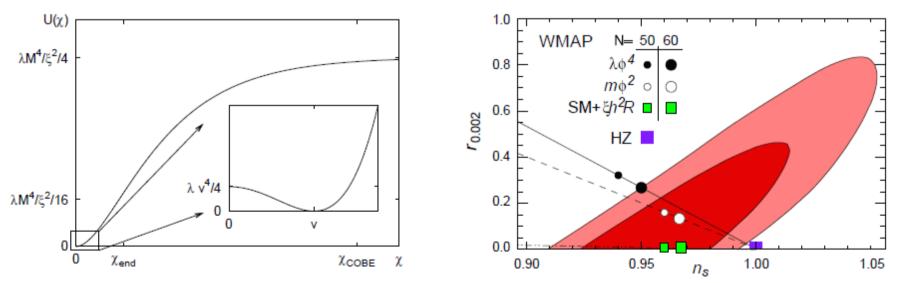
$$S = \int d^4x \sqrt{-g} \left[ \frac{M_P^2}{2} R - \xi \mathcal{H}^{\dagger} \mathcal{H} R + \mathcal{L}_{SM} \right]$$

Can transform to the Einstein frame

$$\hat{g}_{\mu\nu} = \Omega^2 g_{\mu\nu} , \quad \Omega^2 = 1 + \frac{\xi h^2}{M_P^2} \qquad \qquad \frac{d\chi}{dh} = \sqrt{\frac{\Omega^2 + 6\xi^2 h^2 / M_P^2}{\Omega^4}}$$
$$S_E = \int d^4 x \sqrt{-\hat{g}} \left\{ -\frac{M_P^2}{2} \hat{R} + \frac{\partial_\mu \chi \partial^\mu \chi}{2} - U(\chi) \right\}$$

where the potential is

$$U(\chi) = \frac{\lambda M_P^4}{4\xi^2} \left(1 + \exp\left(-\frac{2\chi}{\sqrt{6}M_P}\right)\right)^{-2}$$


[F.L. Bezrukov & Mikhail Shaposhnikov]

## **Higgs Inflation**

$$U(\chi) = \frac{\lambda M_P^4}{4\xi^2} \left(1 + \exp\left(-\frac{2\chi}{\sqrt{6}M_P}\right)\right)^{-2}$$

When  $\chi \gg M_P (h \gg M_P/\sqrt{\xi})$ , the potential is flat and slow roll inflation can occur.

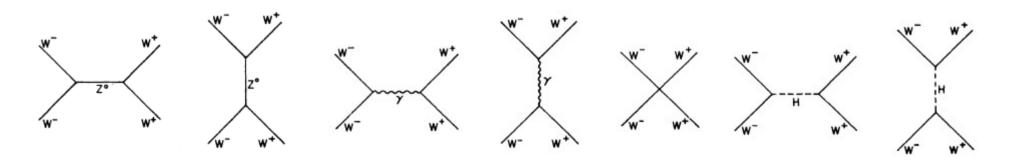
However it is found that we need  $\xi \sim 10^4$  to obtain the correct amplitude of density fluctuations.



Potential in the Einstein frame.

[Source - arXiv:0710.3715]

The allowed WMAP region for inflationary parameters spectral index n, and the tensor to scalar ratio r.


## Unitarity in Quantum Field Theory

•Follows from the conservation of probability, i.e. unitarity of the S-matrix:  $S^{\dagger}S = 1$ 

- Implies that amplitudes do not grow too fast with energy.
- Can derive a bound on the size of the partial wave amplitudes:

$$\mathcal{A} = 16\pi \sum_{j} (2j+1) P_j(\cos\theta) a_j \qquad |\operatorname{Re} a_j| \le \frac{1}{2}$$

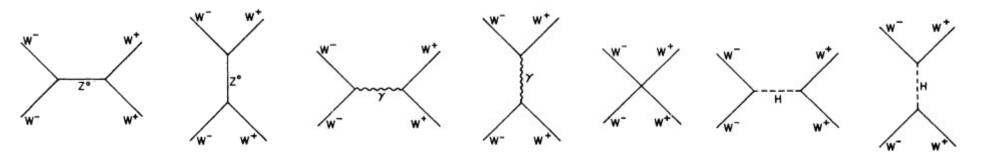
• Well known example is the bound on the Higgs boson mass in the Standard Model (m<790 GeV).



## Unitarity in WW Scattering

With no Higgs we find the j=0 partial wave grows with energy as

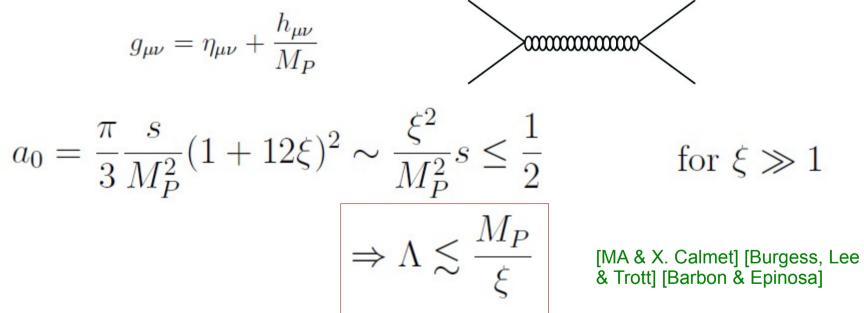
$$a_0 = \frac{g^2 s}{128\pi M_W^2}$$


and the maximum energy for perturbative unitarity is  $E \lesssim 1.7~{
m TeV}$ 

Including the Higgs we find the j=0 partial wave is given by

$$a_0 = -\frac{G_F m_h^2}{4\sqrt{2}\pi}$$

and the maximum Higgs mass to maintain perturbative unitarity is


 $m_H \lesssim 790 \,\,\mathrm{GeV}$ 



## Unitarity in Higgs Inflation

The large value of  $\xi \sim 10^4$  might make one concerned from a particle physics perspective.

Let us consider gravitational scattering of Higgs bosons (we impose different in and out states – *s*-channel only) in the Jordan frame

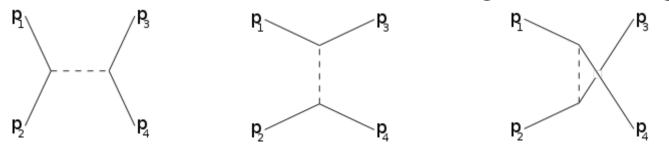


But remember inflation takes place for  $h \gg M_P/\sqrt{\xi}$  which is therefore above the regime of validity for the effective theory!

### Einstein vs. Jordan Frame [Hertzberg] [Burgess, Lee, Trott]

The cut off ( $\Lambda$ ) should be the same in both frames. But if we look at the Einstein frame action again

$$S_E = \int d^4x \sqrt{-\hat{g}} \left\{ -\frac{M_P^2}{2}\hat{R} + \frac{\partial_\mu \chi \partial^\mu \chi}{2} - U(\chi) \right\}$$


we see that the cut off is just the usual gravitational cut off ( $\Lambda = M_P$ ).

#### **Einstein Frame**

Cannot canonically normalise all the fields of the Higgs doublet so cannot actually get Einstein frame potential with multiple scalars.

#### Jordan Frame

If only have a single field need to include *s*, *t* and *u* channels. Then we find a cancellation between the three diagrams leaving ( $\Lambda = M_P$ ).



## **New Model of Higgs Inflation**

To get around the unitarity problems a new model of Higgs inflation was proposed [Germani & Kehagias]

$$S = \int d^4x \sqrt{-g} \left[ \frac{\bar{M}_P^2}{2} R - \frac{1}{2} (g^{\mu\nu} - w^2 G^{\mu\nu}) \partial_\mu \Phi \partial_\nu \Phi - \frac{\lambda}{4} \Phi^4 \right]$$

where  $G^{\mu\nu} = R^{\mu\nu} - \frac{R}{2}g^{\mu\nu}$  is the Einstein tensor.

Expanding around the inflating background we find an interaction

$$I \simeq \frac{1}{2H^2 \bar{M}_P} \partial^2 h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi.$$

Which gives a cut-off

$$\Lambda \simeq (2H^2 \bar{M}_P)^{1/3} \simeq 2 \times 10^{-3} \bar{M}_P.$$

But during inflation we have  $2.1 \times 10^{-2} \overline{M}_P < \Phi_0 < 2.7 \times 10^{-2} \overline{M}_P$ 

and so again the inflationary scale exceeds the realm of validity of the effective theory. [MA&X Calmet]

## **Background Dependence**

[Bezrukov, Magnin, Shaposhnikov & Sibiryakov]

-0

For the original Higgs inflation model we expanded around  $\varphi=0$ . We could expand around inflating background

$$g_{\mu\nu} = \bar{g}_{\mu\nu} + h_{\mu\nu} , \qquad \phi = \bar{\phi} + \delta\phi .$$

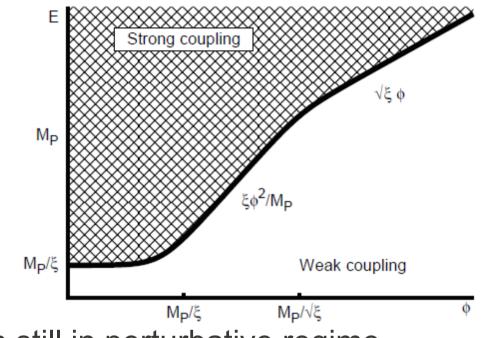
Then we find an interaction term

$$\frac{\xi\sqrt{M_P^2+\xi\bar{\phi}^2}}{M_P^2+\xi\bar{\phi}^2+6\xi^2\bar{\phi}^2}(\delta\hat{\phi})^2\Box\hat{h}$$

Leading to a  $\bar{\phi}$  dependent cut-off  $\Lambda^J(\bar{\phi}) = \frac{M_P^2 + \xi \phi^2 + 6\xi^2 \phi^2}{\xi \sqrt{M_P^2 + \xi \bar{\phi}^2}}$ 

$$\bar{\phi} \ll M_P / \xi \qquad \Lambda^J \simeq \frac{M_P}{\xi}$$

$$M_P / \xi \ll \bar{\phi} \ll M_P / \sqrt{\xi} \qquad \Lambda^J \simeq \frac{\xi \phi^2}{M_P}$$

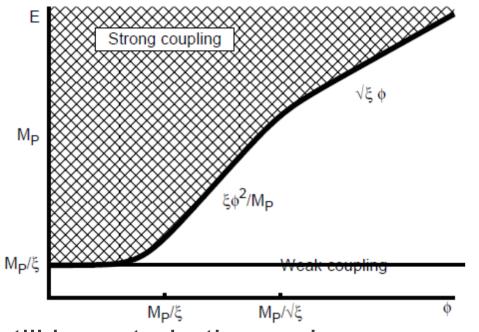

 $\bar{\phi} \gg M_P / \sqrt{\xi} \qquad \Lambda^J \simeq \sqrt{\xi} \bar{\phi}$ 

**Re-heating:** 

Small field:

Inflation:

## New Physics or Strong Coupling?




Cut-off as a function of the background value of Higgs field.

[Source - arXiv:1008.5157]

During inflation still in perturbative regime.

## New Physics or Strong Coupling?



Cut-off as a function of the background value of Higgs field.

[Source - arXiv:1008.5157]

During inflation still in perturbative regime.

However if **new physics** is required to unitarise the theory at small background field values, potential must include the operators

$$\frac{(H^{\dagger}H)^n}{\Lambda_0^{2n-4}}$$

Appearing at  $\Lambda_0 = \frac{M_P}{\xi}$ . and spoiling the flat potential.

[MA & X Calmet]

## Unitarising Higgs Inflation [Giudice & Lee]

Can unitarise Higgs inflation by using an analogy with the nonlinear sigma model. Consider the kinetic term in Einstein frame

$$\mathcal{L}_{\rm kin} = -\frac{1}{2(1+\xi_0\vec{\phi}^2/M_P^2)} \Big(\delta_{ij} + \frac{6\xi_0^2\phi_i\phi_j/M_P^2}{1+\xi_0\vec{\phi}^2/M_P^2}\Big)\partial_\mu\phi_i\partial^\mu\phi_j$$

So we can complete in the UV by introducing a  $\sigma$  field with  $\sigma^2 = \Lambda^2 + \vec{\phi}^2$ with  $\Lambda^2 \equiv M_P^2 / \xi_0$ 

$$\frac{\mathcal{L}_J}{\sqrt{-g_J}} = \frac{1}{2} \Big( \bar{M}^2 + \xi \bar{\sigma}^2 + 2\zeta \mathcal{H}^{\dagger} \mathcal{H} \Big) R - \frac{1}{2} (\partial_{\mu} \bar{\sigma})^2 - |D_{\mu} \mathcal{H}|^2 \\ - \frac{1}{4} \kappa \Big( \bar{\sigma}^2 - \bar{\Lambda}^2 - 2\alpha \mathcal{H}^{\dagger} \mathcal{H} \Big)^2 - \lambda \Big( \mathcal{H}^{\dagger} \mathcal{H} - \frac{v^2}{2} \Big)^2.$$

with  $\xi \sim \mathcal{O}(10^4)$ ,  $\zeta \sim \mathcal{O}(1)$ 

Low energy theory is the usual Higgs inflation Lagrangian, but at high energies the sigma field propagates and the cut-off scales with the background to allow control over the potential.

## **Two More Scenarios**

#### 1. Asymptotic Safety [MA & X Calmet]

The theory is non-perturbatively renormalisable and approaches a non trivial fixed point in the UV. Planck mass will grow in the UV and  $\xi$  will decrease, so growth of amplitudes with energy as  $\xi^2 s / \bar{M}_P^2$  could be compensated by this running. Or at least no new physics is required.

#### 2. Composite Inflation [Channuie, Jørgensen, Sannino]

The inflaton emerges as a composite field of a four dimensional, strongly interacting gauge theory.

$$\frac{\xi}{2} \frac{(QQ)^{\dagger} QQ}{\Lambda_{ECI}^4} R$$

the scale of inflation is the grand unified one, the composite inflaton cannot be identified with the composite Higgs state.

## Conclusions

- Inflation explains why the universe appears flat, homogeneous and isotropic
- With a large non-minimal coupling the Higgs boson could drive inflation which agrees with CMB data.
- The Higgs inflation models (old and new) suffer from unitarity problems.
- This may be bypassed if one can show that no new physics required to fix unitarity scales with the size of the Higgs background.
- We saw three ways around this problem: sigma field, asymptotic safety and composite inflation.