

Exploring high-purity multi-parton scattering at the LHC

Alba Soto Ontoso **QCD** seminar CERN, 4th December, 2023

Explo mult

at the

arXiv:2307.05693

Exploring high-purity multi-parton scattering at hadron colliders

Jeppe R. Andersen,¹ Pier Francesco Monni,² Luca Rottoli,³ Gavin P. Salam,^{4, 5} and Alba Soto-Ontoso²

¹Institute for Particle Physics Phenomenology, University of Durham, South Road, Durham DH1 3LE, UK
²CERN, Theoretical Physics Department, CH-1211 Geneva 23, Switzerland
³Physik Institut, Universität Zürich, CH-8057 Zürich, Switzerland
⁴Rudolf Peierls Centre for Theoretical Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
⁵All Souls College, Oxford OX1 4AL, UK

Alba Soto Ontoso QCD seminar CERN, 4th December, 2023

<# MPI> in Drell-Yan production at hadron colliders

<# MPI> in Drell-Yan production at hadron colliders

O(10) additional parton collisions per Drell-Yan event

Era of precision physics for the primary hard scattering. What's the status on MPI modelling?

Option A: MPI as part of the MC toolkit

[Bierlich et al *SciPost Phys.* Codebases 8 (2022)]

MPI modelling in general purpose MCs in a nutshell

[Bierlich et al SciPost Phys. Codebases 8 (2022)] [Sjostrand and van Zijl PRD 36, 2019 (1987)] [Sjostrand and Skands JHEP 03 053 (2004)]

 $\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp}^2} = \frac{1}{i}$ $f_i(x$

Standard $2 \rightarrow 2$ cross section

$\frac{p_{\perp}^2(p_{\perp}^2)}{p_{\perp}^4}$

MPI modelling in general purpose MCs in a nutshell

[Bierlich et al SciPost Phys. Codebases 8 (2022)] [Sjostrand, van Zijl PRD 36, 2019 (1987)] [Sjostrand, Skands JHEP 03 053 (2004)] [Corke, Sjostrand JHEP 1103 (2011)]

$$\frac{d\sigma}{dp_{\perp}^{2}} = \sum_{i,j,k} \iiint f_{i}(x_{1},Q^{2})f_{j}(x_{2},Q^{2}) \frac{d\hat{\sigma}_{ij}^{k}}{d\hat{t}} \delta\left(p_{\perp}^{2} - \frac{\hat{t}\hat{u}}{\hat{s}}\right) dx_{1} dx_{2} d\hat{t}$$

Interactions occur independently (w/ momentum, flavour sum rules): Poisson stat

+ some impact-parameter distribution

Standard $2 \rightarrow 2$ areas contian

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\perp i}} \exp\left(-\int_{p_{\perp i}}^{p_{\perp i-1}} \frac{1}{\sigma_{\mathrm{nd}}} \frac{\mathrm{d}\sigma}{\mathrm{d}p'_{\perp}} \mathrm{d}p'_{\perp}\right)$$

no-scattering probability

MPI modelling in general purpose MCs in a nutshell

[Bierlich et al SciPost Phys. Codebases 8 (2022)] [Sjostrand and van Zijl PRD 36, 2019 (1987)] [Sjostrand and Skands JHEP 03 053 (2004)]

Multi-parton interactions are interleaved with the rest of the showering

MPI/underlying event tuning

MPI/underlying event tuning

Tunes performed in events with at least one hard scatter

Option B: double-parton scattering as QFT playground

[Paver, Treleani, Nuovo Cim. A70 (1982) 215] [Blok, Dokshitzer, Frankfurt, Strikman, PRD 83 (2011) 071501] [Diehl, Ostermeier and Schäfer (JHEP 1203 (2012)]

The double-parton scattering (DPS) cross section can be written as

where we have introduced the double-parton density $F^{ab}(x_a, x_b, \mathbf{b})$

$$(\hat{\sigma}_{ij}, x_k, \mathbf{b}) \otimes \hat{\sigma}_{ij \to Z} \hat{\sigma}_{kl \to jets} \otimes F^{jl}(x_j, x_l, \mathbf{b}) = \mathcal{O}\left(\frac{\lambda_Q}{Q}\right)$$

 $\lambda_{QCD}^2 \qquad 1/Q^2 \qquad 1/Q^2 \qquad \lambda_{QCD}^2$

Double parton scattering can be used for proton tomography, i.e. extract partonic correlations

Option B: double-parton scattering as QFT playground

To first approximation, double-parton density is given by

This leads to the so-called pocket-formula

Option B: double-parton scattering as QFT playground

.e.

Experimental extractions of $\sigma_{\rm eff}$

[CMS Collab. Nature Phys. 19 (2023) 3, 338-350]

Classic experimental challenge in DPS

Same experimental signature: Z boson (2 leptons) + jets

Illustration: first LHC DPS measurement with $W(\rightarrow \ell v) + jj$

[ATLAS Collab. New J.Phys. 15 (2013) 033038]

W^{\pm} Illustration: first LHC DPS measurement with W+2-jets 0

 W^{\pm}

[ATLAS Collab. New J.Phys. 15 (2013) 033038]

Low 2HS purities require very good understanding of 1HS

[CMS Collab. PRL 131 (2023) 091803]

Traditional gold-plated observable for/MRFE

Avoid QCD radiation issue: same-sign $W^{\pm}W^{\pm}$

[CMS Collab. PRL 131 (2023) 091803]

Traditional gold-plated observable for MPI suffers from **background**:

Just 6.2σ statistical significance with full Run 2 dataset

Theory challenges in DPS: beyond pocket-formula

[Diehl, Ostermeier, Schafer JHEP 1203 (2012)], [Diehl, Gaunt, Schönwald JHEP 1706 (2017) 083]

Delicate interplay with loop corrections to 1HS: need to avoid double counting Extend 1HS theory to 2HS: double PDFs, colour flow, sum rules, DGLAP

Substantial progress in describing 2HS with MC tools: dShower

[Cabouat, Gaunt, Ostrolenk JHEP 11 (2019) 061], [Cabouat, Gaunt JHEP 10 (2020) 012]

Perturbative interconnection, i.e. $1 \rightarrow 2$

$$\frac{F(x_q + x_{\bar{q}})}{x_q + x_{\bar{q}}} P_{g \to q\bar{q}} \left(\frac{x_q}{x_q + x_{\bar{q}}}\right) \frac{1}{\mathbf{b}^2}$$

Theory challenges in DPS: beyond pocket-formula

[Diehl, Ostermeier and Schafer JHEP 1203 (2012)], [Diehl, Gaunt, Schönwald JHEP 1706 (2017) 083]

Double parton densities, colour flow, sum rules, DGLAP evolution?

Substantial progress in describing 2HS with MC tools: dShower

[Cabouat, Gaunt, Ostrolenk JHEP 11 (2019) 061], [Cabouat, Gaunt JHEP 10 (2020) 012]

Perturbative interconnection, i.e. $1 \rightarrow 2$

Rest of this talk: present an experimental strategy to optimally disentangle 1HS from MPI

Idea: exploit Parisi-Petronzio lesson from 1979

[Parisi, Petronzio, NPB 154 (1979) 427-440] [RadISH: Monni, Re, Torrielli PRL 116, 242001, Monni, Rottoli, Torrielli PRL 124 (2020) 25, 252001]

mechanisms:

Exponential suppression of the spectrum (Sudakov peak)

 $p_{tZ}^2 \sim k_{t,i}^2 \ll M_Z$

Idea: exploit Parisi-Petronzio lesson from 1979

[Parisi, Petronzio, NPB 154 (1979) 427-440] [RadISH: Monni, Re, Torrielli PRL 116, 242001, Monni, Rottoli, Torrielli PRL 124 (2020) 25, 252001]

We explore Drell-Yan events and study the $p_{tZ} \rightarrow 0$ limit. Two concurring mechanisms:

Idea: exploit Parisi-Petronzio lesson from 1979

[Parisi, Petronzio, NPB 154 (1979) 427-440] [RadISH: Monni, Re, Torrielli PRL 116, 242001, Monni, Rottoli, Torrielli PRL 124 (2020) 25, 252001]

Key observation to suppress 1HS contribution

[RadISH: Monni, Re, Torrielli PRL 116, 242001, Monni, Rottoli, Torrielli PRL 124 (2020) 25, 252001] [MINNLO: Monni et al JHEP 05 (2020) 143]

35

By constraining p_{tZ} we can forbid QCD radiation from 1HS above 2-3 GeV

What happens when switching on MPI?

[RadISH: Monni, Re, Torrielli PRL 116, 242001, Monni, Rottoli, Torrielli PRL 124 (2020) 25, 252001] [MINNLO: Monni et al JHEP 05 (2020) 143] 35 30 25 (b^l_{tj}) [GeV] 15 10 MPI off: $\langle p_{tj}^{\ell} \rangle_{p_{tZ} \to 0} \sim 2.5 \text{ GeV}$ 5 0 MPI on: $\langle p_{tj}^{\ell} \rangle_{p_{tZ} \to 0} \sim 10 \text{ GeV}$

Suggests we should study MPI with help of a tight cut on p_{tZ}

This study: establish what cut to use, explore new opportunities

We want balance between :

- maximising stats (loose p_{r7}^{cut})
- minimise 1HS (tight p_{tZ}^{cut})

Optimum at
$$p_{tZ}^{cut} = 2 \text{ GeV}$$

Experimental feasibility :

•
$$p_{tZ}^{\text{cut}}$$
= 2 GeV: 4-5% σ_{DY}

Corresponds to 12 million events in Run 3 at LHC

New observables: cumulative jet spectrum with $p_{tZ} < C_Z$

Average number of jets above $p_{tj,\min}$ for a given cut C_Z on p_{tZ} :

$$\langle n(p_{tj,\min}) \rangle_{C_Z} = \frac{1}{\sigma(p_{tZ} < C_Z)} \int_{p_{tj,\min}} dp_{tj} \frac{d\sigma_{jet}(p_{tZ} < C_Z)}{dp_{tj}}$$

For small jet radii, R ,the total spectrum is a linear sum, i.e.:

$$\langle n(p_{tj,\min}) \rangle_{C_Z} \simeq_{R<1} \sum_{i}^{n-\text{HS}} \langle n(p_{tj,\min}) \rangle_{C_Z}^i$$

 $i_{C_Z}^i = \langle n(p_{tj,\min}) \rangle_{C_Z}^{MPI-off} + \langle n(p_{tj,\min}) \rangle_{C_Z}^{MPI-on}$

New observables: cumulative jet spectrum with $p_{tZ} < 2$ GeV

Less than 1 jet/event from the primary hard scattering

New observables: cumulative jet spectrum with $p_{tZ} < 2$ GeV

Around 10 jets/event from multi-parton interactions

New observables: cumulative jet spectrum with $p_{tZ} < 2 \text{ GeV}$

Tight cut on p_{tZ} yields high-purity MPI samples. How can we exploit them?

Around 10 jets/event from multi-parton interactions

*p*_{tj, min} [GeV]

4Pl pur 90% 78%

20 GeV

40 GeV

60%

Pure MPI cumulative jet spectrum with $p_{tZ} < C_Z$

We introduce the pure MPI contribution to the inclusive jet spectrum

Pure MPI cumulative jet spectrum with $p_{tZ} < C_Z$

We introduce the pure MPI contribution to the inclusive jet spectrum

 $\langle n(p_{tj,\min}) \rangle_{C_Z}^{\text{pure}-\text{MPI}} \equiv \langle n(p_{tj,\min}) \rangle_{C_Z}^{\text{pure}-\text{MPI}}$

In the pocket-formula approach this reduces to

$$\langle n(p_{tj,\min}) \rangle_{C_Z}^{\text{pure}-\text{MPI}} \simeq \frac{1}{\sigma_{\text{eff}}} \int_{p_{tj,\min}} \frac{d\sigma_{\text{jet}}}{dp_{tj}}$$

Pocket formula predicts $\langle n(p_{tj,\min}) \rangle_{C_Z}^{\text{pure}-\text{MPI}}$ to be independent of C_Z

$$(p_{tj,\min})\rangle_{C_Z} - \langle n(p_{tj,\min})\rangle_{C_Z}^{no-MPI}$$

 $\downarrow Z+jj@NLO theory predict$

→ Inclusive jet rate in min-bias (no Z)

New observable: ratio of $\langle n(p_{tj,\min}) \rangle_{C_{7}}^{\text{pure}-\text{MPI}}$ with different $p_{tZ} < C_{7}$

We propose to measure

$$r_{15/2} = \frac{\langle n(x_{15/2}) - \frac{\langle n(x_{15/2}) -$$

• Pocket formula: $r_{15/2} = 1$

 $\langle n(p_{tj,\min}) \rangle_{15}^{\text{pure}-\text{MPI}}$ $\langle n(p_{tj,\min}) \rangle_{2}^{\text{pure}-\text{MPI}}$

• Pythia: $r_{15/2} \simeq 1$ (colour reconnection)

New observable: ratio of $\langle n(p_{tj,\min}) \rangle_{C_{T}}^{\text{pure}-\text{MPI}}$ with different $p_{tZ} < C_{Z}$

We propose to measure

$$r_{15/2} = \frac{\langle n(p_{tj,\min}) \rangle_{15}^{\text{pure-MPI}}}{\langle n(p_{tj,\min}) \rangle_{2}^{\text{pure-MPI}}}$$

• Pocket formula: $r_{15/2} = 1$ • Pythia: $r_{15/2} \simeq 1$ (colour reconnection)

• Perturbative interconnection:

adiation from the partons The Brobing deviations from the pocket-formula scatter, i.e. increasing the [dShower: Cabouat, paynt, Ostronenk JHEP 11 (2019) 061, Cabouat, Gaunt JHEP 10 (2020) 012] o 2HS, Fig. 1b. 2.00 $pp \rightarrow Z/\gamma \rightarrow \mu\mu, \sqrt{s} = 13.6 \text{ TeV}$ ivity to this effect, we anti- $k_t R = 0.4$ 1.75 $66 < m_{\mu\mu} < 116 \text{ GeV}$ 2HS rate with loose (C) $p_{t\mu} > 27 \text{ GeV}, |\eta_{\mu}| < 2.5$ eV) constraints on p_{tZ} , 1.50 1.25 25% effect from interconnection $_{\rm in})\rangle_{15}^{\rm pure-MPI}$ 15/2 1.00 $_{\mathrm{in}})\rangle_{2}^{\mathrm{pure-MPI}}$. 0.75 normalised to the num 0.50 Pythia8+MINNLO ction cut. With the_1 poo dShower w/o interconnection (*Zgg* only) 0.25 dShower w/ interconnection (Zgg only) I, and so an experime 0.00 ^[] 20 potential to provide p 25 55 50 60 30 35 45 40 $p_{tj, \min}$ [GeV] s from the pocket form the pure-M Can one see effect of perturbative interconnection in data? NLO to be

which should be adequate

Assessing statistical significance of perturbative interconnection

Assessing statistical significance of perturbative interconnection

Assume dShower size for signal. Evaluate few assumptions for:

theory uncertainty on 1HS subtraction

 $\langle n(p_{tj,\min}) \rangle_{C_{z}}^{\text{pure}-\text{MPI}} \equiv \langle n(p_{tj,\min}) \rangle_{C_{z}} - \langle n(p_{tj,\min}) \rangle_{C_{z}}^{\text{no-MPI}}$

• + their correlation for different \mathcal{C}_{Z}^{tZ}

Just barely feasible. Motivation for NNLO (matched) Z+2j calculations to reduce theory uncertainty

D@LHC, Durham, September 2023

Assessing statistical significance of perturbative interconnection

Assume dShower size for signal. Evaluate few assumptions for:

theory unc

 $\langle n(p_{tj,\min}) \rangle_{C}^{pl}$

+ their corr

Just barely feasible. Motivation for (matched) Z+2j calculations

x = 15 GeV	i6 < m _μ
10 < x < 15 GeV	r, $pp \rightarrow Z/\gamma \rightarrow \mu_{\mu} < 116 \text{ GeV}$
nti- k_t R=0.4	$\mu, \sqrt{s} = 13$ $\mu_{\mu} > 27$ G
	.6 TeV eV, [ημ] < 2
50 55 6	

x = 15 GeV	
x = 10 GeV	
10 < <i>x</i> < 15 GeV	
nti- <i>k_t</i> R=0.4	
-	
50 55 6	0

x = 15 GeV x = 10 GeV	dShower, p 66 < $m_{\mu\mu}$ <
10 < <i>x</i> < 15 GeV	p→Z/Y→µµ, √ 116 GeV,p _{tµ} >
nti- <i>k_t</i> R=0.4	s = 13.6 TeV > 27 GeV, [ημ
	< 2.5
	-
50 55 0	50

Final topic: seeing 3HS via azimuthal correlations

[Previous studies of 3HS: CMS Collab. Nature Phys. 19 (2023) 3, 338-350, D'Enterria, Snigirev PRL 118 (2017) 12, 122001]

Measure $\Delta\phi$ between leading jets using a tight cut $\delta n p_{tZ}$

Signal (3HS)

Gavin P Salam

Final topic: seeing 3HS via azimuthal correlations

Clear signal of 3HS in terms of a plateau for all values of $\Delta \phi$

a Duthia minimum bias process to concrete the refer

