LabVIEW FPGA @ CERN 2023

- Unofficial
- For fun
- Share knowledge
About the workshop

- 25.04 at 16:00 2 hours
- 26.04 at 16:00 2 hours
About the workshops

• Minimize theory
• Maximize practice
• Some fun examples
LabVIEW

- Intuitive
- Data driven
- Hardware integration
National Instruments

Leader in data acquisition technology with innovative modular instruments and LabVIEW graphical programming software

- Corporate headquarters in Austin, TX
- Offices in nearly 50 countries
- 35,000+ companies served annually
- More than 1,000 products
- Approx. 7,100 employees
- 600 Alliance Partners
Diversity of applications

- SEMICONDUCTOR
- AUTOMOTIVE
- AEROSPACE, DEFENSE, & GOVERNMENT
- ELECTRONICS
- ENERGY
- ACADEMIC & RESEARCH
Diversity of applications

SpaceX

Falcon rocket launch pad software
Diversity of applications

Commercial nuclear fusion power
LabVIEW on different hardware

Applications

Measurement Test Monitoring Embedded Control

Hardware

Desksops, Laptops, and Mobile NI CompactDAQ PXI and Modular Instruments NI CompactRIO
Projects based on NI @ CERN

- LHC collimators real-time control system

<table>
<thead>
<tr>
<th>Control system requirements</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Axes positioning accuracy</td>
<td>few µm</td>
</tr>
<tr>
<td>Axes motion synchronization</td>
<td>below 1 ms</td>
</tr>
<tr>
<td>Response delay to a digital start trigger</td>
<td>100 µs</td>
</tr>
<tr>
<td>Position sensors RT survey frequency</td>
<td>100 Hz</td>
</tr>
<tr>
<td>Reliability</td>
<td>Very high</td>
</tr>
</tbody>
</table>
• LHC collimators real-time control system

Layout

120 systems

Architecture
Projects based on NI @ CERN

- Measurement setup for characterization of the radiation hardness of cryogenic bypass diodes for the LHC-HL

Power supplies for heaters

PXI system components:
- 7 x DMM 4081
- DAQ M-series 6251
- GPIB
- Ethernet

HV power supply – 3kV max

Discharge circuit

Capacitor bank 13.3 nF, 1500V

LHC by-pass diodes

Mu-metal shield (against magnetic field)

Feedthrough 18kA

Cryostat

Measurement rack

Measurement setup assembly and closed cryostat

≈ 30m
CERN LabVIEW support

• Website: cern.ch/labview
• E-mail: labview.support@cern.ch
Getting the Most out of This Course

• Ask questions!

• Experiment with hands-on exercises to understand the methods used

• Explore other solutions - you may find a better one
Why LabVIEW?

• Same concepts as in most traditional languages (data types, loops, event handling, recursion and OOP)
• Data flow (execution is data-driven, not determined by sequential lines of text)
• Intuitive
• Easy to debug
• Automatic parallelism
• Hardware integration
• Combines with other languages
B. Project Explorer

Project Explorer Window
Files Types
Project Folders
Project Explorer

- See the hierarchy
- Organise project files
- Deploy files to targets
- Manage code for build options
 - Executables, installers, and zip files
- Integrate with source code control providers

PC

ARM

FPGA
Project Explorer

PC
ARM
FPGA

Xilinx Zynq 7010
Connect to myRIO

1. Don’t have the myRIO connected yet
2. Power up the myRIO
3. Wait until the Status LED is off
4. Connect the myRIO to your PC
Start LabVIEW

PC

myRIO

Go to LabVIEW
Project

PC

myRIO

Blank Project
New target

Right click Project
Choose: New ->
targets and devices

PC

myRIO
Select myRIO

PC

myRIO

Open myRIO with +
Select NI myRIO
OK
Prepare myRIO

Close tabs:
- Onboard I/O
- Connector A
- Connector B DIO15:8
- Connector C
- Audio
LabVIEW Files

- Common LabVIEW file extensions:
 - LabVIEW project — .lvproj
 - Virtual instrument (VI) — .vi
 - Custom control — .ctl
Adding Folders to a Project

- Virtual folder
 - Organizes project items and does not represent files on disk
- Auto-populating folder
 - Adds a directory on disk to the project
 - LabVIEW continuously updates the folder according to changes made in the project and on disk
Show-off(1)
Project Explorer
C. Parts of a VI

Front Panel
Block Diagram
Icon
Connector Pane
Parts of a VI

VIs have 3 main components:

- **Block diagram**
- **Front panel**
- **Icon/Connector pane**
Parts of a VI – Front Panel

You build the front panel with controls (inputs) and indicators (outputs).
Parts of a VI – Block Diagram

Front panel objects appear as terminals on the block diagram.
Parts of a VI – Icon/Connector Pane

Icon – Graphical representation of a VI

Connector Pane – Map of the inputs and outputs of a VI

Icons and connector panes are necessary to use a VI as a subVI.

- A subVI is a VI that appears on the block diagram of another VI.
- A subVI is similar to a subroutine or function in a text-based programming language.
Show – off (2)

Figures
D. Front Panel
Controls and Indicators
Object Styles
Object Types
 Boolean
 Numeric
 String
Front Panel
Controls and Indicators

Controls
- Input devices
- Knobs, buttons, slides
- Supply data to the block diagram

Indicators
- Output devices
- Graphs, LEDs
- Display data the block diagram acquires or generates
Front Panel Object Styles
Numeric Controls and Indicators

The numeric data in a control or indicator can represent numbers of various types, such as integer or floating-point.
Boolean Controls and Indicators

- The Boolean data type represents data that has only two options, such as True/False or On/Off.
- Use Boolean controls and indicators to enter and display Boolean (TRUE/FALSE) values.
- Boolean objects simulate switches, push buttons and LEDs.
Strings

- The string data type is a sequence of ASCII characters.
- Use string controls to receive text from the user.
- Use string indicators to display text to the user.
E. Block Diagram

Terminals
Nodes
Wires
Help
Block Diagram
Block Diagram

- Block diagram items:
 - Terminals
 - Constants
 - Nodes
 - Functions
 - SubVIs
 - Structures
 - Wires
 - Free labels
Terminals

Same label name
Terminals for Front Panel Objects

- Terminals are:
 - Entry and exit ports that exchange information between the front panel and block diagram.
 - Analogous to parameters in text-based programming languages.
- Double-click a terminal to locate the corresponding front panel object.
View Terminals as Icons

- By default, View as Icon option enabled.
- Deselect View as Icon for a more compact view.
Nodes

Nodes are objects on the block diagram that have inputs and/or outputs and perform operations when a VI runs.
Function Nodes

- Functions are:
 - Fundamental operating elements of LabVIEW.
 - Do not have front panels or block diagrams, but do have connector panes.
 - Has a pale yellow background on its icon.
 - Double-clicking a function only selects the function.
 - Functions do not open like VIs and subVIs.
SubVI Nodes

- **SubVIs:**
 - Are VIs that you use on the block diagram of another VI.
 - Have front panels and block diagrams.
 - Use the icon from the upper-right corner of the front panel as the icon that appears when you place the subVI on a block diagram.
- When you double-click a subVI, the front panel and block diagram open.
- Any VI has the potential to be used as a subVI.
Express VIs

• Express VIs:
 • Are a special type of subVI.
 • Require minimal wiring because you configure them with GUI dialog boxes.
 • Save each configuration as a subVI.
 • Icons for Express VIs appear on the block diagram as icons surrounded by a blue field.
Structures

• Structures in LabVIEW have the form of frames.

• Other nodes (functions, subVIs, more structures) can be inserted into the frames.
Wires

- Wires transfer data between block diagram objects.
- Wires are different colors, styles, and thicknesses, depending on their data types.

<table>
<thead>
<tr>
<th></th>
<th>Floating-point</th>
<th>Integer</th>
<th>String</th>
<th>Boolean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-D Array</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-D Array</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A broken wire appears as a dashed black line with a red X in the middle.
Constants

- Constants are the source of values just as control terminals, but their value is fixed in the code.

- You can create a constant of each data type.
Free labels

• A free label is a label (a text box) not attached to any object.
• Free labels can be put on the front panel or block diagram. They are created by double-clicking on empty space in the window.
• They can serve as comments or instructions to the user of the application.
Context Help

- Displays basic information about wires and nodes when you move the cursor over an object.
- Can be shown or hidden in the following ways:
 - Select **Help»Show Context Help** from the LabVIEW menu.
 - Press `<Ctrl-H>`.
 - Click the following button on the toolbar:
LabVIEW Help

• Contains detailed descriptions and instructions for most palettes, menus, tools, VIs, and functions.

• Can be accessed by:
 − Selecting Help» LabVIEW Help from the menu.
 − Clicking the Detailed help link in the Context Help window.
 − Right-clicking an object and selecting Help from the shortcut menu.
Examples

- LabVIEW includes hundreds of example VIs.
- Use NI Example Finder to browse and search installed examples.
 - Select **Help»Find Examples** in the menu.
 - Click the example buttons in *LabVIEW Help* topics.
Group Exercise
Concept: Exploring a VI

Identify the parts of an existing VI.
F. Searching for Controls, VIs and Functions

Palettes
Quick Drop
NI Global Search
Searching for Controls, VIs and Functions

Ways to find controls, VIs, and functions:

• Search or navigate the palettes.
 • Controls palette
 • Functions palette
• Search by name of object.
 • Quick Drop dialog box
• Search palettes, *LabVIEW Help*, and *ni.com*.
 • Search text box in toolbar
Controls Palette

- Contains the controls and indicators you use to create the front panel.
- Navigate the subpalettes or use the **Search** button to search the Controls palette.
Functions Palette

- Contains the VIs, functions, and constants you use to create the block diagram.
- Navigate the subpalettes or use the **Search** button to search the Functions palette.
Searching with Quick Drop

- Lets you quickly find controls, functions, VIs, and other items by name.
- Press the <Ctrl-Space> keys to display the Quick Drop dialog box.
Global Search

Use the Search bar in the top right of the front panel and block diagram windows to search palettes, *LabVIEW Help*, and ni.com.
Search for Controls, VIs and Functions

- Configure palettes to customize visible palettes.
- Search and navigate the palettes.
- Search for help using global search.
- Use Quick Drop to search by name.
G. Selecting a Tool

Selecting a Tool
Block Diagram Clean-Up
Selecting a Tool

- A tool is a special operating mode of the mouse cursor.
- Create, modify, and debug VIs using the tools provided by LabVIEW.
- By default, LabVIEW automatically selects tools based on the context of the cursor.
- If you need more control, use the **Tools** palette to select a specific tool.
 - Select **View»Tools Palette** to open the **Tools** palette.
Wiring Tips

- Press <Ctrl-B> to delete broken wires.
- Right-click and select **Clean Up Wire** to reroute the wire.
Wiring Tips – Clean Up Diagram

Use the Clean Up Diagram tool to reroute multiple wires and objects and to improve readability.

1. Select a section of your block diagram.
2. Click the Clean Up Diagram button on the block diagram toolbar (or press <Ctrl-U>).
Cloning and Moving Items

• Clone an object in Windows using the following steps:
 1. Select the Positioning tool.
 2. Press the <Ctrl> key while clicking an object.
 3. Drag the copy to new location.

• Move an object using the following steps:
 1. Select the Positioning tool.
 2. Click and drag the object to new location.

Note: Avoid cutting and pasting objects as this can impact related items. For example, cutting and pasting a block diagram terminal also moves the front panel object.
Selecting, Editing, Resizing and Wiring

- Select item to move, copy, or delete
- Edit text
- Resize an object
- Wire terminals and nodes
- Automatic and manual tool selection
Setting Options for the Environment

- In **Tools»Options…** dialog box you can customize settings for the LabVIEW environment.

- Suggested changes:
 - Front Panel page
 - Set Control Style for New VIs to **Silver style**
 - Block Diagram page
 - Uncheck **Place front panel terminals as icons**
 - Configure **Block Diagram Cleanup** to customize your block diagram
H. Dataflow
LabVIEW follows a dataflow model for running VIs.

- A node executes only when data are available at all of its required input terminals.
- A node supplies data to the output terminals only when the node finishes execution.
Dataflow – Quiz

What are the nodes in this fragment of code?
Which node executes first?
There are two nodes: “square” and “greater than?” functions. Square executes first.
Dataflow – Quiz

Which node executes first?

a) Add
b) Subtract
c) Random Number
d) Divide
e) Sine
No single correct answer.

Which node executes first?

a) Add – **Possibly**
b) Subtract – **Definitely not**
c) Random Number – **Possibly**
d) Divide – **Possibly**
e) Sine – **Definitely not**
Identify dataflow execution order in the following block diagrams.
Group Exercise
Concept: Dataflow

Which node executes first? Last?
Where are the data dependencies?
I. Building a Simple VI
Building a Simple VI
Acquire Express VIs

- DAQ Assistant Express VI
- Instrument I/O Assistant Express VI
- Simulate Signal Express VI
- Read from Measurement File Express VI
Analyze Express VIs

- Amplitude and Level Measurements Express VI
- Statistics Express VI
- Spectral Measurements Express VI
- Tone Measurements Express VI
- Filter Express VI
Present Express VIs and Indicators

- Display Message Express VI
- Play Waveform Express VI
- Report Express VI
- Write to Measurement File Express VI
- DIAdem Report Express VI
Building and Running a VI

1. Place Express VI on the block diagram.
2. Configure the dialog box that opens.
3. Wire Express VIs together.
4. Save and run the VI.

The **Run** button appears broken when the VI you are creating or editing contains errors.
Homework: Navigating LabVIEW

• Practice navigating the LabVIEW environment - add things to the front panel and block diagram, align and resize objects, use simple functions.
Homework: Simple AAP VI

- Build a simple Acquire-Analyze-Present VI.

- You may use some of the Express VIs mentioned on the slides or different VIs that can be found in LabVIEW palettes.

- To find a function or VI, use ‘Search’ button on the palette or use Quick Drop window (<Ctrl>+space).
Homework:
Simple AAP VI
• Example: using Express VIs
Homework:
Simple AAP VI
- Example: without Express VIs
Homework:
Simple AAP VI

Example – scenario:

• Acquire a sine waveform for 0.1 seconds.
• Determine the average value of the waveform.
• Log the data to a file.
• Display the data to a graph.