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Outline

▶ Renormalons and linear power corrections in the 2-jet limit, in
the 3-jet symmetric limit, and in the full 3-jet region.

▶ Implications for e+e−-annihilation shape-variables in the 3-jet
region.

▶ Fits to ALEPH data.
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αS from e+e− shape variables

▶ Historically the framework of choice to measure αS directly from the
qq̄g vertex.

▶ In practice: very convincing at the 10% level; affected by
non-perturbative uncertainties if one wants higher precision

▶ αS(MZ ) from NNLO+NLL+Monte Carlo models:

▶ 0.1224± 0.0039 ALEPH 2009, [arXiv:0906.3436].)
▶ 0.1189± 0.0043 OPAL 2011, [arXiv:1101.1470])
▶ 0.1172± 0.0051 JADE 2009, [arXiv:0810.1389]

The use of Monte Carlo models to correct for hadronization effects have

long been criticized, since the interplay of perturbative and

non-perturbative effects in Shower Monte Carlo is not fully clear.
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αS from e+e− shape variables

As an alternative, another class of determi-
nations is based upon analytic modeling of
non-perturbative effects, using methods like
SCET, dispersive models and low scale QCD
effective couplings, and using NNLO+N3LL
calculations:

▶ 0.1135± 0.0011 R.Abbate et al,
2011, [arXiv:0809.3326]

▶ 0.1134 +0.0031
−0.0025

Gehrmann,Luisoni,Monni,
2013,[arXiv:1210.6945]

▶ 0.1123± 0.0015 Hoang et al,
2015 [arXiv:1501.04111]

They tend to result in a rather low value,

not in good agreement with world data. 0.110 0.115 0.120 0.125 0.130
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The new developments

▶ A calculation of linear power corrections was performed in the
3-jet symmetric limit for the C -parameter
(Luisoni,Monni,Salam, 2021,[2012.00622]), leading to a result of
about 1/2 of the one in the two-jet limit

▶ A calculation of linear power corrections in the full 3-jet
region was performed in a sequel of papers
Caola,Ferrario Ravasio,Limatola,Melnikov, PN 2021,[2108.08897],
same authors + Ozcelik 2022[2204.02247],

Zanderighi,PN 2023[2301.03607]
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The new development; recall why we can do 2-jets

Let us first recall why one can compute NP effects in the 2-jet
limit.

NP effects arise from the emission of
soft gluons with small off-shellness (so
that αS hits the Landau pole)

⟨S⟩ =
∫

dσS(qq̄ + gluer)

and we can write

⟨S⟩ =
∫

dσ [S(qq̄ + gluer)− S(qq̄)] +

∫
dσS(qq̄)

But, since S(qq̄) is constant, the second term is proportional to the
inclusive cross section, that does not have linear NP corrections.
The factor in the square bracket suppresses the soft region;
so, the leading NP term must arise from the soft approximation.
Note that the virtual corrections do not contribute to the first
term.
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The new development; why Luisoni-Salam-Monni works

Now we recall why LSM can compute NP effects in the 3-jet
symmetric limit for the C -parameter.

LSM noticed that near the 3-jet symmetric limit the contribution
to the C parameter from the hard partons q, q̄, g is

C =
3

4
− 81

16
(ϵ2q + ϵqϵq̄ + ϵ2q̄)︸ ︷︷ ︸

quadratic

+O(ϵ3).

where ϵq/q̄ = xq/q̄ − 2/3 are the relative deviation of the quark and
antiquark energy fraction with respect to the symmetric limit. So

C =

∫
dσ [C (qq̄g + gluer)− S(qq̄g)] +

∫
dσS(qq̄g)

Since S(qq̄g) is almost constant, one can argue that the gluer
emission has no linear NP effect in the second term, since it is
inclusive in the soft gluer emission. The first term has only real
contributions, so we only need to compute a real soft emission,
followed by a splitting process.
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The new development: the full 3-jet region

Start with qq̄γ (large nf calculation)

▶ Assume that we have a mapping from the qq̄γ + gluer
configuration to the qq̄γ configuration
p1, p2, p3, k ↔ p̃1, p̃2, p̃3

that for small k is linear in k: p̃µi = pµi +Tµ
i ,ν(p̃)k

ν +O(k20 ).

▶ Then we demonstrated that the integral at fixed p̃i :∫
d4k

∂4σ(k, p(p̃, k))

∂k4
× G (k)

where G is any function of k that is linear in k for small k ,
is free from linear NP corrections.

This result is in fact very general, holding not only for e+e−

annihilation but also for collider processes, like the differential cross
section for the production of massive colour neutral object in
hadronic collisions.
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The new development

We write, for a generic shape variable

S =

∫
dσ(p, k) [S(p, k)− S(p̃)] +

∫
dσ(p, k)S(p̃),

and according to our finding the second term cannot yield linear
NP corrections. So, only the first term is left, and it receives
contributions only from the real emission of a soft gluer, that,
thanks to the suppression of the square bracket, can be computed
in the soft limit.

Since the correction depends only upon the soft eikonal
approximation for the soft emission, we can put forward the
hypothesis that it can be extended to final states involving also
gluons.
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Non-perturbative corrections can be parametrized as a shift in the
perturbative cumulant distribution:

Σ(s) −→ Σ(s + HNPζ(s)), where Σ(s) =

∫
dσ(Φ)θ(s − s(Φ))

and HNP ≈ Λ/Q is a non-perturbative parameter that must be
fitted to data.
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The dot in the plots represents the constant value that was used in
earlier studies. The value of ζ(c) at the symmetric point c = 3/4
was also computed by Luisoni,Monni,Salam 2021.
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(G.Zanderighi,P.N.2023) In some cases ζ is negative!
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Rapid variations near v = 0

Near v = 0, the Born amplitude is dominated by the soft-collinear region.

radiation =
CA

2
Mq̄g +

CA

2
Mqg +

(
CF − CA

2

)
Mqq̄

but Mqg ≈ 0, Mq̄g ≈ Mqq̄, so the total is ≈ CFMqq̄.

Our ζ(v) functions, for v → 0 MUST approach the 2-jet limit
value; but up to single logs!, i.e. terms of relative order 1/| log(v)|.
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Insist on v → 0 (quadruple precision, log scale histogram).
Two-jet limit reached, but subleading terms are extremely
important!

13 / 24



Fits to data

Our calculation indicates that there can be large differences
between the power corrections estimated in the two-jet limit with
respect to those in the three-jet regime.
So:

▶ We attempted to fit ALEPH data using our findings.

▶ The purpose of the fit is to see to what extent the data
supports our finding for the non-perturbative corrections.

▶ Rather than attempting to quote a value for αS , we have tried
to examine all possible sources of uncertainties
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RESULTS

Simultaneous fit to C , t and y3, both for our newly computed ζ(v), and,

for comparison, with ζ(v) → ζ2J(v) = ζ(0) (traditional method for the

computation of power corrections).

(we excluded variables with “bizarre” behaviour near the 2-jet limit)
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Fit details

Take vi to span all bins of all shape variables considered; we define

χ2 =
∑
ij

∆iV
−1
ij ∆j , ∆i =

(
1

σexp

dσexp(vi )

dvi
− 1

σth

dσth(vi )

dvi

)
,

Vij = δij(R
2
i + T 2

i ) + (1− δij)CijRiRj + Cov
(Syst)
ij

▶ Ri : statistical error

▶ Ti : theoretical error (scale variation plus error estimate of
non-perturbative shift).

▶ Cij statistical correlation (from Monte Carlo simulation)

▶ Cov
(Syst)
ij : systematics covariance matrix
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Variation αs (MZ ) α0 χ2 χ2

Ndeg

Default setup 0.1174 0.64 6.8 0.15
Ren. sc. Q/4 0.1180 0.60 6.1 0.14
Ren. sc. Q 0.1182 0.68 7.9 0.18
NP sch. (b) 0.1186 0.79 6.4 0.15
NP sch. (c) 0.1194 0.84 4.7 0.11
NP sch. (d) 0.1184 0.66 5.2 0.12
P-scheme 0.1150 0.63 9.5 0.22
D-scheme 0.1188 0.79 5.1 0.12

Std. scheme 0.1168 0.58 8.1 0.18
No hq corr. 0.1176 0.68 6.2 0.14
Herwig 6 0.1174 0.60 14.7 0.33
Herwig 7 0.1174 0.60 10.9 0.25
Ranges (2) 0.1166 0.62 12.3 0.22
Ranges (3) 0.1178 0.69 2.4 0.07
Alt. correl. 0.1180 0.62 5.8 0.13
y3 clustered 0.1166 0.67 7.6 0.17

C 0.1252 0.47 0.9 0.06
τ 0.1188 0.64 0.7 0.03
y3 0.1196 1.90 0.0 0.00

C , τ 0.1230 0.51 2.0 0.05

Several variations of setup param-
eters/methods lead to variations
of the central value of order 1%.
Among them

▶ Central ren. scale

▶ Ambiguity in
implementation of NP
corrections

▶ Treatment of correlation in
systematic errors

▶ Treatment of hadron masses
(P, D and std. schemes)
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Quality of the fit for C , τ and y3, using the new calculation of the
non-perturbative effect (i.e. the full ζ(v) dependence.)
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Prediction for M2
H , M

2
D and BW using the values of αS and α0

obtained by fitting C , τ and y3.
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Good fit away from the two
jet region.
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Prediction for M2
H , M

2
D and BW using the values of αS and α0

obtained by fitting C , τ and y3.
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Good fit far away from the
two jet region.
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Quality of the fit for C , τ and y3, obtained setting ζ(v) = ζ(0).
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Prediction for M2
H , M

2
D and BW using the fitted values of αS and

α0 obtained by fitting C , τ and y3.
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Prediction for M2
H , M

2
D and BW using the fitted values of αS and

α0 obtained by fitting C , τ and y3.
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Conclusions

▶ Some new, intriguing results regarding linear power
corrections in collider observables have been obtained.

▶ They suggest that power corrections computed in the two-jet
limit cannot be safely extrapolated to the three jet region.

▶ The NP corrections we computed in the three-jet region seem
to be supported by data.
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