RG improvement and α_s determination from relativistic sum rules

$$R_{\overline{q}q}(s) \equiv \frac{3s}{4\pi\alpha^2}\sigma \left(e^+e^- \to q\overline{q} + X\right)$$

M. S. A. Alam Khan

IIT Gandhinagar, India

"Renormalization group improved determination of α_s , m_c , and m_b from the low energy moments of heavy quark current correlators" (Phys.Rev.D 108 (2023) 7, 074029)

Feb 05, 2024

alphas-2024: Workshop on precision measurements of the QCD coupling constant

Outline

- Motivation
- Definition of various quantities used.
- Prescriptions for the perturbative series.
- a. FOPT and RGSPT
- b. RG improvements.
- Issues with FOPT using charm moments
- a) Charm mass determinations
- b) Strong coupling determination
- Results

Motivation

• K. G. Chetyrkin, J. H. Kuhn, A. Maier, P. Maierhofer, P. Marquard, M. Steinhauser and C. Sturm, ``Addendum to Charm and bottom quark masses: An update [arXiv:1710.04249 [hep-ph]].

n	$m_c(3 \text{GeV})$	exp	$lpha_s$	μ	np _{LO}	total	$m_{c}\left(m_{c} ight)$
1	0.993	0.007	0.004	0.002	0.001	0.008	1.279
2	0.982	0.004	0.007	0.005	0.001	0.010	1.269
3	0.982	0.003	0.008	0.006	0.001	0.010	1.269
4	1.003	0.002	0.005	0.028	0.001	0.029	1.288

Quantities and their definitions

$$\begin{split} R_{\overline{q}q}(s) &\equiv \frac{3s}{4\pi\alpha^2} \sigma\left(e^+e^- \to q\overline{q} + X\right) &\simeq \frac{\sigma\left(e^+e^- \to q\overline{q} + X\right)}{\sigma\left(e^+e^- \to \mu^+\mu^-\right)} & \mathcal{M}_q^{V,n} = \int_0^\infty \frac{ds}{s^{n+1}} R_{q\overline{q}}(s) \\ = \int_0^{\infty} \frac{ds}{s^{n+1}} R_{q\overline{q}}(s) &= \int_0^{s_{\mathrm{th.}}} \frac{ds}{s^{n+1}} R_{q\overline{q}}(s) \\ \mathcal{M}_n^{V,\mathrm{th}} &= \frac{12\pi^2 Q_q^2}{n!} \frac{d^n}{ds^n} \Pi^V(s)\Big|_{s=0} & R_{\overline{q}q}^{\mathrm{cont.}} \equiv 12\pi \operatorname{Im} \Pi^V(s + i\epsilon) = 12\pi \times \frac{1}{2i} \left(\Pi^V(s + i\epsilon) - \Pi^V(s - i\epsilon)\right) \\ \mathcal{M}_n^{P,\mathrm{th}} &= \frac{12\pi^2 Q_q^2}{n!} \frac{d^n}{ds^n} P(s)\Big|_{s=0} & \left(q^2 g_{\mu\nu} - q_{\mu}q_{\nu}\right) \Pi^V(q^2) = -i \int dx e^{iqx} \langle 0|T\{j_{\mu}(x)j_{\nu}(0)\}|0\rangle \\ \mathcal{M}(s) &= \frac{1}{s^2} \left(\Pi^P(s) - \Pi^P(0) - s\left[\frac{d}{ds}\Pi^P(s)\right]_{s=0}\right) & \mathcal{M}_n^{X,\mathrm{th.}} = \mathcal{M}_n^{X,\mathrm{pert.}} + \mathcal{M}_n^{X,\mathrm{n.p.}} & \mathcal{M}_n^{X,\mathrm{pert.}} = m_q^{-2n} \sum_{i,j} T_{i,j}^{X,\mathrm{pert.}} x^i L^j \\ j_P &= 2im_q \overline{q}(x)\gamma^5 q(x) & \mathcal{R}_n^X \equiv \frac{\left(\mathcal{M}_n^X\right)^{\frac{1}{n}}}{\left(\mathcal{M}_{n+1}^X\right)^{\frac{1}{n+1}}} & x \equiv \alpha_s(\mu)/\pi & L \equiv \log(\mu^2/m_q^2) \\ m_q \equiv m_q(\mu) & 4 \end{split}$$

Perturbative prescriptions

- Fixed order perturbation theory (FOPT)
- Renormalization group summed perturbation theory (RGSPT)

 N^n LL are summed using Renormalization group

$$\begin{split} & \text{FOPT:} \quad \mathcal{M}_{n}^{X,\text{pert}} = m_{q}^{-2n} \sum_{i,j} T_{i,j}^{X} x^{i} L^{j} & \beta(x) = \mu^{2} \frac{d}{d\mu^{2}} x(\mu) = -\sum_{i} \beta_{i} x^{i+2}, \\ & \text{RGSPT:} \quad \mathcal{M}_{n}^{X,\Sigma} = m_{q}^{-2n} \sum_{i=0} x^{i} S_{i}(xL) \implies S_{i}(xL) = \sum_{n=i}^{\infty} T_{n,n-i}^{X}(xL)^{n-i} & \gamma_{m}(x) \equiv \mu^{2} \frac{d}{d\mu^{2}} \log(m_{q}(\mu)) = -\sum_{i} \gamma_{i} x^{i+1} \\ & \text{RGE:} \quad \mu^{2} \frac{d}{d\mu^{2}} \mathcal{M}_{n}^{X} = 0 \implies (\beta(x)\partial_{x} + \gamma_{m}(x)\partial_{m} + \partial_{L}) \mathcal{M}_{n}^{X} = 0 \\ & \sum_{i=0}^{k} \left[\beta_{i}(\delta_{i,0} + w - 1)S'_{k-i}(w) + (\beta_{i}(k-i) - 2n\gamma_{i})S_{k-i}(w) \right] = 0 \\ & w = 1 - \beta_{0} x L \\ S_{0}(w) = w^{\frac{2n\gamma_{0}}{\beta_{0}}}, \quad S_{1}(w) = \left(T_{1,0}^{X} + \frac{2nL_{w}\gamma_{0}(\beta_{1} - 2\beta_{0}\gamma_{0})}{\beta_{0}^{2}} + \frac{2n(\beta_{1}\gamma_{0} - \beta_{0}\gamma_{1})}{\beta_{0}^{2}} \right) w^{\frac{2n\gamma_{0}}{\beta_{0}} - 1} + \frac{2n(\beta_{0}\gamma_{1} - \beta_{1}\gamma_{0}) w^{\frac{2n\gamma_{0}}{\beta_{0}}}}{\beta_{0}^{2}} \\ & \Omega_{n,a} \equiv \frac{\log^{n}(w)}{w^{a}} \qquad \text{positive integer} \end{split}$$

Other examples: strong coupling constant

$$x(Q) = x\left(1 + x\beta_0 L + x^2\left(\beta_1 L + \beta_0^2 L^2\right) + x^3\left(\beta_2 L + \frac{5}{2}\beta_1\beta_0 L^2 + \beta_0^3 L^3\right)\right) + \mathcal{O}(x^5)$$

RGSPT:

FOPT:

$$\begin{split} x(Q) &= \frac{x}{w} - \frac{x^2 \tilde{\beta}_1 L_w}{w^2} + x^3 \left(\frac{-\tilde{\beta}_1^2 + \tilde{\beta}_2 + \tilde{\beta}_1^2 L_w^2 - \tilde{\beta}_1^2 L_w}{w^3} + \frac{\tilde{\beta}_1^2 - \tilde{\beta}_2}{w^2} \right) + x^4 \left\{ \begin{array}{c} -\frac{\tilde{\beta}_1^3}{2} + \tilde{\beta}_2 \tilde{\beta}_1 - \frac{\tilde{\beta}_3}{2} \\ w^2 \end{array} \right. \\ &+ \frac{-\frac{\tilde{\beta}_1^3}{2} + \frac{\tilde{\beta}_3}{2} + \tilde{\beta}_1^3 \left(-L_w^3 \right) + \frac{5}{2} \tilde{\beta}_1^3 L_w^2 + \left(2\tilde{\beta}_1^3 - 3\tilde{\beta}_1 \tilde{\beta}_2 \right) L_w}{w^4} + \frac{\tilde{\beta}_1^3 - \tilde{\beta}_2 \tilde{\beta}_1 + \left(2\tilde{\beta}_1 \tilde{\beta}_2 - 2\tilde{\beta}_1^3 \right) L_w}{w^3} \right\} + \mathcal{O}\left(x^5 \right) \end{split}$$

where: $w = 1 - \beta_0 x L, L_w \equiv \log(w) \text{ and } \tilde{\beta}_i = \beta_i / \beta_0$

Not only coupling and moments, even decoupling relations for quark masses and coupling can be summed in closed form!!!

Higher order results

$$\mathcal{M}_{n}^{X,\text{pert.}} = m_{q}^{-2n} \sum_{i=0,j=0}^{\infty,i} T_{i,j}^{X,\text{pert.}} x^{i} L^{j} \qquad \begin{array}{l} T_{i,0}^{X,\text{pert.}} \text{ known to four loops } \left(\mathcal{O}\left(\alpha_{\text{s}}^{3}\right)\right) \\ \text{A. Maier, P. Maierhofer, P. Marquard and A. V. Smirnov,} \\ \text{Nucl. Phys. B 824(2010), [arXiv:0907.2117 [hep-ph]].} \end{array}$$
$$\mathcal{M}_{n}^{X,\text{n.p.}} = \frac{\left\langle x G^{2} \right\rangle_{\text{RGI}}}{\left(2 m_{q}\right)^{4n+4}} \sum_{i,j} T_{i,j}^{X,\text{n.p.}} x^{i} L^{j} \qquad \begin{array}{l} T_{i,0}^{X,\text{n.p.}} \text{ is known to two loops } \left(\mathcal{O}\left(\alpha_{\text{s}}\right)\right) \\ \text{D. J. Broadhurst, et al., Phys. Lett. B 329 (1994),} \\ \left[arXiv:hep-ph/9403274 [hep-ph]\right] \end{array}$$

$$x \equiv lpha_{
m s}(\mu)/\pi$$

 $m_q \equiv m_q(\mu)$
 $L \equiv \log(\mu^2/m_q^2)$
 $\langle \frac{lpha_{
m s}}{\pi} G^2
angle_{
m RGI} = 0.006 \pm 0.012 \,{
m GeV}^4$

B. L. loffe, Prog. Part. Nucl. Phys. 56 (2006), [arXiv:hep-ph/0502148 [hep-ph]].

$$m_q(\mu) = M_q\left(1 - x(\mu)\left(\frac{4}{3} + \log\left(\frac{\mu^2}{M_q^2}\right)\right)\right) + \mathcal{O}\left(x^2\right)$$

$$m_c(q) = \overline{m}_c \int_{x(\overline{m}_c)}^{x(q)} dx \, e^{\left(\frac{\gamma(x)}{\beta(x)}\right)}$$

7

RG behavior of perturbative moments in FOPT and RGSPT

μ (GeV)

RG behavior of moments contd...

Experimental and lattice moments

Moments	Ref. [1]	Ref. [2]					
\mathcal{M}_1^V	2.121 ± 0.036	2.154 ± 0.023					
\mathcal{M}_2^V	1.478 ± 0.028	1.490 ± 0.017					
\mathcal{M}_3^V	1.302 ± 0.027	1.308 ± 0.016					
\mathcal{M}_4^V	1.243 ± 0.028	1.248 ± 0.016					

Moments	Ref. [3]	Ref. [4]	Ref. [5]	Ref. [6]	Ref. [7]
\mathcal{M}_1^P	1.404 ± 0.019	1.395 ± 0.005	1.385 ± 0.007	1.386 ± 0.005	1.387 ± 0.004
\mathcal{M}_2^P	1.359 ± 0.041	1.365 ± 0.012	1.345 ± 0.032	1.349 ± 0.012	1.344 ± 0.010
\mathcal{M}_3^P	1.425 ± 0.059	1.415 ± 0.010	1.406 ± 0.048	1.461 ± 0.050	1.395 ± 0.022

Moments for the vector channel $10^{-n}GeV^{-2n}$.

Pseudoscalar moment from lattice QCD (units of $10^{-n}GeV^{-2n}$).}

 B. Dehnadi, A. H. Hoang, V. Mateu and S. M. Zebarjad, JHEP 09 (2013), 103 K. G. Chetyrkin, J. H. Kuhn, A. Maier, P. Maierhofer, P. Marquard, M. Steinhauser and C. Sturm, Phys. RevD.96.116007 	Vector moments
3. I. Allison <i>et al.</i> [HPQCD], Phys. Rev. D 78 (2008), 054513	
4. C. McNeile <i>et al.</i> , Phys. Rev. D 82 (2010), 034512	
5. K. Nakayama, B. Fahy and S. Hashimoto, Phys. Rev. D 94 (2016) no.5, 054507	Pseudoscalar
6. Y. Maezawa and P. Petreczky, Phys. Rev. D 94 (2016) no.3, 034507	Moments
7. P. Petreczky and J. H. Weber, Phys. Rev. D 100 (2019) no.3, 034519	

Application to charm moments: Vector moments

				FO	\mathbf{PT}			RGSPT					
Sources Moment				Theo. Unc.					Theo. Unc.				
		$m_c(3{ m GeV})$	$\alpha_{\rm s}$	μ	n.p.	total	Exp. Unc.	$m_c(3{ m GeV})$	$\alpha_{\rm s}$	μ	n.p.	total	Exp. Unc.
	\mathcal{M}_{1}^{V}	1005.4(13.9)	3.2	7.6	0.2	8.3	11.2	1000.2(12.3)	3.7	1.9	2.3	4.8	11.3
Ref. [1]	\mathcal{M}_2^V	997.2(19.8)	4.7	11.3	14.4	18.9	6.1	988.5(9.2)	5.4	1.6	3.5	6.6	6.3
	\mathcal{M}_3^V	1022.1(127.8)	3.4	41.8	120.6	127.7	4.0	983.4(9.2)	6.7	1.4	3.9	7.8	4.9
	\mathcal{M}_4^V	1077.3(113.6)	1.0	100.5	52.9	113.6	2.8	980.5(8.9)	7.7	0.9	1.8	8.0	3.9
	\mathcal{M}_1^V	995.4(10.8)	3.3	7.6	0.0	8.3	6.9	990.1(8.5)	3.6	2.0	2.3	4.8	7.0
Ref. [2]	\mathcal{M}_2^V	994.6(19.5)	4.7	11.3	14.7	19.1	3.7	985.8(7.7)	5.4	1.6	3.5	6.6	3.8
	\mathcal{M}_3^V	1021.3(126.5)	3.4	41.9	126.5	133.3	2.3	982.3(8.3)	6.7	1.4	3.9	7.8	2.8
	\mathcal{M}_4^V	1076.8(113.8)	1.0	100.7	52.9	113.8	1.6	979.8(8.3)	7.7	0.9	1.8	8.0	2.2

The pole mass of the charm quark is used as input in the non-perturbative condensate terms. $~\mu\in[1,4]~{
m GeV}$

				FO	РТ			RGSPT					
Sources	Moments			Theo	o. Unc.			Theo. Unc.					
		$m_c(3{ m GeV})$	$\alpha_{\rm s}$	μ	n.p.	total	Exp. Unc.	$m_c(3{ m GeV})$	$\alpha_{\rm s}$	μ	n.p.	total	Exp. Unc.
	\mathcal{M}_1^V	1004.8(13.7)	3.3	7.1	1.4	7.9	11.2	1000.9(12.1)	3.7	1.9	0.9	4.3	11.3
Ref. [1]	\mathcal{M}_2^V	989.4(9.2)	5.4	3.5	2.0	6.7	6.3	989.6(8.6)	5.5	1.8	1.0	5.8	6.3
	\mathcal{M}_3^V	990.9(13.5)	5.4	10.9	2.5	12.6	4.7	984.8(8.7)	6.8	2.4	1.0	7.3	4.8
	\mathcal{M}_4^V	1014.5(37.7)	3.8	37.2	2.9	37.5	3.4	980.9(9.8)	8.0	3.9	0.9	9.0	3.9
	\mathcal{M}_1^V	995.1(10.3)	3.3	6.8	0.7	7.6	7.0	990.8(8.2)	3.8	2.0	0.9	4.3	7.0
Ref. [2]	\mathcal{M}_2^V	987.3(7.4)	5.4	3.2	0.8	6.3	3.8	986.9(7.0)	5.5	1.8	1.0	5.9	3.8
	\mathcal{M}_3^V	990.7(12.7)	5.8	10.9	2.7	12.4	2.7	983.7(7.8)	6.8	2.4	1.1	7.3	2.8
	\mathcal{M}_4^V	1014.9(37.0)	3.8	36.7	0.8	36.9	2.0	980.2(9.3)	8.1	3.9	1.0	9.0	2.2

Application to charm moments: pseudoscalar moments

				FO	PT					RC	SPT		
Sources	Moments			Theo	b. Unc.					The	o. Unc.		
		$m_c(3{ m GeV})$	$\alpha_{\rm s}$	μ	n.p.	total	Exp. Unc.	$m_c(3{ m GeV})$	$\alpha_{\rm s}$	μ	n.p.	total	Exp. Unc.
	\mathcal{M}^P_1	983.6(10.0)	1.1	5.0	2.4	5.7	8.2	989.3(9.0)	1.4	3.5	0.7	3.8	8.1
Ref. [3]	\mathcal{M}^P_2	988.3(12.5)	1.7	6.8	3.6	12.5	9.8	990.5(11.4)	1.5	5.8	0.9	6.0	9.7
	\mathcal{M}^P_3	998.9(29.9)	2.2	26.6	10.5	28.6	8.5	985.4(11.6)	3.2	6.4	2.0	7.4	9.0
	\mathcal{M}^P_1	987.1(6.1)	1.1	5.0	2.3	5.5	2.4	992.8(4.5)	1.4	3.5	3.5	0.7	2.3
Ref. [4]	\mathcal{M}^P_2	986.9(8.3)	1.7	6.7	3.6	7.8	2.7	989.1(6.6)	1.5	5.8	0.9	6.0	2.7
	\mathcal{M}^P_3	1000.2(28.6)	2.2	26.5	10.4	28.6	1.4	986.9(7.6)	3.2	6.4	2.0	7.4	1.5
	\mathcal{M}^P_1	991.7(6.4)	1.1	4.9	2.2	5.5	3.2	997.3(5.0)	1.4	3.5	0.7	3.8	3.2
Ref. [5]	\mathcal{M}^P_2	991.5(10.9)	1.6	6.8	3.5	7.9	7.5	993.6(9.6)	1.5	5.8	0.9	6.1	7.5
	\mathcal{M}^P_3	1001.5(29.4)	2.2	26.5	10.3	28.5	7.1	988.2(10.5)	3.2	6.4	2.0	7.4	7.5
	\mathcal{M}^P_1	991.2(6.0)	1.1	4.9	2.3	5.5	2.4	996.8(4.5)	1.4	3.5	0.7	3.8	2.3
Ref. [6]	\mathcal{M}_2^P	990.5(8.3)	1.6	6.8	3.5	7.9	2.8	992.7(6.6)	1.5	5.8	0.9	6.0	2.7
	\mathcal{M}^P_3	993.8(29.7)	2.2	26.7	10.9	28.9	7.0	980.0(10.5)	3.3	6.3	2.0	7.4	7.4
	\mathcal{M}^P_1	990.6(5.9)	1.1	4.9	2.3	5.5	1.9	996.2(4.2)	1.4	3.5	0.7	3.8	1.9
Ref. [7]	\mathcal{M}_2^P	991.6(8.2)	1.6	3.5	7.9	2.3	9.8	993.7(6.5)	1.5	$\overline{5.8}$	0.9	6.1	2.3
	\mathcal{M}_3^P	1003.2(28.6)	2.2	26.5	10.2	28.6	3.2	989.9(8.2)	3.2	6.4	2.0	7.4	3.4

Final Value: $m_c(3 \,\text{GeV}) = 0.9962(42) \,\text{GeV}$

 $\implies m_c(m_c) = 1.2811(38) \text{ GeV}$

PDG Value:

 $m_c(m_c) = 1.27 \pm 0.02 \text{ GeV}$

REvolver:

A. H. Hoang, C. Lepenik and V.Mateu, Comput. Phys. Commun. 270 (2022), 108145 [arXiv:2102.01085 [hep-ph]].

Strong coupling determination

Vector moments

 Pseudoscalar moments

Moments	Ref. [3]	Ref. [4]	Ref. [5]	Ref. [6]	Ref. [7]	Ref. [8]
\mathcal{M}^P_0	1.708 ± 0.007	1.708 ± 0.005	_	1.699 ± 0.008	1.705 ± 0.005	1.7037 ± 0.0027
\mathcal{R}_1^P	1.197 ± 0.004	_	1.188 ± 0.004	1.199 ± 0.004	1.1886 ± 0.013	1.1881 ± 0.0007
\mathcal{R}_2^P	1.033 ± 0.004	_	1.0341 ± 0.0018	1.0344 ± 0.0013	1.0324 ± 0.0016	_

These \mathcal{M}_n^P is in the units of $10^{-n} \,\mathrm{GeV}^{-2n}$

Refs.:

- 1. D. Boito and V. Mateu, Phys. Lett. B 806 (2020), 135482
- 2. D. Boito and V. Mateu, JHEP **03** (2020), 094
- 3. I. Allison et al. [HPQCD], Phys. Rev. D 78 (2008), 054513
- 4. C. McNeile *et al.*, Phys. Rev. D 82 (2010), 034512
- 5. Y. Maezawa and P. Petreczky, Phys. Rev. D 94 (2016) no.3, 034507
- 6. K. Nakayama, B. Fahy and S. Hashimoto, Phys. Rev. D 94 (2016) no.5, 054507
- 7. P. Petreczky and J. H. Weber, Phys. Rev. D 100 (2019) no.3, 034519
- 8. P. Petreczky and J. H. Weber, Eur. Phys. J. C 82 (2022) no.1, 64

Vector moments

Pseudoscalar Moments

Strong coupling determination: Vector moments

 $\overline{\text{MS}}$ value of the quark mass in the condensate terms:

$$m_c(q) = \overline{m}_c \int_{x(\overline{m}_c)}^{x(q)} dx \, e^{\left(\frac{\gamma(x)}{\beta(x)}\right)}$$

		F	OPT			RGSPT						
Moment			The	o. Unc	· •			Theo. Unc.				
	$\alpha_{\rm s}(M_Z)$	$m_c \mid \mu \mid \text{n.p.} \text{total}$		Exp. Unc.	$lpha_{ m s}(M_Z)$	m_c	μ	n.p.	total	Exp. Unc.		
$ \mathcal{R}_1^V$	0.1167(39)	0.1167(39) 3 13 8 16				36	0.1167(38)	3	7	8	11	36
\mathcal{R}_2^V	0.1163(31) 4 27 12 29				11	0.1163(18)	3	8	12	15	11	
\mathcal{R}_3^V	0.1159(60) 4 58 14 60				5	0.1159(17)	3	6	14	16	5	

Pole value of the quark mass in the condensate terms:

		FOPT							RGSPT					
Moment	oment The			o. Unc	•				The					
	$\alpha_{\rm s}(M_Z)$	m_c	μ	n.p.	total	Exp. Unc.	$\alpha_{ m s}(M_Z)$	m_c	μ	n.p.	total	Exp. Unc.		
$ \mathcal{R}_1^V$	0.1169(38) 3 13 5 15				35	0.1169(36)	2	6	5	8	35			
\mathcal{R}_2^V	0.1164(28)	4	24	9	26	10	0.1164(15)	2	5	6	8	10		
\mathcal{R}_3^V	0.1159(30) 3 27 13 30				5	0.1159(14)	2	2	6	6	5			

Behavior of strong coupling determination from moments

Pole mass in the condensate terms

Strong coupling determination from lattice moments

				\mathbf{F}	OPT			RGSPT					
Sources	Moments			The	o. Unc	•				The	o. Unc	* •	
		$\alpha_{\rm s}(M_Z)$	m_c	μ	n.p.	total	Exp. Unc.	$\alpha_{\rm s}(M_Z)$	m_c	μ	n.p.	total	Exp. Unc.
	\mathcal{M}^P_0	0.1172(20)	3	19	3	19	6	0.1172(8)	3	3	3	5	6
Ref. [3]	\mathcal{R}_1^P	0.1182(43)	4	42	5	43	6	0.1181(15)	3	12	5	13	6
	\mathcal{R}_2^P	0.1150(53)	4	50	9	51	15	0.1149(18)	3	7	9	11	15
Ref. [4]	\mathcal{M}^P_0	0.1172(20)	3	19	3	19	5	0.1172(7)	3	3	3	5	5
Ref [5]	\mathcal{M}^P_0	0.1168(48)	3	8	6	47	7	0.1168(13)	3	9	6	11	7
	\mathcal{R}_1^P	0.1152(51)	4	50	8	50	6	0.1152(13)	3	7	8	11	6
	\mathcal{M}^P_0	0.1164(20)	3	18	4	19	7	0.1164(9)	3	3	4	5	7
Ref. [6]	\mathcal{R}_1^P	0.1182(43)	4	42	5	43	6	0.1184(15)	3	13	5	14	6
	\mathcal{R}_2^P	0.1153(50)	4	49	8	50	5	0.1153(12)	3	7	8	7	5
	\mathcal{M}^P_0	0.1169(20)	3	19	3	19	5	0.1169(7)	3	13	3	5	5
Ref. [7]	\mathcal{R}_1^P	0.1169(47)	4	47	6	47	2	0.1169(12)	3	10	6	12	2
	\mathcal{R}_2^P	0.1146(53)	4	52	9	53	6	0.1146(13)	3	6	9	11	6
Rof [8]	\mathcal{M}^P_0	0.1168(19)	3	19	3	19	2	0.1168(13)	3	9	6	11	7
	\mathcal{R}_1^P	0.1168(47)	4	47	6	47	1	$0.\overline{1168(12)}$	3	$\left \begin{array}{c} 1 \end{array} \right $	6	11	1

Refs.:

3 . I. Allison et al. [HPQCD], Phys. Rev. D 78 (2008), 054513

4 . C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel and G. P. Lepage, Phys. Rev. D 82 (2010), 034512

 $5\,$. Y. Maezawa and P. Petreczky, Phys. Rev. D $\mathbf{94}~(2016)$ no.3, 034507

 $6\,$. K. Nakayama, B. Fahy and S. Hashimoto, Phys. Rev. D $\mathbf{94}$ (2016) no.5, 054507

 $7\,$. P. Petreczky and J. H. Weber, Phys. Rev. D $\mathbf{100}~(2019)$ no.3, 034519

 $8\,$. P. Petreczky and J. H. Weber, Eur. Phys. J. C $\mathbf{82}$ (2022) no.1, 64

Final value: $\alpha_{s}(M_{Z}) = \{0.1172(7), 0.1169(7)\}$ $\implies \alpha_{s}(M_{Z}) = 0.1171(7)$

PDG value:
$$lpha_{
m s}(M_Z)=0.1179(9)$$

Future directions

- 1. Proper correlation of different moments.
- 2. Truncation uncertainty.
- 3. Imroved continuum contributions.

$$\mathcal{M}_q^{V,n} = \int_0^\infty \frac{ds}{s^{n+1}} R_{q\overline{q}}(s) = \int_0^{s_{\mathrm{th.}}} \frac{ds}{s^{n+1}} R_{q\overline{q}}^{\mathrm{exp.}}(s) + \int_{s_{\mathrm{th.}}}^\infty \frac{ds}{s^{n+1}} R_{q\overline{q}}^{\mathrm{cont.}}(s)$$

$$R_{\overline{q}q}^{\text{cont.}} \equiv 12\pi \operatorname{Im} \Pi^{\mathrm{V}}(s+i\epsilon) = 12\pi \times \frac{1}{2i} \left(\Pi^{\mathrm{V}}(s+i\epsilon) - \Pi^{\mathrm{V}}(s-i\epsilon) \right)$$

Analytic continuation: M. S. A. Alam Khan, "Renormalization group summation and analytic continuation from spacelike to timeline regions," Phys. Rev. D 108 (2023) no.1, 014028 [arXiv:2306.10262 [hep-ph]].

Other applications in the determination of α_s using finite energy sum rules as well as Borel-Laplace and Laplace sum rules for $e^+e^- \rightarrow hadrons$

Thank you