Possible strategy for $\alpha_s(m_z)$ extraction using secondary Lund jet planes

(based on *preliminary* work)

Cristian Baldenegro (Sapienza)

 α S(mZ)-2024 workshop, Trento, Feb 5th-9th

Thanks to Jacob March for early contributions & to Alba Soto, Gregory Soyez, Leticia Cunqueiro, Matt Nguyen for their feedback

This talk (jet substructure):

• Introducing the Lund jet plane & the "primary" Lund jet plane

• Quick recap of quark/gluon jet fraction issue at hadron colliders

• "Secondary" Lund jet planes

• Average Lund multiplicity of the secondary Lund jet plane for a possible $\alpha_s(m_z)$ extraction

The Lund plane: 2D phase-space of QCD branchings

The Lund plane: 2D phase-space of QCD branchings

In soft & collinear limit of QCD, emissions fill the double-logarithmic plane of k_{τ} and ΔR uniformly

$$\mathcal{P} \propto lpha_{
m s} rac{{
m d}k_{
m T}}{k_{
m T}} rac{{
m d}\Delta R}{\Delta R} = lpha_{
m s} {
m d} \ln(k_{
m T}) {
m d} \ln(\Delta R) \leftarrow {
m approximate \ self-similarity \ of \ QCD}$$

Each QCD emission spans its own Lund plane

Emissions in red are the "primary" emissions

Emissions in **blue** are "secondary" emissions

Other colors are "subsidiary" emissions Cristian Baldenegro (Sapienza) alphaS 2024

Promotion to a practical tool: the primary Lund jet plane

F. Dreyer, G. Salam, G. Soyez, JHEP12(2018)064

- 1. A given jet is reclustered with the Cambridge/Aachen algorithm (pairwise clustering by proximity in rapidity-azimuth)
- 2. Follow Cambridge/Aachen clustering history in reverse, along the <u>hardest</u> branch (hence "primary")
- 3. k_{τ} and ΔR coordinates registered at each step

$$\Delta R = \sqrt{(y^{
m softer} - y^{
m harder})^2 + (\phi^{
m softer} - \phi^{
m harder})^2}$$
 $k_{
m T} = p_{
m T}^{
m softer} \Delta R$

4. Done until the harder branch has a single constituent

A given jet is represented as a series of points in the Lund jet plane

7

Define the *jet-averaged* number of emissions, **the primary Lund jet plane density**

$$\rho(k_{\rm T}, \Delta R) \equiv \frac{1}{N_{\rm jets}} \frac{{\rm d}^2 N_{\rm emissions}}{{\rm d}\ln(k_{\rm T}/{\rm GeV}) {\rm d}\ln(R/\Delta R)}$$

At leading order, it's "sculpted" by the running of $\alpha_{\rm S}({\rm k_T})$

$$\rho(k_{\rm T}, \Delta R)_{\rm LO} \approx \frac{2}{\pi} C_{\rm R}^{\rm eff} \alpha_{\rm S}(k_{\rm T})$$

With $C_R = C_A = 3$ for $g \rightarrow gg$ or $C_F = 4/3$ for $q \rightarrow qg$ splittings

alphaS 2024

Physical mechanisms are ``factorized" in the Lund jet plane

measured primary Lund jet plane densities

Approximately flat for hard&collinear emissions due to running $\alpha_s(k_T) \sim 1/\ln(k_T/\Lambda_{OCD})$

10

Comparison to pocket-formula predictions

Recall LO pocket formula for Lund density:

$$\rho(k_{\rm T}, \Delta R)_{\rm LO} \approx \frac{2}{\pi} C_{\rm R}^{\rm eff} \alpha_{\rm S}(k_{\rm T})$$

Running $\alpha_{s}(k_{T})$ from few GeV to ~60 GeV qualitatively describes the data

Quark/gluon fractions from PYTHIA8:

$$C_R^{eff} = f_q C_F + f_g C_A \sim 2$$

$$f_q = 0.59, f_g = 0.41$$

Analytical calculation (NLO+NLL+NP)

Lifson, Salam, Soyez JHEP 10 (2020) 170

NP correction

Uncertainties dominated by NP corrections at low $k_{T} \sim 1$ GeV (20–40%)

Dominated by pQCD uncertainties for high $k_T \gg 1$ GeV (5–10%)

single-logarithms at NLL, two-loop beta function

Cristian Baldenegro (Sapienza)

alphaS-2024

Theory (NLO+NLL+NP) versus LHC data

Cristian Baldenegro (Sapienza)

alphaS-2024

• Design observables with reduced q/g fraction sensitivity (cf <u>Meng Xiao</u>'s talk on energy correlators, $\delta \alpha_s / \alpha_s \sim 4\%$)

Slide by Simone Marzani at alphaS-2022 workshop

HOW WELL CAN WE DO?

• work in progress to consider α_s sensitivity using state-of-the-art calculations

Cristian Baldenegro (Sapienza)

alphaS-2024

Secondary Lund planes

alphaS-2024

Primary Lund plane density

Average map for **mixture** of quark/gluon jets at high- p_{T}

Secondary Lund jet plane density

If **primary emission** is chosen judiciously, can obtain gluon-rich jet sample

Which primary emission should be selected?

 $ln(1/\Delta R)$

Phase-space region where parton flavor changes are negligible (e.g., $q \rightarrow qg$, $g \rightarrow qqbar$, which would make secondary LJPs quark-like)

Cristian Baldenegro (Sapienza)

alphaS-2024

Choose **primary emission** is soft & collinear, i.e.,

exploit infrared & collinear divergences

At least three setups

1.SoftDrop-like setup (Cambridge/Achen tree) 2. Trimming (reclustering with smaller R) 3. anti-k_T dijet selection (or multijet)

large R = 1.2 jet, undo clustering history

large R jet →recluster w/ small R jets

At least three setups

1.SoftDrop-like setup (Cambridge/Achen tree) 2. Trimming (reclustering with smaller R)

large R = 1.2 jet, undo clustering history

large R jet →recluster w/ small R jets

dijet selection (baseline, can be optimized)

Two anti-k_T jets: harder with $p_{T,1} > 700 \text{ GeV}$, softer with $150 < p_{T,2} < 200 \text{ GeV}$ and $1 < \Delta Rjj < 1.2$ between the two

"inclusive" dijet selection (i.e., >= 1 pair per event)

Compute the substructure of the softer jet

Cristian Baldenegro (Sapienza)

Similar model discrimination as with gluon primary LJPs (from $gg \rightarrow gg$)

Similar model discrimination with gluon primary LJPs AK4 jets 150 p_r < 200 GeV, |y| < 1

Cristian Baldenegro

 $ln(1/\Delta R)$

Process-independent Lund-plane densities

Not very sensitive to quark/gluon fraction with secondary Lund jet plane densities

However, still limited by size of pQCD uncertainties (about 20% at $k_T \sim 5$ GeV), and NP corrections are large at low k_T

(a) large angles: $0.549 < \Delta < 0.670$

Similar jet multiplicity observable measured at LEP

used for $\alpha_{S}(m_{Z})$ extractions by <u>JADE&OPAL, EPJC</u> <u>17:19-51</u>,2000

$$\alpha_s(M_{Z^0}) = 0.1187 _{-0.0019}^{+0.0034}.$$

Cristian Baldenegro (Sapienza)

alphaS-2024

Average Lund multiplicity of the secondary Lund plane

Decluster the full Lund tree of the *primary emission*

Use as proxy for average Lund multiplicity of gluon-initiated jets

Cristian Baldenegro (Sapienza)

alphaS-2024

30

Sensitivity to $\alpha_s^{MC}(m_z)$ variations (NB: used PYTHIA8 for proof of concept)

+- 2% shifts on $\alpha_s(m_z)$ results in O(3-4%) changes on Lund multiplicity for gluons

[does not scale linearly with $\alpha_s(m_7)$, "cumulative" g \rightarrow gg splittings]

Cristian Baldenegro (Sapienza)

alphaS-2024

Summary

• Lund jet plane used to explore the radiation pattern of jets, used to test parton showers & resummation

• Secondary Lund jet planes for gluon-rich radiation, large reduction on quark/gluon jet fraction (PDF) sensitivity

• Average Lund multiplicity could be used for an $\alpha_{s}(m_{z})$ extraction, Nonperturbative & perturbative corrections are "factorized" in k_T

 Other substructure observables can be considered (e.g., soft-drop groomed mass, generalized angularities, dynamical k_τ, ...)

Quarks vs gluon primary LJPs at the LHC Same Lund plane slice at low $k_{\tau} \sim 1-2$ GeV **Gluon jets Quark jets** 2.4 AK4 jets primary LJP of quark jets (herwig7 angle-ordered)_ 1.8 2.2 Emission density $\rho(k_{\tau}, \Delta R)$ Emission density $p(k_T, \Delta R)$ 150 p_T < 200 GeV, |y| < 1 primary LJP of quark jets (herwig7 dipole) 1.6 1.8 primary LJP of quark jets (pythia8) 30% 1.4 1.6 1.2 1.4 iminary 1.2 0.8 preliminary primary from gluons (herwig7 angle) 0.8 0.6 primary of gluon (herwig7 dipole) AK4 jets 0.6 primary from gluons (pythia8) 0.4 150 p_T < 200 GeV, |y| < 1 0.4E 0.2 0.2 25 3.5 15 2 3 1.5 3.5 2 2.5 3 $\ln(1/\Delta R)$ $\ln(1/\Delta R)$ Spread of 1-5%, thx to LEP constraints Much larger spread, up to 30% differences.

Not as constrained by LEP!

Cristian Baldenegro (Sapienza)

alphaS-2024

33

"Quark jets constrained by LEP" mostly accurate for low p_T jets (at LEP, $p_{T,max} = m_Z/2 \sim 45$ GeV)

Differences in perturbative regime ($k_{T} > ~ 5 \text{ GeV}$) for quark and gluon jet showers

Herwig7 dipole usually closer to Pythia8 in the perturbative region Herwig7 angle-ordered usually higher in perturbative region Cristian Bardenegro (Sapienza)

Quark/gluon composition in Z+jet and dijet at the LHC

Up to ~70% gluons in dijet Up to ~75% quarks in Z+jet

From Les Houches 2015

What is a Quark Jet? (Or gluon jet) From lunch/dinner discussions

Quarks vs gluon Lund planes

Not *just* C_A/C_F scaling! Leading partor (m momentum loss in the Lund tree histor soft&collinear divergences, color Emission density p(k reconnection effects, ...

Gluon LJP is suppressed at small angles wrt quark LJP

 $g \rightarrow qq$ off / $g \rightarrow qq$ on check

Effect on secondary LJP

Effect on the gluon primary LJP

Turning off $g \rightarrow qq$ increases the density of emissions by a similar magnitude for **both** secondary LJP and *gluon* primary LJPs

More dramatic effect for pythia8 (~25%) than herwig7 (~5%) Cristian Baldenegro (Sapienza) alphaS-2024

38