Determining α_S from Thrust with Power Corrections

Miguel Benitez-Rathgeb

de Física Fundamental y Matemáticas

VNiVERSiDAD D SALAMANCA

MBR, A. Hoang, V. Mateu, I. Stewart, G. Vita - work in progress

Overview

Discrepancy between α_s determinations using non-perturbative corrections based on Monte Carlos, and those based on analytic approaches

Discrepancy between α_s determinations from e^+e^- event shape observables based on analytic treatment of power corrections and world average

Triggered new analyses on treatment of power corrections in 3-jet region Luisoni, Monni, Salam '20 Caola et al '21 Caola et al '22

New α_s determination (used new model for treatment of PCs based on 3-jet kinematics, no resummation, only m_Z data, many observables used together) Nason, Zanderighi '23

Analysis suggests that uncertainties on α_s should increase

Topics addressed in this talk:

Improvements compared to the analysis carried out in 2010

Address questions raised in the recent literature/criticism directed towards the 2010 analysis

How to carry out a determination of the strong coupling from thrust in 2024

1

Theory: Dijet Factorization Formula for e^+e^- Thrust distribution

Perform tail region fits of Thrust Distribution in dijet region

QCD final states

$$\tau = 1 - \max_{\vec{n}_T} \left(\frac{\sum_i |\vec{p}_i \cdot \vec{n}_T|}{\sum_i |\vec{p}_i|} \right)$$

Based on factorization formula from SCET Fleming, Hoang, Mantry, Stewart '07 Bauer, Lee, Fleming, Sterman '08 Abbate, Fickinger, Hoang, Mateu, Stewart '10 $\frac{\mathrm{d}\sigma}{\mathrm{d}\tau} = \int \mathrm{d}k \left(\frac{\mathrm{d}\hat{\sigma}_s}{\mathrm{d}\tau} + \frac{\mathrm{d}\hat{\sigma}_{ns}}{\mathrm{d}\tau}\right) \left(\tau - \frac{k}{Q}\right) \delta\left(k - \frac{2\Omega_1}{Q}\right)$ **Includes Resummation** $\frac{\mathrm{d}\hat{\sigma}_{ns}}{\mathrm{d}\tau} = \sum_{n} \alpha_{s}^{n} f_{n}(\tau) + \text{subtractions}$ $\frac{\mathrm{d}\hat{\sigma}_{s}^{\mathrm{QCD}}}{\mathrm{d}\tau} = Q \sum_{\tau} \sigma_{o}^{I} H_{Q}^{I}(Q,\mu_{H}) U_{H}(Q,\mu_{H},\mu)$ $\begin{array}{l} \times \int \mathrm{d}s \mathrm{d}s' \, J_{\tau}(s',\mu_J) U_J^{\tau}(s-s',\mu,\mu_J) \\ \times \int \mathrm{d}k' U_S^{\tau}(k',\mu,\mu_s) e^{\frac{-2\delta(R,\mu_s)}{Q} \frac{\partial}{\partial \tau}} S_{\tau}^{\mathrm{part}} \left(Q \tau - \frac{s}{Q} - k',\mu_s \right) \end{array} \int f_n(\tau) = \sum_{i,j=0}^{n} a_{ij}^n \tau^i \ln^j(\tau)$ $\approx \sum \alpha_s^n \delta(\tau) + \sum_{r} \alpha_s^n \left[\frac{\ln^l(\tau)}{\tau} \right] + \text{subtractions}$ \rightarrow Vicent's talk $\mathcal{O}(\alpha_s)$ contribution known analytically $\mathcal{O}(\alpha_s^2)$ from EVENT2 (incl. more statistics) $\mathcal{O}(\alpha_s^3)$ from Colorful (formerly EERAD3) Singular partonic for massless quarks Nonsingular partonic Nonperturbative soft function

Theory: Improvements

2015 Profile functions: achieve correct partonic description \rightarrow updated compared to 2010 Hoang, Kolodrubetz, Mateu, Stewart '15

Updated Nonsingular at $\mathcal{O}(\alpha_s^3)$

In addition we now have information on:

- $s_2 \rightarrow 2$ -loop non-log coefficient of renormalized soft function Gehrmann, Luisoni, Monni '11 Kelley et al '11
- $j_3 \rightarrow 3$ -loop coefficient of partonic jet function Brüser, Ze Long Liu, Stahlhofen '18 Banerjee et al '18
- $\Gamma_4^{\text{cusp}} \longrightarrow$ 4-loop cusp anomalous dimension Moch et al '18 Henn, Korchemsky, Mistlberger '19

Updated Profile functions

Factorization formula for the singular partonic thrust distribution governed by three renormalization scales

Hard scale: μ_H Jet scale: μ_J Soft scale: μ_S

To avoid large logs while not spoiling singular vs non-singular cancellation in the far tail, the above scales must satisfy Abbate, Fickinger, Hoang, Mateu, Stewart '10

Miguel Benitez-Rathgeb - alphas-2024: Workshop in precision measurements of the QCD coupling constant, 5 February – 9 February 2024

Updated Profile functions

Factorization formula for the singular partonic thrust distribution governed by three renormalization scales

Hard scale: μ_H Jet scale: μ_J Soft scale: μ_S

To avoid large logs while not spoiling singular vs non-singular cancellation in the far tail, the above scales must satisfy Hoang, Kolodrubetz, Mateu, Stewart '15

Miguel Benitez-Rathgeb - alphas-2024: Workshop in precision measurements of the QCD coupling constant, 5 February – 9 February 2024

Theory: Final comments

Singular/Nonsingular contributions to total Cross Section:

- In both peak and tail region, singular cross section significantly dominates over nonsingular
- As one approaches threshold to far-tail region (τ → 0.33), singular and nonsingular appear with opposite signs and largely cancel

- Experimental data normalized to total number of events
- Need to normalize distribution to the total Cross section
- Can use fixed-order result for total hadronic Cross Section or integral of $d\sigma/d\tau$ distribution
- For gap scheme, integrated norm and fixed-order norm give compatible results

Miguel Benitez-Rathgeb - alphas-2024: Workshop in precision measurements of the QCD coupling constant, 5 February – 9 February 2024

Theory: Final comments

Singular/Nonsingular contributions to total Cross Section:

- In both peak and tail region, singular cross section significantly dominates over nonsingular
- As one approaches threshold to far-tail region (τ → 0.33), singular and nonsingular appear with opposite signs and largely cancel

- Experimental data normalized to total number of events
- Need to normalize distribution to the total Cross section
- Can use fixed-order result for total hadronic Cross Section or integral of $d\sigma/d\tau$ distribution
- With uncanceled renormalon in Power Correction, one needs to use integrated norm

Miguel Benitez-Rathgeb - alphas-2024: Workshop in precision measurements of the QCD coupling constant, 5 February – 9 February 2024

Experimental data

Miguel Benitez-Rathgeb - alphas-2024: Workshop in precision measurements of the QCD coupling constant, 5 February – 9 February 2024

Stability of Results at N^3LL'

Miguel Benitez-Rathgeb - alphas-2024: Workshop in precision measurements of the QCD coupling constant, 5 February – 9 February 2024

Stability of Results at N^3LL'

Miguel Benitez-Rathgeb - alphas-2024: Workshop in precision measurements of the QCD coupling constant, 5 February – 9 February 2024

Impact of Resummation

Impact of Resummation

Impact of Resummation

Reminder: Stability of Results at N³LL'

Miguel Benitez-Rathgeb - alphas-2024: Workshop in precision measurements of the QCD coupling constant, 5 February – 9 February 2024

Impact of Resummation on Stability of Results at N^3LL'

Miguel Benitez-Rathgeb - alphas-2024: Workshop in precision measurements of the QCD coupling constant, 5 February – 9 February 2024

Impact of Resummation on Stability of Results at N^3LL'

Miguel Benitez-Rathgeb - alphas-2024: Workshop in precision measurements of the QCD coupling constant, 5 February – 9 February 2024

Treatment of Power Corrections

We compare fit results for α_s and Ω_1 for two different treatments of PC

- Our previous treatment of PC, i.e. flat behavior across thrust spectrum
- Model predictions for 3-jet region

What we observe: (Error bands contain only experimental errors)

- Outcome for strong coupling gives compatible results for the fit range $\tau \in [6/Q, t_3]$
- Nonperturbative matrix element is shifted towards larger values
- Expected, since model predictions are flat in the region where we perform the fit → this only acts as a shift in the distribution but will not influence α_s

Treatment of Power Corrections

We know: Dijet region is located safely within $\tau < 0.11$ (\rightarrow talk by Vicent)

<u>Question</u>: How to obtain an error estimate for deviations from the dijet treatment of the power correction for $\tau > 0.11$?

From now on: restrict fit range to $[6/Q, 0.15] \rightarrow$ possible due to new profiles which provide stability of fit

Proceed as follows:

- Vary parameter responsible for deviation away from dijet treatment of PC's, as well as parameter defining the value the model function attains at $\tau = 0.5$
- Look at impact on α_s and Ω_1

Treatment of Power Corrections

Consider upper part of τ_{bt} range to make the error estimate

Uncertainty estimate: Half of the difference between the maximum and minimum best fit value of α_s obtained when varying $\overline{\zeta}_{ev}$ in the range [1.5, 2.5] for constant $\tau_{bt} = 0.11$

New default setup

Treatment of power corrections in 3-jet region from first principles so far unknown

Adapt default setup in the following way:

- Include improvements in theory description (updated profiles, improved nonsingular, new perturbative information)
- Since 2015 profiles yield improved stability of the fits → restrict fit region to [6/Q,0.15], which is mostly dijet
- Assume deviations from dijet treatment of power correction can be parametrized by model function

$$\bar{\zeta}(\tau) = \begin{cases} \bar{\zeta}_{iv} & 0 \le \tau < \tau_{bt} \\ \zeta_C(\tau_{iv}, 0, 0, \tau_{ev}, \tau_{bt}, \tau_{et}, \tau) & \tau_{bt} \le \tau < \tau_{et} \\ \bar{\zeta}_{ev} & \tau_{et} \le \tau < 0.5 \end{cases}$$

New default setup

From choosing the fit range [6/Q, 0.15] we get

$$\alpha_s = 0.1142 \pm 0.0006_{\text{pert}} \pm 0.0009_{\text{exp}} \pm 0.0004_{\text{had}} = 0.1142 \pm 0.0012_{\text{tot}}$$
$$\Omega_1 = 0.313 \pm 0.033_{\text{pert}} \pm 0.030_{\text{exp}} \pm 0.018_{\text{had}} = 0.313 \pm 0.048_{\text{tot}}$$
$$\langle \chi^2 \rangle / \text{dof} = 0.86$$

In the 2010 analysis, the result (ignoring QED effects and considering a massless bottom quark) for the fit range [6/Q, 0.33] gave Abbate, Fickinger, Hoang, Mateu, Stewart '10

$$\alpha_s = 0.1140 \pm 0.0008, \qquad \Omega_1 = 0.332 \pm 0.045$$

Historical Outline & Conclusions

- 2010 analysis used profile functions, which gave rise to unstable behavior of fits and furthermore used a wider default fit range, i.e. $\tau \in [6/Q, 0.33]$
- 2015 analysis used profile functions that significantly improve stability of the fit w.r.t. a variation of the fit range for Thrust but took the same default fit range, $\tau \in [6/Q, 0.33]$
- 2024 assessment shows that resummation is important when carrying out fits in this context, improves order by order convergence of the Cross Section and significantly increases the stability of the fit
- 3-jet model of Caola et al. only has marginal effect on outcome of strong coupling
- Due to improved stability of the fit \rightarrow able to restrict fit region to [6/Q, 0.15], which is mostly dijet
- Even in new improved default setup, which is mostly dijet and contains error estimate of deviations from dijet treatment of power correction, strong coupling is still small compared to the world average → this is in agreement with Bell et al.