The QCD Coupling at all Scales from Light Front Holography

A. Deur Jefferson Lab

A. Deur. ECT* Workshop on precision measurements of as 02/05-02/09 2024

The QCD Coupling at all Scales from Light Front Holography

A. Deur Jefferson Lab

Outline:

- α_s as an effective charge.
- HLFQCD (~AdS/QCD in Light-Front form)
- $\alpha_s(M_{z^0})$ from HLFQCD

Work done in collaboration with:

- •S. J. Brodsky (SLAC, Stanford U.),
- •G. de Téramond (UCR)

Presented on behalf of S. J. Brodsky.

Prescription: Define effective couplings from an observable's perturbative series truncated to first order in α_{s} . G. Grunberg, PLB B95 70 (1980); PRD 29 2315 (1984); PRD 40 680(1989).

Proposed for pQCD. Can be extended to non-perturbative QCD.

Prescription: Define effective couplings from an observable's perturbative series truncated to first order in α_{s} . G. Grunberg, PLB B95 70 (1980); PRD 29 2315 (1984); PRD 40 680(1989).

Ex: Bjorken sum rule:

$$\int (g^{p}_{1}-g^{n}_{1})dx \triangleq \Gamma_{1}^{p-n} = \frac{1}{6}g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}}[a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+...$$
Nucleon axial charge.

$$pQCD \text{ corrections} \text{ (Leading twist)}$$
Higher Twists: 1/Q²ⁿ corrections.
Non-perturbative quantities. Express correlations between parton distributions and confinement forces.

Prescription: Define effective couplings from an observable's perturbative series truncated to first order in α_{s} . G. Grunberg, PLB B95 70 (1980); PRD 29 2315 (1984); PRD 40 680(1989).

Ex: Bjorken sum rule:

$$\int (g^{p}_{1}-g^{n}_{1})dx \triangleq \Gamma_{1}^{p-n} = \frac{1}{6}g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}}[a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+...$$
Nucleon axial charge.
$$pQCD \text{ corrections} \text{ (Leading twist)}$$
Higher Twists: 1/Q²ⁿ corrections.
Non-perturbative quantities. Express correlations between parton distributions and confinement forces.

Prescription: Define effective couplings from an observable's perturbative series truncated to first order in α_{s} . G. Grunberg, PLB B95 70 (1980); PRD 29 2315 (1984); PRD 40 680(1989).

Ex: Bjorken sum rule:

$$\int (g^{p}_{1}-g^{n}_{1})dx \triangleq \Gamma_{1}^{p-n} = \frac{1}{6}g_{A}(1-\frac{\alpha_{s}}{\pi}-3.58(\frac{\alpha_{s}}{\pi})^{2}-...) + \frac{M^{2}}{9Q^{2}}[a_{2}(\alpha_{s})+4d_{2}(\alpha_{s})+4f_{2}(\alpha_{s})]+...$$
Nucleon axial charge.
$$pQCD \text{ corrections} \text{ (Leading twist)}$$
Higher Twists: 1/Q²ⁿ corrections.
Non-perturbative quantities. Express correlations between parton distributions and confinement forces.

$$\Rightarrow \Gamma_1^{p-n} \triangleq \frac{1}{6} g_A(1 - \frac{\alpha_{g_1}}{\pi})$$

This means that additional short distance effects, and long distance confinement force and parton distribution correlations are now folded into the definition of α_s . Analogy with the original coupling constant becoming an effective running coupling when short distance quantum loops are folded into its definition.

The effective charge is then:

Extractable at any Q²;
Free of divergence;
Renormalization scheme independent.

The effective charge is then:

Extractable at any Q²;
Free of divergence;
Renormalization scheme independent.

• Process dependent.

 \Rightarrow There is *a priori* a different α_s for each different process.

The effective charge is then:

Extractable at any Q²;
Free of divergence;
Renormalization scheme independent.

• Process dependent.

 $\Rightarrow \text{There is } a \text{ priori a different } \alpha_s \text{ for each different process.} \\ \text{However these } \alpha_s \text{ can be related (Commensurate Scale Relations).} \\ \text{S. J. Brodsky \& H. J. Lu, PRD 51 3652 (1995)} \\ \text{S. J. Brodsky, G. T. Gabadadze, A. L. Kataev, H. J. Lu, PLB 372 133 (1996)} \\ \Rightarrow \text{pQCD retains it predictive power.} \end{cases}$

The effective charge is then:

Extractable at any Q²;
Free of divergence;
Renormalization scheme independent.

• Process dependent.

 $\Rightarrow \text{There is } a \text{ priori a different } \alpha_s \text{ for each different process.} \\ \text{However these } \alpha_s \text{ can be related (Commensurate Scale Relations).} \\ \text{S. J. Brodsky \& H. J. Lu, PRD 51 3652 (1995)} \\ \text{S. J. Brodsky, G. T. Gabadadze, A. L. Kataev, H. J. Lu, PLB 372 133 (1996)} \\ \Rightarrow \text{pQCD retains it predictive power.} \end{aligned}$

Such definition of α_s using a particular process is equivalent to a particular choice of renormalization scheme.

(process dependence) \Leftrightarrow (scheme dependence)

 $\alpha_{g_1} = \alpha_s$ in the "g₁ scheme". Relations between g₁ scheme and other schemes are known in pQCD domain, e.g., $\Lambda_{g_1} = 2.70\Lambda_{\overline{MS}} = 1.48\Lambda_{MOM} = 1.92\Lambda_V$.

Advantages of extracting α_s from the Bjorken Sum Rule:

•Bjorken sum rule: simple perturbative series.

•Data exist at low, intermediate, and high Q².

•Rigorous Sum Rules dictate the behavior of α_{g1} in the unmeasured Q² \rightarrow 0 and Q² $\rightarrow \infty$ regions.

 \Rightarrow We can obtain α_{g1} at <u>any</u> Q².

Advantages of extracting α_s from the Bjorken Sum Rule:

•Bjorken sum rule: simple perturbative series.

•Data exist at low, intermediate, and high Q².

erson Lab

ng the Nature of Matt

•Rigorous Sum Rules dictate the behavior of α_{g1} in the unmeasured Q² \rightarrow 0 and Q² $\rightarrow \infty$ regions.

```
\RightarrowWe can obtain \alpha_{g1} at any Q<sup>2</sup>.
```

The reason why this is relevant to this workshop is because the value of $\alpha_s(M_{z^0})$ depends on Λ_{QCD} , a non-perturbative quantity, \Rightarrow To predict it, we need a non-perturbative approach.

α_{g1} from the Bjorken Sum data

Bjorken sum Γ_1^{p-n} measurements

A. Deur. ECT* Workshop on precision measurements of α_s 02/05-02/09 2024

α_{g1} from the Bjorken Sum data

Bjorken sum Γ_1^{p-n} measurements

A. Deur. ECT* Workshop on precision measurements of α_s 02/05-02/09 2024

Low Q² limit

Low Q² limit

Jetterson Lab

Exploring the Nature of Matte

son National Accelerator Facility

•Light-front QCD: Rigorous and exact formulation of non-perturbative QCD. Yields a relativistic Schrödinger-like equation for hadrons. Confining potential calculable in principle but not tractable in 3+1 dimensions.

A. Deur. ECT* Workshop on precision measurements of α_s 02/05-02/09 2024

•Light-front QCD: Rigorous and exact formulation of non-perturbative QCD. Yields a relativistic Schrödinger-like equation for hadrons. Confining potential calculable in principle but not tractable in 3+1 dimensions.

•Practical (3+1)D calculations: use correspondence between gravity in AdS₅ space and QCD on the light-front Brodsky, de Téramond, PRL 96, 201601 (2006), PRL 102, 081601 (2009) HLFQCD: semi-classical model for QCD (no short-distance quantum fluctuations)

•Light-front QCD: Rigorous and exact formulation of non-perturbative QCD. Yields a relativistic Schrödinger-like equation for hadrons. Confining potential calculable in principle but not tractable in 3+1 dimensions.

•Practical (3+1)D calculations: use correspondence between gravity in AdS₅ space and QCD on the light-front Brodsky, de Téramond, PRL 96, 201601 (2006), PRL 102, 081601 (2009) HLFQCD: semi-classical model for QCD (no short-distance quantum fluctuations)

•QCD conformal \Rightarrow only one possible LF confining potential: harmonic oscillator Brodsky, de Téramond, Dosch, PLB 729, 3 (2014)

•Harmonic oscillator on light front = linear potential for static quarks in usual instant form. Trawinski, Glazek, Brodsky, G. F. de Téramond and Dosch, PRD 90, 074017 (2014)

•Only harmonic oscillator yields $m_{\pi}=0$, as expected from chiral symmetry. Dosch, de Téramond, Brodsky, PRD 91, 085016 (2015)

•Light-front QCD: Rigorous and exact formulation of non-perturbative QCD. Yields a relativistic Schrödinger-like equation for hadrons. Confining potential calculable in principle but not tractable in 3+1 dimensions.

•Practical (3+1)D calculations: use correspondence between gravity in AdS₅ space and QCD on the light-front Brodsky, de Téramond, PRL 96, 201601 (2006), PRL 102, 081601 (2009) HLFQCD: semi-classical model for QCD (no short-distance quantum fluctuations)

•QCD conformal \Rightarrow only one possible LF confining potential: harmonic oscillator Brodsky, de Téramond, Dosch, PLB 729, 3 (2014)

•Harmonic oscillator on light front = linear potential for static quarks in usual instant form. Trawinski, Glazek, Brodsky, G. F. de Téramond and Dosch, PRD 90, 074017 (2014)

•Only harmonic oscillator yields $m_{\pi}=0$, as expected from chiral symmetry. Dosch, de Téramond, Brodsky, PRD 91, 085016 (2015)

•To produce the harmonic oscillator potential (i.e. the confinement forces), the AdS space is deformed. This done by distorting the AdS metric.

•Light-front QCD: Rigorous and exact formulation of non-perturbative QCD. Yields a relativistic Schrödinger-like equation for hadrons. Confining potential calculable in principle but not tractable in 3+1 dimensions.

•Practical (3+1)D calculations: use correspondence between gravity in AdS₅ space and QCD on the light-front Brodsky, de Téramond, PRL 96, 201601 (2006), PRL 102, 081601 (2009) HLFQCD: semi-classical model for QCD (no short-distance quantum fluctuations)

•QCD conformal \Rightarrow only one possible LF confining potential: harmonic oscillator Brodsky, de Téramond, Dosch, PLB 729, 3 (2014)

•Harmonic oscillator on light front = linear potential for static quarks in usual instant form. Trawinski, Glazek, Brodsky, G. F. de Téramond and Dosch, PRD 90, 074017 (2014)

•Only harmonic oscillator yields $m_{\pi}=0$, as expected from chiral symmetry. Dosch, de Téramond, Brodsky, PRD 91, 085016 (2015)

•To produce the harmonic oscillator potential (i.e. the confinement forces), the AdS space is deformed. This done by distorting the AdS metric.

Harmonic oscillator on light front \Rightarrow in AdS space, $ds^2 \rightarrow exp(\kappa^2 z^2)ds^2$ z is the 5th dimension of AdS space. z^2 is the scale at which the hadron is probed, i.e. $1/Q^2$. κ is the universal scale factor of HLFQCD.

Perturbative QCD:

pQCD <u>effective</u> coupling $\alpha_s(Q^2)$: small distance QCD effect are folded into the definition of the coupling <u>constant</u> α_s .

A. Deur. ECT* Workshop on precision measurements of α_s 02/05-02/09 2024

Perturbative QCD:

pQCD <u>effective</u> coupling $\alpha_s(Q^2)$: small distance QCD effect are folded into the definition of the coupling <u>constant</u> α_s .

Non-perturbative QCD:

Likewise for $\alpha_{g1}(Q^2)$ at long distance, confinement forces and parton correlations are folded into the definition of $\alpha_s(Q^2)$: *effective charge*.

Perturbative QCD:

pQCD <u>effective</u> coupling $\alpha_s(Q^2)$: small distance QCD effect are folded into the definition of the coupling <u>constant</u> α_s .

Non-perturbative QCD:

Likewise for $\alpha_{g1}(Q^2)$ at long distance, confinement forces and parton correlations are folded into the definition of $\alpha_s(Q^2)$: *effective charge*.

General Relativity Action: $S \propto \int d^4x \sqrt{g} \frac{1}{G_N} R$, with R the Ricci scalar and $g=det(g_{\mu\nu})$ AdS Action: $S \propto \int d^5x \sqrt{g} \frac{1}{g^{2}{}_{5}} F^2$, with F the gauge field and g_5 the coupling

α, from HLFQCD

Perturbative QCD:

pQCD <u>effective</u> coupling $\alpha_s(Q^2)$: small distance QCD effect are folded into the definition of the coupling <u>constant</u> α_s .

Non-perturbative QCD:

Likewise for $\alpha_{g1}(Q^2)$ at long distance, confinement forces and parton correlations are folded into the definition of $\alpha_s(Q^2)$: *effective charge*.

General Relativity Action: $S \propto \int d^4x \sqrt{g} \frac{1}{G_N} R$, with R the Ricci scalar and g=det($g_{\mu\nu}$) $S \propto \int d^5 x \sqrt{g} \frac{1}{g^{2_5}} F^2$, with F the gauge field and g_5 the coupling $S \propto \int d^5 x \sqrt{g} e^{\kappa^2 z^2} \frac{1}{g^{2_5}} F^2$ Confinement potential AdS Action: Deformed AdS Action:

Perturbative QCD:

pQCD <u>effective</u> coupling $\alpha_s(Q^2)$: small distance QCD effect are folded into the definition of the coupling <u>constant</u> α_s .

Non-perturbative QCD:

Likewise for $\alpha_{g1}(Q^2)$ at long distance, confinement forces and parton correlations are folded into the definition of $\alpha_s(Q^2)$: *effective charge*.

General Relativity Action: $S \propto \int d^4x \sqrt{g} \frac{1}{G_N} R$, with R the Ricci scalar and g=det($g_{\mu\nu}$)

AdS Action:

Deformed AdS Action:

 $S \propto \int d^5 x \sqrt{g} \frac{1}{g^{2}} F^2$, with F the gauge field and g_5 the coupling $S \propto \int d^5 x \sqrt{g} e^{\kappa^2 z^2} \frac{1}{g^{2}} F^2$ Confinement potential

 $\Rightarrow \text{ Deformed AdS Action: } S \propto \int d^5 x \sqrt{g} e^{\kappa^2 z^2} \frac{1}{g^{25}} F^2$ Effective charge at large distance

Perturbative QCD:

pQCD <u>effective</u> coupling $\alpha_s(Q^2)$: small distance QCD effect are folded into the definition of the coupling <u>constant</u> α_s .

Non-perturbative QCD:

Likewise for $\alpha_{g1}(Q^2)$ at long distance, confinement forces and parton correlations are folded into the definition of $\alpha_s(Q^2)$: *effective charge*.

General Relativity Action: $S \propto \int d^4x \sqrt{g} \frac{1}{G_N} R$, with R the Ricci scalar and g=det($g_{\mu\nu}$)

AdS Action:

Deformed AdS Action:

 $S \propto \int d^5 x \sqrt{g} \frac{1}{g^{2_5}} F^2$, with F the gauge field and g_5 the coupling $S \propto \int d^5 x \sqrt{g} e^{\kappa^2 z^2} \frac{1}{g^{2_5}} F^2$ Confinement potential

 $\Rightarrow \text{ Deformed AdS Action: } S \propto \int d^5 x \sqrt{g} e^{\kappa^2 z^2} \frac{1}{g^{25}} F^2$ Effective charge at large distance

Transforming to momentum space:

$$\alpha_{s}^{HLF}(Q^{2}) = \alpha_{s}^{HLF}(Q^{2}=0)e^{(-Q^{2}/4\kappa^{2})}$$

Brodsky, de Téramond, Deur. Phys. Rev. D 81, 096010 (2010)

Perturbative QCD:

pQCD <u>effective</u> coupling $\alpha_s(Q^2)$: small distance QCD effect are folded into the definition of the coupling <u>constant</u> α_s .

Non-perturbative QCD:

Likewise for $\alpha_{g1}(Q^2)$ at long distance, confinement forces and parton correlations are folded into the definition of $\alpha_s(Q^2)$: *effective charge*.

General Relativity Action: $S \propto \int d^4x \sqrt{g} \frac{1}{G_N} R$, with R the Ricci scalar and g=det($g_{\mu\nu}$)

AdS Action:

Jefferson Lab

Deformed AdS Action:

 $S \propto \int d^5 x \sqrt{g} \frac{1}{g^{2_5}} F^2$, with F the gauge field and g_5 the coupling $S \propto \int d^5 x \sqrt{g} e^{\kappa^2 z^2} \frac{1}{g^{2_5}} F^2$ Confinement potential

 $\Rightarrow \text{ Deformed AdS Action: } S \propto \int d^5 x \sqrt{g} e^{\kappa^2 z^2} \frac{1}{g^{25}} F^2$ Effective charge at large distance

Transforming to momentum space:

$$\alpha_{s}^{HLF}(Q^{2}) = \alpha_{s}^{HLF}(Q^{2}=0)e^{(-Q^{2}/4\kappa^{2})}$$

 $\alpha_{s}^{HLF}(0) \equiv \pi: \alpha_{s}^{HLF}(Q^{2})$ in the g_{1} scheme.

α_s and HLFQCD: Comparison with data

Prediction of Λ_{QCD}

Prediction of Λ **QCD**

Match HLFQCD and pQCD expressions of α_{g1} and its β -function:

 \Rightarrow Relate fundamental HLFQCD parameter κ to fundamental QCD parameter Λ_{OCD} .

Prediction of Λ_{QCD}

Predictions of the hadronic mass spectrum

Predictions of the hadronic mass spectrum

On-going work

HLFQCD+Matching procedure yields compelling results but it has limitations:

- •Assume overlap of validity domains of pQCD & HLFQCD (verified phenomenologically);
- •Approximate matching at a single point Q_0 , (transition between pQCD & Strong QCD occurs over a range);
- •Neglect Higher-Twists (For the Bjorken SR not a bad approximation if $Q_0 \simeq \text{GeV}$); •Matches only $\alpha_s(Q_0)$ and $\frac{d\alpha_s(Q)}{dQ}|_{Q_0}$;
- •Not entirely satisfactory to have two distinct analytical expressions of $\alpha_s(Q)$.

 \Rightarrow Unified description of $\alpha_s(Q)$ in the nonperturbative and perturbative transition domain

S. J. Brosky, G. F. de Téramond, A. Deur, H. G. Dosch, T. Liu, A. Paul and R. S. Sufian (HLFHS Collaboration)

On-going work

Extension of HLFQCD description of α_s into the transition domain where pQCD effects become important.

- New approach based on the underlying conformality of QCD and analytic continuation.
- Single analytic expression provides a continuous transition for the β function and any higher derivative.
- Incorporates a confinement mechanism. Suppress the unphysical Landau pole.
- The formalism is valid in the nonperturbative and transition domains: Not the full perturbation theory (no quark mass thresholds in conformal limit)
- Flow of singularities in the complex plane leads to specific relation between the κ and Λ_{QCD} \Rightarrow determination of α_s

On-going work

Resulting unified coupling model describes JLab data in the nonperturbative and the perturbative transition domain:

Summary

- •Bjorken Sum Rule is advantageous to define an effective charge α_{gl} .
- •Data and sum rules allow us to know α_{gl} at all Q^2 .
- • α_{g1} plateaus at low $Q^2 \Rightarrow$ Application of AdS/CFT to non-perturbative QCD.
- • α_s obtained with HLFQCD.
 - •Its form is <u>imposed</u> by QCD's basic (approximate) symmetries: either conformal symmetry of QCD Lagrangian (mass scale emerging in QCD's Action: dAFF mechanism), or chiral symmetry (massless pion).
 - •No free parameters (uses only one parameter, κ , known from very different phenomenology).
 - •Agrees remarkably with experimental data on α_{gl} and with Schwinger-Dyson
 - Eqs. prediction.
 - •Matching between HLFQCD and pQCD: high precision prediction of $\Lambda_{QCD.}$ •On-going work on obtaining unique α_{gl} expression in both Strong QCD and transition domain.

Prediction of \Lambda_{QCD} from hadronic observable

Exploring the Nature of Matter

α_s and HLFQCD: Comparison with data

One can also fit the $\alpha_{g1}(Q^2)$ data to get κ : $\kappa=0.513\pm0.025$ GeV. Or use the relation between κ and Λ_{QCD} (latter slides): PDG value for Λ_{QCD} yields $\kappa=0.512\pm0.030$ GeV

