P. Connor

Introductior

Methodology

Lessons

Simultaneous measurement:

Summary & Conclusions

Back-up

UH 1/25

Determination of $\alpha_{\rm S}$ at CMS Status & Prospects

Patrick L.S. CONNOR

on behalf of the CMS Collaboration

Universität Hamburg

7 February 2024

CDCS CENTER FOR DATA AND COMPUTING IN NATURAL SCIENCES

Introduction

Goal Compact Muon Solenoid Topologies

P. Connor

Introduction Goal CMS Topologies

Methodology

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

UH 2/25

Goal

P. Connor

Introduction Goal CMS Topologies

- Methodology
- Lessons
- Simultaneous measurements
- Summary & Conclusions
- Back-up

UH 2/25

Goal

Goals of experimentalists

- \blacksquare Extract $\alpha_{\rm s}$ directly from CMS data.
- Provide CMS data to the HEP community to include our data in global fits.

- P. Connor
- Introduction Goal CMS Topologies
- Methodology
- Lessons
- Simultaneous measurements
- Summary & Conclusions
- Back-up

Goal

Goals of experimentalists

- Extract α_s directly from CMS data.
- Provide CMS data to the HEP community to include our data in global fits.

Goal of this presentation

"The main scientific goals of this workshop are to bring together the current best experts in as determination, to critically discuss and understand the relevant merits and problems of each extraction method, and to consider new as studies and approaches. One important outcome should be to assess the **perspectives for systematic improvements of theoretical predictions and experimental methods** in order to resolve discrepancies, and improve the $\alpha_s(M_Z)$ world-average extraction."

P. Connor

Introduction Goal CMS Topologies

Methodology

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

UH 2/25

Goal

Goals of experimentalists

- Extract α_s directly from CMS data.
- Provide CMS data to the HEP community to include our data in global fits.

Goal of this presentation

"The main scientific goals of this workshop are to bring together the current best experts in as determination, to critically discuss and understand the relevant merits and problems of each extraction method, and to consider new as studies and approaches. One important outcome should be to assess the **perspectives for systematic improvements of theoretical predictions and experimental methods** in order to resolve discrepancies, and improve the $\alpha_s(M_Z)$ world-average extraction."

Disclaimer

The potential of jet substructure has been covered in dedicated presentations and will not be discussed here.

P. Connor

Goal Topologies

- Methodology
- Lessons
- Simultaneous measurements
- Summary &
- Back-up

UΗ 붜

Compact Muon Solenoid

P. Connor

Introduction Goal CMS Topologies

- Methodology
- Lessons
- Simultaneous measurements
- Summary & Conclusions
- Back-up

Compact Muon Solenoid

The key to precision & accuracy

Explore and combine the different final states to exploit different subdetectors.

UH #

P. Connor

Introduction Goal CMS Topologies

Methodology

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

Topologies Jets

Sketches by M. WOBISCH

UH # 4/25

Topologies Jets

Simultaneous measurements

CMS

P. Connor

Goal CMS

Summary & Conclusions

Back-up

UH # 4/25

Sketches by M. WOBISCH

Topologies Jets

Sketches by M. WOBISCH

Simultaneous measurements

Summary &

Back-up

UΗ 붜

CMS

P. Connor

Goal CMS Topologies

Lessons

P. Connor

Introduction Goal CMS Topologies

Methodology

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

Topologies

Vector bosons

UH # 5/25

P. Connor

Introduction Goal CMS Topologies

Methodology

Lessons

Simultaneous measurements

Summary &

Back-up

UΗ 闬

P. Connor

Introduction Goal CMS Topologies

Methodology

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

Topologies Vector bosons

UH # 5/25

Topologies Top quark pairs

CMS

P. Connor

Goal CMS Topologies Methodology

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

UH #

Topologies Top quark pairs

CMS

P. Connor

Introduction Goal CMS Topologies

Methodology

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

UH #

Methodology

Factorisation α_s alone $\alpha_s + PDFs$ $\alpha_s + PDFs + more$ Fixed-order predictions

Formulation for proton-proton collisions [1]

Lessons

Simultaneous measurement:

CMS

P. Connor

Methodology

Factorisation α_s alone

 $\alpha_s + PDFs$ $\alpha_s + PDFs +$ more Fixed-order predictions

Summary & Conclusions

Back-up

UH #

Formulation for proton-proton collisions [1]

FO predictions

Note: NP corrections are not included in the formula.

UH #1 7/25

CMS

P Connor

Methodology

Factorisation α_s alone α_s + PDFs

 α_s + PDFs + more Fixed-order predictions

Lessons

Summary & Conclusions Back-up

Formulation for proton-proton collisions [1]

Note: NP corrections are not included in the formula.

Outline

In earlier cross section measurements [2, 3, 4], as well as in measurements of cross section ratios [5, 6], only α_s was fitted for various PDF sets.

CMS

P Connor

Methodology

Factorisation α_s alone α_s + PDFs

 α_s + PDFs +

predictions

Summary &

Back-up

Lessons

Formulation for proton-proton collisions [1]

Note: NP corrections are not included in the formula.

Outline

- In earlier cross section measurements [2, 3, 4], as well as in measurements of cross section ratios [5, 6], only α_s was fitted for various PDF sets.
- In most cross section measurements [3, 4, 7, 8, 9], α_s and PDFs have been extracted simultaneously. In that case, one must at least combine CMS with HERA DIS data.

UH #1 7/25

CMS

P Connor

Methodology

Factorisation α_s alone α_s + PDFs

 α_s + PDFs + more Fixed-order predictions

Lessons

Summary &

Back-up

Formulation for proton-proton collisions [1]


```
Note: NP corrections are not included in the formula.
```

Outline

- In earlier cross section measurements [2, 3, 4], as well as in measurements of cross section ratios [5, 6], only α_s was fitted for various PDF sets.
- In most cross section measurements [3, 4, 7, 8, 9], α_s and PDFs have been extracted simultaneously. In that case, one must at least combine CMS with HERA DIS data.
- Ideally, one also combines various final states from CMS data.

Methodology Factorisation

CMS

P Connor

$\alpha_s + PDFs$ $\alpha_s + PDFs +$ more Fixed-order predictions

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

UH

P. Connor

Introduction

 $\begin{array}{l} \mbox{Methodology}\\ \mbox{Factorisation}\\ \mbox{α_s alone}\\ \mbox{α_s + PDFs$}\\ \mbox{$\alpha_s$ + PDFs + more}\\ \mbox{Fixed-order}\\ \mbox{predictions} \end{array}$

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

UH #

R_{32} observable [5]

- Cancellation of theoretical effects → e.g. NP corrections (PDFs?)

 $\alpha_{\rm s}(M_{\rm Z}) = 0.1148 \pm 0.0014 (\exp)$

 $\pm \ 0.0018 ({\rm PDF})$

 $\pm \ 0.0050 ({\rm theory \ at \ NLO})$

 \longrightarrow first $\alpha_{\rm s}$ from CMS

$lpha_{ m s}$ alone

P. Connor

Introduction

 $\begin{array}{l} \mbox{Methodology}\\ \mbox{Factorisation}\\ \mbox{$\pmb{\alpha}_s$ alone}\\ \mbox{$\pmb{\alpha}_s$ + PDFs}\\ \mbox{$\pmb{\alpha}_s$ + PDFs}\\ \mbox{$more$}\\ \mbox{Fixed-order}\\ \mbox{predictions} \end{array}$

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

UH \$/25

R_{32} observable [5]

- Cancellation of theoretical effects \rightarrow e.g. NP corrections (PDFs?)

 $\alpha_{\rm s}(M_{\rm Z}) = 0.1148 \pm 0.0014 ({\rm exp})$

 $\pm \ 0.0018 (\mathsf{PDF})$

 $\pm \ 0.0050 ({\rm theory \ at \ NLO})$

 \longrightarrow first $\alpha_{\rm s}$ from CMS

$lpha_{ m s}$ alone

Vector boson production [10]

- Clear signatures at CMS.
- Complementary to jets.
- Predictions at NNLO.

$$\begin{split} \alpha_{\rm s}(M_{\rm Z}) &= 0.1163 \pm 0.0007({\rm stat}) \pm 0.0013({\rm lumi}) \\ &\pm 0.0010({\rm syst})^{+0.0016}_{-0.0022}({\rm PDF}) \\ &\pm 0.0009({\rm scale}) \pm 0.0006({\rm num}) \end{split}$$

P. Connor

Introduction

 $\begin{array}{l} \mbox{Methodology}\\ \mbox{Factorisation}\\ \mbox{α_s alone}\\ \mbox{α_s + PDFs$ + more}\\ \mbox{$more$}\\ \mbox{Fixed-order}\\ \mbox{predictions} \end{array}$

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

$t\bar{t}$ production [7]

• The inclusive $t\bar{t}$ cross section is α_s and m_t .

UH # 9/25

Methodology

P. Connor

Methodology **Factorisation** $\alpha_{\rm e}$ alone $\alpha_s + PDFs$ $\alpha_s + PDFs +$ predictions

Lessons

Summary &

Back-up

CMS 35.9 fb⁻¹ (13 TeV) CMS 35.9 fb⁻¹ (13 TeV) [N^{0,1+},M(tt),y(tt)] $[N_{iot}^{0,1+},M(t\bar{t}),y(t\bar{t})]$, dof = 23, data and PDF unc. — α_s(m_z) with total unc. $\alpha_{s}(m_{z}) \pm \Delta \alpha_{s}(m_{z}) \text{ PDF } [\chi^{2}_{min}]$ data unc. PDF unc. ա **unc.** - 0.1169 +- 0.0013 ABMP16 [26] m^{pole} ± 1 GeV unc. ABMP16 HERAPDF20 CT14 World average [PDG2018]

0.09

$t\bar{t}$ production [7]

0.11

• The inclusive $t\bar{t}$ cross section is α_s and m_t .

0.12

• The presence of additional jets provides additional sensitivity to $\alpha_{\rm s}$.

0.13

α_s(m_)

UH Ĥ 9/25

۲2

200

100

Methodology

0.11

0.1

0.12

0.13 α_s(m_z)

CMS <u>P. Connor</u>

Introduction

 $\begin{array}{l} \mbox{Methodology}\\ \mbox{Factorisation}\\ \mbox{α_{s} alone}\\ \mbox{α_{s} + PDFs$}\\ \mbox{$\alpha_{s}$ + PDFs$ + more}\\ \mbox{Fixed-order}\\ \mbox{predictions} \end{array}$

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

$lpha_{ m s}$ + PDFs

UH 10/25

$\alpha_{\rm s}$ + PDFs

Dijet mass at 13 TeV [9]

- We use xFitter [11, 12] and FastNLO [13] with NNLO interpolation tables [14].
- We use charged- and neutral-current DIS cross section of HERA [15].
- We assume $f_i(x) = Ax^B(1-x)^C(1+Dx+Ex^2)$ at starting scale.

 \longrightarrow Actual number parameters to be adjusted

$$\begin{split} \alpha_{\rm s}(M_{\rm Z}) &= 0.1181 \pm 0.0013 ({\rm fit}) \\ &\pm 0.0009 ({\rm scale}) \\ &\pm 0.0006 ({\rm model}) \\ &\pm 0.0002 ({\rm param.}) \end{split}$$

10/25

UH

CMS

P Connor

Methodology

Factorisation

 $\alpha_{s} + PDFs$ $\alpha_{s} + PDFs +$

predictions

Summary &

Back-up

Lessons

 $\alpha_{\rm e}$ alone

$\alpha_{\rm s}$ + PDFs + more

Methodology Factorisation α_s alone $\alpha_s + PDFs$ $\alpha_s + PDFs +$

CMS

P Connor

more Fixed-order predictions

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

UH #11/25

Combining inclusive jet and $\mathrm{t\bar{t}}+\mathrm{X}$ [7, 8] at NLO (+NLL)

• The respective measurements provide a better control on the gluon PDF and therefore improve the determinations of α_s and of m_t consequently:

 $\begin{aligned} \alpha_{\rm s}(M_{\rm Z}) &= 0.1188 \pm 0.0017 \text{ (fit)} \pm 0.0004 \text{ (model)} \\ &\pm 0.0025 \text{ (scale)} \pm \textbf{0.0001} \text{ (param)} \end{aligned}$

$\alpha_{\rm s}$ + PDFs + more

Combining inclusive jet and $\mathrm{t\bar{t}}+\mathrm{X}$ [7, 8] at NLO (+NLL)

The respective measurements provide a better control on the gluon PDF and therefore improve the determinations of α_s and of m_t consequently:

```
\begin{aligned} \alpha_{\rm s}(M_{\rm Z}) &= 0.1188 \pm 0.0017 \text{ (fit)} \pm 0.0004 \text{ (model)} \\ &\pm 0.0025 \text{ (scale)} \pm \textbf{0.0001} \text{ (param)} \end{aligned}
```

• Considering also possible BSM physics (c_1 Wilson coefficient):

$$\begin{split} \alpha_{\rm s}(M_{\rm Z}) &= 0.1187 \pm 0.0016 \text{(fit)} \pm 0.0005 \text{(model)} \\ &\pm 0.0023 \text{ (scale)} \pm \textbf{0.0018} \text{ (param)} \end{split}$$

CMS

P Connor

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

UH # 11/25

P. Connor

ntroduction

 $\begin{array}{l} \mbox{Methodology}\\ \mbox{Factorisation}\\ \mbox{α_{s} alone}\\ \mbox{α_{s} + PDFs$}\\ \mbox{$\alpha_{s}$ + PDFs$ + more}\\ \mbox{Fixed-order}\\ \mbox{Fixed-order}\\ \mbox{predictions} \end{array}$

Lessons

Summary & Conclusions

 $\mathsf{Back}\mathsf{-up}$

UH 12/25

At NNLO using a k factor

 $\begin{aligned} \alpha_{\rm s}(M_{\rm Z}) &= 0.1170 \pm 0.0014 \text{ (fit)} \pm 0.0007 \text{ (model)} \\ &\pm \textbf{0.0008} \text{ (scale)} \pm 0.0001 \text{ (param)} \end{aligned}$

P. Connor

ntroduction

 $\begin{array}{l} \mbox{Methodology}\\ \mbox{Factorisation}\\ \mbox{α_s alone}\\ \mbox{α_s + PDFs$}\\ \mbox{$\alpha_s$ + PDFs$ + more}\\ \mbox{Fixed-order}\\ \mbox{Fixed-order}\\ \mbox{predictions} \end{array}$

Lessons

Simultaneous measurements

Summary & Conclusions

Back-up

Fixed-order predictions

At NNLO using interpolation tables [14]

 $\alpha_{\rm s}(M_{\rm Z}) = 0.1166 \pm 0.0014 \text{ (fit)} \pm 0.0007 \text{ (model)} \\ \pm 0.0004 \text{ (scale)} \pm 0.0001 \text{ (param.)}$

Remark

The statistical uncertainties of the FO predictions and of the data are of similar order at medium transverse momentum.

Lessons

Overview Systematic effects Smoothness

Refs.	\sqrt{s}	value	fit unc.	PDF unc.	scale unc.	other unc.	PDF	order
D [5]	7	0 1149	0.0014	0.0018		0.0050		NLO
n32 [5]	/ Tev	0.1148	± 0.0014	± 0.0018		± 0.0050	ININP DF2.1	NLO
2D inclusive jet [16, 3]	7 TeV	0.1185	± 0.0019	± 0.0028	+0.0053 -0.0024	± 0.0004	—	NLO
inclusive 3-jet mass [2]	7 TeV	0.1171	± 0.0013	± 0.0024	$^{+0.0069}_{-0.0040}$	NP ±0.0008	CT10	NLO
$t\bar{t}$ [17]	7 TeV	0.1151	$+0.0017 \\ -0.0018$	$^{+0.0013}_{-0.0011}$	$^{+0.0009}_{-0.0008}$	$\underbrace{\pm 0.0013}_{\pm 0.0008} \underbrace{\pm 0.0008}_{NP}$	NNPDF2.3	NNLO
2D inclusive jet [4]	8 TeV	0.1185	$^{+0.0019}_{-0.0021}$	$\underbrace{+0.0002}_{-0.0015} \underbrace{+0.0000}_{-0.0004}$	$^{+0.0022}_{-0.0018}$	$m_{ m t}$ \sqrt{s}	—	NLO
3D dijet mass [17]	8 TeV	0.1199	± 0.0015	$\underbrace{\pm 0.0002}_{= 0.0004}^{\text{model}} \underbrace{+ 0.0002}_{= 0.0004}^{\text{param}}$	$^{+0.0026}_{-0.0016}$		_	NLO
W/Z [10]	7–8 TeV	0.1163	± 0.0018	$ \begin{array}{c c} model & param \\ +0.0016 \\ -0.0022 \end{array} $	± 0.0009	$\underbrace{\pm 0.0006}$	CT14	NNLO
$t\bar{t}$ (dilepton) [18]	13 TeV	0.1151	±0	0.0035	+0.0020	num	MMHT14	NNLO
normalised $t\bar{t}$ [7]	13 TeV	0.1135	± 0.0016	$+0.0002 + 0.0008 \\ -0.0004 - 0.0001$	+0.0002 +0.0011 -0.0005		_	NLO
2D inclusive jet [8]	13 TeV	0.1166	± 0.0014	$\underbrace{\pm 0.0007}_{\text{model}} \underbrace{\pm 0.0001}_{\text{param}}$	± 0.0004		_	NNLO
2D & 3D dijet mass [9]	13 TeV	0.1181	± 0.0013	$\underbrace{\pm 0.0006}_{\text{model}} \underbrace{\pm 0.0002}_{\text{param}}$	± 0.0009		—	NNLO
$R_{\Delta\phi}$ [6]	13 TeV	0.1177	± 0.0013	$\underbrace{\pm 0.0010}_{\text{param}} \underbrace{\pm 0.0020}_{\text{param}}$	$^{+0.0114}_{-0.0068}$	$\pm 0.0011 \pm 0.0003$	NNPDF3.1	NLO
EEC in jets [19]	13 TeV	0.1229	$\underbrace{+0.0014}_{-0.0012} \underbrace{+0.0023}_{-0.0036}$	NNPDF3.1 choice	$^{+0.0030}_{-0.0033}$	NP EW	—	aNNLL
			stat syst					

Whenever several values are given for a reference, only one value has been reported.

 $lpha_{
m s}^{
m PDG\ 2023}(M_{
m Z}) = 0.1180 \pm 0.0009$

Refs.	\sqrt{s}	value	fit unc.	PDF unc.	scale unc.	other unc.	PDF	order
Bag [5]	7 TeV	0 1148	± 0.0014	+0.0018		± 0.0050	NNPDF2 1	NI O
2D inclusive jet [16, 3]	7 TeV	0.1185	± 0.0011 ± 0.0019	± 0.0028	$^{+0.0053}_{-0.0024}$	±0.0004	—	NLO
inclusive 3-jet mass [2]	7 TeV	0.1171	± 0.0013	± 0.0024	$+0.0069 \\ -0.0040$	$\underbrace{_{NP}}_{\pm 0.0008}$	CT10	NLO
$t\bar{t}$ [17]	7 TeV	0.1151	$^{+0.0017}_{-0.0018}$	$^{+0.0013}_{-0.0011}$	$^{+0.0009}_{-0.0008}$	$\underbrace{\pm 0.0013}_{\pm 0.0008} \underbrace{\times 0.0008}_{NP}$	NNPDF2.3	NNLO
2D inclusive jet [4]	8 TeV	0.1185	$^{+0.0019}_{-0.0021}$	$\underbrace{+0.0002}_{-0.0015} \underbrace{+0.0000}_{-0.0004}$	$^{+0.0022}_{-0.0018}$	$m_{ m t} = \sqrt{s}$	_	NLO
3D dijet mass [17]	8 TeV	0.1199	± 0.0015	$\underbrace{\pm 0.0002}_{-0.0004} \underbrace{\stackrel{\text{param}}{+0.0002}}_{-0.0004}$	$^{+0.0026}_{-0.0016}$		_	NLO
W/Z [10]	7–8 TeV	0.1163	± 0.0018	model param +0.0016 -0.0022	± 0.0009	±0.0006	CT14	NNLO
$t\bar{t}$ (dilepton) [18]	13 TeV	0.1151	± 0.0035		$^{+0.0020}_{-0.0002}$	num	MMHT14	NNLO
normalised $t\bar{t}$ [7]	13 TeV	0.1135	± 0.0016	$^{+0.0002}_{-0.0004} \overset{+0.0008}{-0.0001}$	$^{+0.0011}_{-0.0005}$		—	NLO
2D inclusive jet [8]	13 TeV	0.1166	± 0.0014	$\underbrace{\pm 0.0007}_{\text{model}} \underbrace{_{\text{param}}_{\text{param}}}_{\text{param}}$	± 0.0004		_	NNLO
2D & 3D dijet mass [9]	13 TeV	0.1181	± 0.0013	$\pm 0.0006 \pm 0.0002$	± 0.0009		_	NNLO
$R_{\Delta\phi}$ [6]	13 TeV	0.1177	± 0.0013	$\underbrace{\pm 0.0010}_{\text{model}} \underbrace{_{\text{param}}_{\text{param}}}_{\text{param}}$	$^{+0.0114}_{-0.0068}$	$\underbrace{\pm 0.0011} \pm 0.0003$	NNPDF3.1	NLO
EEC in jets [19]	13 TeV	0.1229	$^{+0.0014}_{-0.0012} {}^{+0.0023}_{-0.0036}$	NNPDF3.1 choice	$^{+0.0030}_{-0.0033}$	NP EW	—	aNNLL
			stat syst					

Whenever several values are given for a reference, only one value has been reported.

 $lpha_{
m s}^{
m PDG\ 2023}(M_{
m Z}) = 0.1180 \pm 0.0009$

Refs.	\sqrt{s}	value	fit unc.	PDF unc.	scale unc.	other unc.	PDF	order
R ₃₂ [5]	7 TeV	0.1148	± 0.0014	± 0.0018		± 0.0050	NNPDF2.1	NLO
2D inclusive jet [16, 3]	7 TeV	0.1185	± 0.0019	± 0.0028	$^{+0.0053}_{-0.0024}$	± 0.0004	_	NLO
inclusive 3-jet mass [2]	7 TeV	0.1171	± 0.0013	± 0.0024	$^{+0.0069}_{-0.0040}$	NP ±0.0008	CT10	NLO
tī [17]	7 TeV	0.1151	$^{+0.0017}_{-0.0018}$	$^{+0.0013}_{-0.0011}$	$^{+0.0009}_{-0.0008}$	$\underbrace{\pm 0.0013}_{\pm 0.0008} \underbrace{\pm 0.0008}_{NP}$	NNPDF2.3	NNLO
2D inclusive jet [4]	8 TeV	0.1185	$^{+0.0019}_{-0.0021}$	$\underbrace{+0.0002}_{-0.0015} \underbrace{+0.0000}_{-0.0004}$	$^{+0.0022}_{-0.0018}$	$m_{ m t}$ \sqrt{s}	—	NLO
3D dijet mass [17]	8 TeV	0.1199	± 0.0015	$\underbrace{\pm 0.0002}_{0.0002} \underbrace{+ 0.0002}_{-0.0004}$	$^{+0.0026}_{-0.0016}$		_	NLO
W/Z [10]	7–8 TeV	0.1163	± 0.0018		± 0.0009	$\underbrace{\pm 0.0006}$	CT14	NNLO
$t\bar{t}$ (dilepton) [18]	13 TeV	0.1151	±0.	0035	+0.0020	num	MMHT14	NNLO
normalised $t\bar{t}$ [7]	13 TeV	0.1135	± 0.0016	$^{+0.0002}_{-0.0004} {}^{+0.0008}_{-0.0001}$	+0.0002 +0.0011 -0.0005		_	NLO
2D inclusive jet [8]	13 TeV	0.1166	± 0.0014	$\underbrace{\pm 0.0007}_{\text{model}} \underbrace{\pm 0.0001}_{\text{param}}$	± 0.0004		_	NNLO
2D & 3D dijet mass [9]	13 TeV	0.1181	± 0.0013		± 0.0009		—	NNLO
$R_{\Delta\phi}$ [6]	13 TeV	0.1177	± 0.0013	$\underbrace{\pm 0.0010}^{\text{model}} \underbrace{\pm 0.0020}_{\text{param}}$	$^{+0.0114}_{-0.0068}$	$\underbrace{\pm 0.0011}_{\pm 0.0003} \underbrace{\pm 0.0003}_{\pm 0.0003}$	NNPDF3.1	NLO
EEC in jets [19]	13 TeV	0.1229	$+0.0014 +0.0023 \\ -0.0012 -0.0036$	NNPDF3.1 choice	$^{+0.0030}_{-0.0033}$	NP EW	—	aNNLL
			stat syst					

Whenever several values are given for a reference, only one value has been reported.

 $lpha_{
m s}^{
m PDG\ 2023}(M_{
m Z}) = 0.1180 \pm 0.0009$
Refs.	\sqrt{s}	value	fit unc.	PDF unc.	scale unc.	other unc.	PDF	order
Bag [5]	7 TeV	0 11/8	+0.0014	± 0.0018		+0.0050		
2D inclusive iet [16, 3]	7 TeV	0.1148	± 0.0014 ± 0.0019	± 0.0018 ± 0.0028	+0.0053	+0.0004		NLO
2D melasive jet [10, 0]	1 100	0.1100	10.0010	10.0020	-0.0024			NEO
inclusive 3-jet mass [2]	7 TeV	0.1171	± 0.0013	± 0.0024	$^{+0.0069}_{-0.0040}$	± 0.0008	CT10	NLO
(T [17]	7 7 1/	0.1151	+0.0017	+0.0013	+0.0009	NP		
tt [17]	7 Tev	0.1151	-0.0018	-0.0011	-0.0008		NNPDF2.3	NNLO
2D inclusive jet [4]	8 TeV	0.1185	+0.0019	+0.0002 + 0.0000	+0.0022	$m_{\mathrm{t}} = \sqrt{s}$	_	NLO
			-0.0021	model param	-0.0018			
3D dijet mass [17]	8 TeV	0.1199	± 0.0015	$\pm 0.0002 \substack{+0.0002 \\ -0.0004}$	$^{+0.0026}_{-0.0016}$		—	NLO
				model param				
W/Z [10]	7–8 TeV	0.1163	± 0.0018	$+0.0016 \\ -0.0022$	± 0.0009	$\underbrace{\pm 0.0006}$	CT14	NNLO
$t\bar{t}$ (dilepton) [18]	13 TeV	0.1151	± 0.0	0035	+0.0020	num	MMHT14	NNLO
normalised tt [7]	13 TeV	0.1135	± 0.0016	+0.0002 + 0.0008 -0.0004 - 0.0001	+0.0002 +0.0011 -0.0005		_	NLO
				model Param	-0.0000			
2D inclusive jet [8]	13 TeV	0.1166	± 0.0014	$\pm 0.0007 \pm 0.0001$	± 0.0004		—	NNLO
2D & 3D dijet mass [9]	13 TeV	0.1181	+0.0013	model param +0.0006 +0.0002	+0.0009		_	NNLO
[0]			2000000	model param	±0.0000			
$R_{\Delta\phi}$ [6]	13 TeV	0.1177	± 0.0013	$\pm 0.0010 \pm 0.0020$	$^{+0.0114}_{-0.0068}$	$\underbrace{\pm 0.0011} \pm 0.0003$	NNPDF3.1	NLO
EEC in inte [10]	12 TA/	0 1990	+0.0014 + 0.0023	NNPDF3.1 choice	+0.0030	NP EW		• NINI I
LLC III JEIS [19]	13 Tev	0.1229	-0.0012 - 0.0036		-0.0033			
			stat syst					-

Whenever several values are given for a reference, only one value has been reported.

 $lpha_{
m s}^{
m PDG\ 2023}(M_{
m Z}) = 0.1180 \pm 0.0009$

Refs.	\sqrt{s}	value	fit unc.	PDF unc.	scale unc.	other unc.	PDF	order
							•	
R ₃₂ [5]	7 TeV	0.1148	± 0.0014	± 0.0018		± 0.0050	NNPDF2.1	NLO
2D inclusive jet [16, 3]	7 TeV	0.1185	± 0.0019	± 0.0028	$+0.0053 \\ -0.0024$	± 0.0004	—	NLO
inclusive 3-jet mass [2]	7 TeV	0.1171	± 0.0013	± 0.0024	$^{+0.0069}_{-0.0040}$	<u>NP</u> ±0.0008	CT10	NLO
tī [17]	7 TeV	0.1151	$^{+0.0017}_{-0.0018}$	$^{+0.0013}_{-0.0011}$	$^{+0.0009}_{-0.0008}$	$\underbrace{\pm 0.0013}_{\text{\pm}0.0008}\underbrace{\pm 0.0008}_{\text{\pm}0.0008}$	NNPDF2.3	NNLO
2D inclusive jet [4]	8 TeV	0.1185	$^{+0.0019}_{-0.0021}$	$\underbrace{+0.0002}_{-0.0015} \underbrace{+0.0000}_{-0.0004}$	$^{+0.0022}_{-0.0018}$	$m_{ m t}$ \sqrt{s}	_	NLO
3D dijet mass [17]	8 TeV	0.1199	± 0.0015	$\underbrace{\pm 0.0002}_{\pm 0.0002} \underbrace{+ 0.0002}_{-0.0004}$	$^{+0.0026}_{-0.0016}$		_	NLO
W/Z [10]	7–8 TeV	0.1163	± 0.0018	$\begin{array}{c} {\sf model} {\sf param} \\ +0.0016 \\ -0.0022 \end{array}$	± 0.0009	$\underbrace{\pm 0.0006}$	CT14	NNLO
$t\bar{t}$ (dilepton) [18]	13 TeV	0.1151	± 0.0035		+0.0020 -0.0002	num	MMHT14	NNLO
normalised $t\bar{t}$ [7]	13 TeV	0.1135	± 0.0016	$^{+0.0002}_{-0.0004} {}^{+0.0008}_{-0.0001}$	$+0.0011 \\ -0.0005$		—	NLO
2D inclusive jet [8]	13 TeV	0.1166	± 0.0014	$\underbrace{\pm 0.0007}_{\text{model}} \underbrace{\pm 0.0001}_{\text{param}}$	± 0.0004		_	NNLO
2D & 3D dijet mass [9]	13 TeV	0.1181	± 0.0013	$ \underbrace{\pm 0.0006}_{\text{model}} \underbrace{\pm 0.0002}_{\text{param}} $	± 0.0009		—	NNLO
$R_{\Delta\phi}$ [6]	13 TeV	0.1177	± 0.0013	$\underbrace{\pm 0.0010}_{\text{param}}\underbrace{\pm 0.0020}_{\text{param}}$	$^{+0.0114}_{-0.0068}$	$\underbrace{\pm 0.0011}_{\pm 0.0003} \underbrace{\pm 0.0003}_{\pm 0.0003}$	NNPDF3.1	NLO
EEC in jets [19]	13 TeV	0.1229	$\underbrace{+0.0014}_{-0.0012} \underbrace{+0.0023}_{-0.0036}$	NNPDF3.1 choice	$^{+0.0030}_{-0.0033}$	NP EW	l	aNNLL
			stat syst]	c	L

Whenever several values are given for a reference, only one value has been reported.

$$\alpha_{\rm s}^{\rm PDG\ 2023}(M_{\rm Z}) = 0.1180 \pm 0.0009$$

P. Connor

Introduction Methodology

- Lessons
- Overview
- Systematic effects Smoothness

Simultaneous measurements

Summary & Conclusions

Back-up

Lessons from our past publications

- 1 No tension observed among the different analyses
 - \longrightarrow although the agreement is hard to judge, because of subtle correlations and differences among conventions.

Overview

- 2 Ratios have smaller uncertainties than differential cross sections
 - \longrightarrow it would be ideal if one would combine them.
- Model uncertainties matter, especially for jet substructure measurements.
 → no clear prescription on how to handle them.
- **4** Determinations at NNLO are dominated by the fit uncertainties.
 - \longrightarrow large ${}_{(although \ not \ exclusive)}$ contribution from experimental uncertainties.

UH 14/25

P Connor

Methodology

- Overview

Summary &

Back-up

UH Ĥ 14/25

Lessons from our past publications

- 1 No tension observed among the different analyses
 - \rightarrow although the agreement is hard to judge, because of subtle correlations and differences among conventions.
- 2 Ratios have smaller uncertainties than differential cross sections
 - \rightarrow it would be ideal if one would combine them
- 8 Model uncertainties matter, especially for jet substructure measurements. \longrightarrow no clear prescription on how to handle them.
- Obterminations at NNLO are dominated by the fit uncertainties.
 - \rightarrow large (although not exclusive) contribution from experimental uncertainties.

Possible roads

- Explore new observables
- Combine existing measurements \rightarrow e.g. vector boson cross sections or inclusive jet + tt
- Improve experimental uncertainties
- Perform measurements simultaneously

Overview

 \rightarrow e.g. novel cross section ratios

 \rightarrow see next slides

 \rightarrow see next section

P. Connor

Introduction

Methodology

- Lessons
- Overview
- Systematic effects Smoothness

Simultaneous measurements

Summary & Conclusions

Back-up

UH #15/25

Systematic effects

Overview

Overview (figure from Ref. [9])

- The JES uncertainty is the combination of ~ 25 uncertainties.
- The unfolding model uncertainty is obtained from the unfolding of the same data with another MC generator (not Gaussian).
- We reach <1% statistical precision.

P. Connor

Introduction

Methodology

- Lessons
- Overview
- Systematic effects Smoothness

Simultaneous measurements

Summary & Conclusions

Back-up

UH #15/25

Systematic effects

Overview

Overview (figure from Ref. [9])

- The JES uncertainty is the combination of ~ 25 uncertainties.
- The unfolding model uncertainty is obtained from the unfolding of the same data with another MC generator (not Gaussian).
- We reach <1% statistical precision.</p>

 \longrightarrow In practice, we still have to decorrelate certain uncertainties to obtain an acceptable fit performance.

Systematic effects Jet energy

Challenge

$$\delta \left(p_{\rm T}^{\rm rec} / p_{\rm T}^{\rm gen} \right) \sim 0.2\% \quad \Rightarrow \quad \delta \sigma \sim 1\%$$

UH #16/25

Back-up

Systematic effects Jet energy

Challenge

$$\delta \left(p_{\rm T}^{\rm rec} / p_{\rm T}^{\rm gen} \right) \sim 0.2\% \quad \Rightarrow \quad \delta \sigma \sim 1\%$$

Flavour uncertainties

- The response of the detector depends on the flavour of the jet.
- One of the leading contributions to jet energy uncertainties.

Systematic effects Jet energy

Challenge

$$\delta \left(p_{\rm T}^{\rm rec} / p_{\rm T}^{\rm gen} \right) \sim 0.2\% \quad \Rightarrow \quad \delta \sigma \sim 1\%$$

Flavour uncertainties

- The response of the detector depends on the flavour of the jet.
- One of the leading contributions to jet energy uncertainties.

Non-Gaussian tails

- The response of the detector is only approximately Gaussian.
- The nature of the large tails and the accuracy of their simulation is not totally under control.

P. Connor

Introduction Methodology

methodolc

- Lessons
- Overview

Systematic effects Smoothness

Simultaneous measurements

Summary & Conclusions

Back-up

Nature (figure from Ref. [9])

 $\mathsf{NP} = \frac{\sigma_{\mathsf{ME}+\mathsf{PS}+\mathsf{MPI}+\mathsf{had}}}{\sigma_{\mathsf{ME}+\mathsf{PS}}}$

- Corrects for hadronisation and MPI.
- Usually obtained from the envelope of the results obtained with various MC generators and tunes.

Systematic effects

Non-perturbative effects

UH #17/25

P. Connor

Introduction Methodology

methodok

- Lessons
- Overview

Systematic effects Smoothness

Simultaneous measurements

Summary & Conclusions

Back-up

Nature (figure from Ref. [9])

 $\mathsf{NP} = \frac{\sigma_{\mathsf{ME}+\mathsf{PS}+\mathsf{MPI}+\mathsf{had}}}{\sigma_{\mathsf{ME}+\mathsf{PS}}}$

- Corrects for hadronisation and MPI.
- Usually obtained from the envelope of the results obtained with various MC generators and tunes.

Systematic effects

Non-perturbative effects

UH 17/25

P Connor

Summary &

Back-up

Methodology

Lessons

Systematic effects

UH H.H 17/25

Nature (figure from Ref. [9])

 $\sigma_{\mathsf{ME+PS+MPI+had}}$ NP = σ_{ME+PS}

- Corrects for hadronisation and MPI.
- Usually obtained from the envelope of the results obtained with various MC generators and tunes.

Limitations of the current approach

- Arbitrary set of MC generators and tunes.
- 2 Not a Gaussian uncertainty.
- 8 Hardly interpretable shape.
- 4 No breakdown of uncertainties.

13 TeV correction NP correction + uncertainty 1.08 Herwig 7 LO (CH3) Herwig++ (EE5C) 1.06 Pythia 8 (CUETP8M1) Pythia 8 (CUETP8M2) L 1.04 Herwig 7 NLO (CH3) POWHEG+Herwig++ (EE5C) POWHEG+Pythia 8 (CUETP8M1 1.02 POWHEG+Pythia 8 (CUETP8M2) 1.00 0.98 0.96 0.94 $y_{\rm b} < 0.5$ anti-k_T (R=0.4) v^{*} < 0.5 0.92

1000

2000

500

5000 m1 2 (GeV)

Systematic effects

Non-perturbative effects

Smoothness

CMS

P. Connor

Methodology

- Lessons
- Overview
- Systematic effects Smoothness

Simultaneous measurements

Summary & Conclusions

Back-up

UH 18/25

Smoothness

CMS

P Connor

- Lessons
- Overview Systematic effe
- Smoothness
- Simultaneous measurements
- Summary & Conclusions
- Back-up

Steps & spurious fluctuations [20]

- Steps are usually not expected in differential cross sections.
- Relative variations may also suffer from spurious fluctuations, especially after the unfolding.
- Fluctuations in the variations will affect the QCD fits.

UH #18/25

Smoothness

CMS

- Lessons
- Systematic eff
- Simultaneous
- Summary & Conclusions
- Back-up

Steps & spurious fluctuations [20]

- Steps are usually not expected in differential cross sections.
- Relative variations may also suffer from spurious fluctuations, especially after the unfolding.
- Fluctuations in the variations will affect the QCD fits.
- \longrightarrow We were able to reduce the 1% bin-to-bin uncorrelated systematic uncertainties in inclusive jet at 8 TeV [4] to 0.2% at 13 TeV [8].

UH # 18/25

Simultaneous measurements

Motivation Reminder Example

- P. Connor
- Introduction
- Methodology
- Lessons
- Simultaneous measurements Motivation Reminder Example
- Summary & Conclusions
- Back-up

UH #19/25

Limitations of the current strategy

- 1 Model dependence & uncertainties
 - \longrightarrow no clear procedure + various approaches
- Ø Backgrounds
 - \longrightarrow even the inclusive jet production is sensitive to backgrounds
- Subtle differences among analyses → e.g. choice of unfolding procedure, choice of initial model in QCD interpretation

Motivation

- P. Connor
- Introduction
- Methodology
- Lessons
- Simultaneous measurements Motivation Reminder Example
- Summary & Conclusions
- Back-up

υн

Limitations of the current strategy

- 1 Model dependence & uncertainties
 - $\longrightarrow {\sf no} \ {\sf clear} \ {\sf procedure} \ + \ {\sf various} \\ {\sf approaches}$
- Ø Backgrounds
 - \longrightarrow even the inclusive jet production is sensitive to backgrounds
- Subtle differences among analyses → e.g. choice of unfolding procedure, choice of initial model in QCD interpretation
- ④ Measurements based on the same data cannot be used in the same fit → e.g. dijet mass and inclusive jet p_T with CMS 2016 data
- \rightarrow Follow and extend H1 approach [21]

Motivation

UH #

- P. Connor
- Introduction
- Methodology
- Lessons
- Simultaneous measurements Motivation Reminder Example
- Summary & Conclusions
- Back-up

Data reduction in a nutshell

- Apply a common selection to real and simulated samples.
- **2** Calibrate the samples.
- **3** Use simulated samples to construct a migration matrix.
- Invert this migration matrix and apply to real data (unfolding).

Reminder

Typical analysis strategy

UH 20/25

- P Connor
- Methodology
- Lessons
- Reminder Example
- Summary &
- Back-up

UH H. 20/25

Data reduction in a nutshell

- Apply a common selection to real and simulated samples.
- 2 Calibrate the samples.
- 8 Use simulated samples to construct a migration matrix.
- 4 Invert this migration matrix and apply to real data (unfolding).

Unfolding

- $\mathbf{A}\mathbf{x} = \mathbf{y}$
- (unknown) unbiased measurement
- biased measurement
- migration matrix

Reminder

Typical analysis strategy

- P. Connor
- Introduction
- Methodology
- Lessons
- Simultaneous measurements Motivation Reminder Example
- Summary & Conclusions
- Back-up

UH 20/25

Data reduction in a nutshell

- Apply a common selection to real and simulated samples.
- **2** Calibrate the samples.
- **3** Use simulated samples to construct a migration matrix.
- Invert this migration matrix and apply to real data (unfolding).

Unfolding

- $\mathbf{A}\mathbf{x} = \mathbf{y}$
- x (unknown) unbiased measurement
- y biased measurement
- A migration matrix

Reminder

Typical analysis strategy

Remark

In principle, the order and nature of the bins are irrelevant. \longrightarrow One can always map a (series of) distribution(s) onto a 1D vector $\mathbf{y}.$

Example Migrations

Inclusive jet $(4 \times 4 \text{ block})$

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_{\mathrm{T}} \,\mathrm{d}y} = \frac{1}{\mathcal{L}} \frac{N_{\mathsf{jets}}^{\mathsf{en}}}{\Delta p_{\mathrm{T}} \,\Delta y}$$

UH 21/25

CMS

P. Connor

Methodology

Reminder

Example

Back-up

Summary &

- P. Connor
- Introduction Methodology
- Lessons
- Simultaneous measurements Motivation Reminder Example
- Summary & Conclusions
- Back-up

$\frac{\mathrm{d}\sigma}{\mathrm{d}H_{\mathrm{T},2}/2}(n) = \frac{1}{\mathcal{L}} \frac{N_{n-\mathrm{jets}}^{\mathrm{eff}}}{\Delta H_{\mathrm{T},2}/2}$ Inclusive jet (4 × 4 block) $\frac{\mathrm{d}^2\sigma}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} = \frac{1}{\mathcal{L}} \frac{N_{\mathrm{jets}}^{\mathrm{eff}}}{\Delta p_{\mathrm{T}} \Delta y}$

 $H_{\rm T.2}$ spectra (3 × 3 block)

Example Migrations

UH 21/25

P. Connor

Methodology Lessons Simultaneous measurements Motivation Reminder Example

Summary & Conclusions

Back-up

Example

Pre-unfolding correlations

From the real data

- Off-diagonal entries within the lower 4 × 4 block describe the statistical correlations among the kinematic bins of inclusive jet (multi-count observable).
- Off-diagonal entries in the 4 × 3 and 3 × 4 blocks describe the statistical correlations among the bins of the respective observables.

UH 22/25

P. Connor

Introduction Methodology Lessons Simultaneous measurements Motivation Reminder Example

Summary & Conclusions

Back-up

Example

Pre-unfolding correlations

From the real data

- Off-diagonal entries within the lower 4 × 4 block describe the statistical correlations among the kinematic bins of inclusive jet (multi-count observable).
- Off-diagonal entries in the 4 × 3 and 3 × 4 blocks describe the statistical correlations among the bins of the respective observables.

For the present exercise: simple least-square minimisation

$$\chi^{2} = \min_{\mathbf{x}} \left[(\mathbf{A}\mathbf{x} - \mathbf{y})^{\mathsf{T}} \mathbf{V_{y}}^{-1} \left(\mathbf{A}\mathbf{x} - \mathbf{y} \right) \right]$$

Vy covariance matrix from biased measurement

UH # 22/25

CMS

P. Connor

Methodology Lessons

Simultaneous measurement Motivation Reminder Example

Summary & Conclusions

Ш

笧

Result (unless regularisation is needed) $\mathbf{x} = (\mathbf{A}^{\mathsf{T}} \mathbf{V_y}^{-1} \mathbf{A})^{-1} \mathbf{A}^{\mathsf{T}} \mathbf{V_y}^{-1} \mathbf{y}$ $\mathbf{V_x} = \mathbf{A}^{-1} \mathbf{V_y} \mathbf{A}^{\mathsf{T}-1}$

Example Post-unfolding correlations

P Connor

Methodology Lessons

Reminder Example

Summary & Back-up

Result (unless regularisation is needed)

$$\begin{split} \mathbf{x} &= (\mathbf{A}^\intercal \mathbf{V_y}^{-1} \mathbf{A})^{-1} \, \mathbf{A}^\intercal \mathbf{V_y}^{-1} \, \mathbf{y} \\ \mathbf{V_x} &= \mathbf{A}^{-1} \mathbf{V_y} \mathbf{A}^{\intercal-1} \end{split}$$

Example **Post-unfolding correlations**

From the simulated data

- With infinitely large statistics, one can use independent statistical samples to construct the different sectors of the migration matrix.
- Else repeat unfolding using alternative migration matrices with additional event weights $\sim Pois(1)$:

$$\mathbf{V}'_{\mathbf{x}} = \left(\frac{1}{N}\sum_{n=1}^{N}\mathbf{x}_{n}\cdot\mathbf{x}_{n}^{\mathsf{T}}\right) - \frac{1}{N^{2}}\left(\sum_{n=1}^{N}\mathbf{x}_{n}\right)\cdot\left(\sum_{n=1}^{N}\mathbf{x}_{n}\right)^{\mathsf{T}}$$

Ĥ 23/25

UH

P. Connor

Introduction

Methodology

Lessons

Simultaneous measurements Motivation Reminder Example

Summary & Conclusions

Back-up

From $H_{\rm T}$ spectra to R_{ij}

- Goal is to extract z = f(x) and its correlations.
- Apply a rotation R to diagonalise
 V_x and generate N events z_n:

$$egin{split} \delta_{n,i}' &\sim \mathcal{N}\left(0,\sqrt{\max(0,k_i)}
ight) \ \mathbf{z}_n &= \mathbf{f}\left(\mathbf{x} + \mathbf{R}^{-1}oldsymbol{\delta}_n'
ight) \end{split}$$

 Under the Gaussian hypothesis, the covariance may be obtained using the formula given on the last slices.

UH 24/25

Example Final correlations

P. Connor

Introduction

Methodology

Lessons

Simultaneous measurements Motivation Reminder Example

Summary & Conclusions

Back-up

UH 24/25

From $H_{\rm T}$ spectra to R_{ij}

- Goal is to extract $\mathbf{z} = \mathbf{f}(\mathbf{x})$ and its correlations.
- Apply a rotation R to diagonalise
 V_x and generate N events z_n:

$$\delta'_{n,i} \sim \mathcal{N}\left(0, \sqrt{\max(0, k_i)}\right)$$

 $\mathbf{z}_n = \mathbf{f}\left(\mathbf{x} + \mathbf{R}^{-1} \boldsymbol{\delta}'_n\right)$

 Under the Gaussian hypothesis, the covariance may be obtained using the formula given on the last slices.

Gain

We now have two observables with distinct properties obtained from the same data.

 $\longrightarrow R_{ij}$ offers additional control on α_s .

Example Final correlations

Summary & Conclusions

- P. Connor
- Introduction
- Methodology
- Lessons
- Simultaneous measurements
- Summary & Conclusions
- Back-up

Summary & Conclusions

- The CMS Collaboration has provided numerous determinations of the strong coupling.
- With the advent of predictions at NNLO, the fit uncertainty has become dominant.
- A few of the improvements considered by CMS have been discussed, e.g. simultaneous measurements.

UH 25/25

- P. Connor
- Introduction
- Methodology
- Lessons
- Simultaneous measurements
- Summary & Conclusions
- Back-up

Summary & Conclusions

- The CMS Collaboration has provided numerous determinations of the strong coupling.
- With the advent of predictions at NNLO, the fit uncertainty has become dominant.
- A few of the improvements considered by CMS have been discussed, e.g. simultaneous measurements.

Thank you for your attention!

UH 25/25

Back-up

Inclusive jet

CMS

P. Connor

Inclusive jet

Acronyms References

> UΗ Ĥ 26/25

Inclusive jet

UH #

CMS

P. Connor

Inclusive jet

Inclusive jet

CMS

P. Connor

Inclusive jet R_{32} and $R_{\Delta\phi}$ Dijet mass W/Zproduction t \bar{t} production Energy correlators Lund jet plane Acronyms References Visiting card
R_{32} and $R_{\Delta\phi}$

CMS

P. Connor

Lund jet plane Acronyms References Visiting card

Dijet mass

CMS

P. Connor

Inclusive jet R_{32} and $R_{\Delta\phi}$ Dijet mass W/Zproduction tf production tf production Energy correlators Lund jet plane Acronyms References Visiting card

W/Z production

CMS

P. Connor

W/Z

Energy

$\mathrm{t}\overline{\mathrm{t}}$ production

CMS

P. Connor

Inclusive jet R_{32} and $R_{\Delta\phi}$ Dijet mass W/Zproduction $t\overline{t}$ production Energy correlators Lund jet plane Acronyms References Visiting card

> UH # 32/25

Energy correlators

Energy-energy correlators

$$\mathsf{E2C} = \sum_{ij}^{n} \int \,\mathrm{d}\sigma \, \frac{E_i E_j}{E^2} \delta(x_\mathsf{L} - \Delta R_{ij})$$

References Visiting card

CMS

P. Connor

 R_{32} and $R_{\Delta\phi}$

Inclusive jet

Dijet mass W/Z

production

tt production Energy correlators

Lund jet plane

Acronyms

Energy correlators

Energy-energy correlators

$$\mathsf{E3C} = \sum_{ijk}^{n} \int d\sigma \, \frac{E_i E_j E_k}{E^3} \delta(x_\mathsf{L} - \max(\Delta R_{ij}, \Delta R_{ik}, \Delta R_{jk}))$$

ightarrow exploit E3C/E2C $\propto lpha_{
m s}(Q^2) \log x_L$!

UΗ iii

CMS

P. Connor

Dijet mass

production

W/Z

Energy correlators

Acronyms

References

CMS

P. Connor

Inclusive jet R_{32} and $R_{\Delta\phi}$ Dijet mass W/Zproduction t \bar{t} production Energy correlators Lund jet plane Acronyms References Visiting card

Energy correlators

$\alpha_{\rm s}$ from jet constituents (SMP-22-015)

 $\alpha_{\rm s}(M_{\rm Z}) = 0.1229^{+0.0040}_{-0.0050}$

CMS

P. Connor

Inclusive jet R_{32} and $R_{\Delta\phi}$ Dijet mass W/Zproduction tf production Energy correlators Lund jet plane Acronyms References Visiting card

> UH # 36/25

Lund jet plane

SMP-22-007

$$\begin{split} \rho(k_{\rm T},\Delta R) &\equiv \frac{1}{N_{\rm jets}} \frac{{\rm d}^2 N_{\rm emissions}}{{\rm d}\log k_{\rm T} \; {\rm d}\ln(R/\Delta R)} \\ &\approx \frac{2}{\pi} C_{\rm R} \alpha_{\rm s}(k_{\rm T}), \end{split}$$

Acronyms I

- MC Monte Carlo. 41, 42, 46–48
 - ME Matrix Element. 46-48
 - MPI Multi-Parton Interaction. 46-48
 - NLL Next to Leading Logarithm. 29, 30
- NLO Next to Leading Order. 23, 24, 29, 30
- NNLO Next to Next to Leading Order. 23, 24, 27, 28, 31, 32, 39, 40, 67, 68
 - NP Non-Perturbative. 18-24, 46-48
- PDF Parton Distribution Function. 18–24, 29, 30, 34–38
- PS Parton Shower. 46-48
- QCD Quantum Chromodynamics. 49-51, 53, 54

BSM searches Beyond the SM. 29, 30

- CMS Compact Muon Solenoid. 3–6, 18–24, 53, 54, 67, 68
- DIS Deeply Inelastic Scattering. 18-22, 27, 28
- EEC energy-energy correlators. 34-38
- FO fixed order. 18-22, 31, 32
- H1 HERA-1. 53, 54
- HEP High-Energy Physics. 3-6
- HERA Hadron-Elektron-RingAnlage. 18–22, 27, 28
 - JES Jet Energy Scale. 41, 42

UH #

CMS

P Connor

Inclusive jet R_{32} and $R_{\Delta\phi}$ Dijet mass

W/Z

Energy

production

 $t\overline{t}$ production

Lund jet plane

Acronyms

References

Visiting card

References I

Inclusive jet R_{32} and $R_{\Delta\phi}$ Dijet mass W/Zproduction $t\bar{t}$ production $t\bar{t}$ production Energy correlators Lund jet plane Acronyms References Visiting card

CMS

P Connor

[1]

UH 11 38/25 John C. Collins, Davison E. Soper, and George F. Sterman. "Factorization of Hard Processes in QCD". In: Adv. Ser. Direct. High Energy Phys. 5 (1989), pp. 1–91. DOI: 10.1142/9789814503266_0001 . arXiv: hep-ph/0409313 [hep-ph] .

[2] Vardan Khachatryan et al. "Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range". In: Eur. Phys. J. C 75 (2015), p. 186. DOI: 10.1140/epjc/s10052-015-3376-y . hep-ex: 1412.1633. URL: http://cdsweb.cern.ch/record/1974165.

[3] Vardan Khachatryan et al. "Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at √s = 7 TeV". In: Eur. Phys. J. C 75 (2015), p. 288. DOI: 10.1140/epjc/s10052-015-3499-1 .
 hep-ex: 1410.6765. URL: http://cdsweb.cern.ch/record/1957365.

[4] Vardan Khachatryan et al. "Measurement and QCD analysis of double-differential inclusive jet cross sections in pp collisions at √s = 8 TeV and cross section ratios to 2.76 and 7 TeV". In: JHEP 03 (2017), p. 156. DOI: 10.1007/JHEP03(2017)156 C. arXiv: 1609.05331 [hep-ex] C.

References II

 R_{32} and $R_{\Delta\phi}$ Dijet mass W/Zproduction t \bar{t} production Energy correlators Lund jet plane Acronyms References Visiting card

CMS

P Connor

[5]

[7]

Inclusive jet

UH # 39/25 Serguei Chatrchyan et al. "Measurement of the ratio of the inclusive 3-jet cross section to the inclusive 2-jet cross section in pp collisions at $\sqrt{s} = 7$ TeV and first determination of the strong coupling constant in the TeV range". In: Eur. Phys. J. C 73 (2013), p. 2604. DOI: 10.1140/epjc/s10052-013-2604-6^[]. hep-ex: 1304.7498. URL: http://cdsweb.cern.ch/record/1544428.

[6] CMS Collaboration. Measurement of azimuthal correlations among jets and determination of the strong coupling in pp collisions at $\sqrt{s} = 13$ TeV. CMS Physics Analysis Summary. CERN, 2023. URL: https://cds.cern.ch/record/2868568.

Albert M Sirunyan et al. "Measurement of $t\bar{t}$ normalised multi-differential cross sections in pp collisions at $\sqrt{s} = 13$ TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions". In: Eur. Phys. J. C 80 (2020), p. 658. DOI: 10.1140/epjc/s10052-020-7917-7 \overline{C} . arXiv: 1904.05237 [hep-ex] \overline{C} .

[8] Armen Tumasyan et al. "Measurement and QCD analysis of double-differential inclusive jet cross sections in proton-proton collisions at $\sqrt{s} = 13$ TeV". In: JHEP 02 (2022). [Addendum: JHEP 12, 035 (2022)], p. 142. DOI: 10.1007/JHEP02(2022)142 \checkmark . arXiv: 2111.10431 [hep-ex] \checkmark .

References III

Inclusive jet R_{32} and $R_{\Delta\phi}$ Dijet mass W/Zproduction t \bar{t} production Energy correlators Lund jet plane Acronyms References Visiting card

CMS

P Connor

UH # 40/25

- [9] Aram Hayrapetyan et al. "Measurement of multidifferential cross sections for dijet production in proton-proton collisions at $\sqrt{s} = 13$ TeV". In: (Dec. 2023). Submitted to Eur. Phys. J. C. arXiv: 2312.16669 [hep-ex]
- [10] Albert M Sirunyan et al. "Determination of the strong coupling constant $\alpha_S(m_Z)$ from measurements of inclusive W[±] and Z boson production cross sections in proton-proton collisions at $\sqrt{s} = 7$ and 8 TeV". In: JHEP 06 (2020), p. 018. DOI: 10.1007/JHEP06 (2020)018 . arXiv: 1912.04387 [hep-ex] .
- [11] V. Bertone, M. Botje, D. Britzger, et al. "xFitter 2.0.0: An Open Source QCD Fit Framework". In: PoS DIS2017 (2018), p. 203. DOI: 10.22323/1.297.0203 . arXiv: 1709.01151 [hep-ph] .
- [12] S. Alekhin et al. "HERAFitter, open source QCD fit project". In: Eur. Phys. J. C 75 (2015), p. 304. DOI: 10.1140/epjc/s10052-015-3480-z . arXiv: 1410.4412 [hep-ph] .
- [13] Daniel Britzger et al. "New features in version 2 of the fastNLO project". In: 20th International Workshop on Deep-Inelastic Scattering and Related Subjects. 2012, p. 217. DOI: 10.3204/DESY-PROC-2012-02/165 C. arXiv: 1208.3641 [hep-ph] C.
- [14] D. Britzger et al. "NNLO interpolation grids for jet production at the LHC". In: Eur. Phys. J. C 82.10 (2022), p. 930. DOI: 10.1140/epjc/s10052-022-10880-2 . arXiv: 2207.13735 [hep-ph] .

References IV

CMS

P. Connor

Inclusive jet R_{32} and $R_{\Delta\phi}$ Dijet mass W/Zproduction tf production tf production Energy correlators Lund jet plane Acronyms References Visiting card

> UH # 41/25

- [15] H1 and ZEUS Collaborations. "Combination of measurements of inclusive deep inelastic e[±]p scattering cross sections and QCD analysis of HERA data". In: Eur. Phys. J. C 75 (2015), p. 580. DOI: 10.1140/epjc/s10052-015-3710-4^C. arXiv: 1506.06042 [hep-ex] ^C.
- [16] Serguei Chatrchyan et al. "Measurements of Differential Jet Cross Sections in Proton-Proton Collisions at √s = 7 TeV with the CMS Detector". In: Phys. Rev. D 87 (2013). [Erratum: Phys.Rev.D 87, 119902 (2013)], p. 112002. DOI: 10.1103/PhysRevD.87.112002 . arXiv: 1212.6660 [hep-ex] .
- [17] Albert M Sirunyan et al. "Measurement of the triple-differential dijet cross section in proton-proton collisions at √s = 8 TeV and constraints on parton distribution functions".
 In: Eur. Phys. J. C 77 (2017), p. 746. DOI: 10.1140/epjc/s10052-017-5286-7 .
 arXiv: 1705.02628 [hep-ex] .
- [18] Albert M Sirunyan et al. "Measurement of the $t\bar{t}$ production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at $\sqrt{s} = 13$ TeV". In: Eur. Phys. J. C 79 (2019), p. 368. DOI: 10.1140/epjc/s10052-019-6863-8 C. arXiv: 1812.10505 [hep-ex] C.
- [19] CMS Collaboration. Measurement of energy correlators inside jets and determination of the strong coupling constant. CMS Physics Analysis Summary. CERN, 2023. URL: https://cds.cern.ch/record/2866560.

References V

Inclusive jet R_{32} and $R_{\Delta\phi}$ Dijet mass W/Zproduction t \bar{t} production Energy correlators Lund jet plane Acronyms References Visiting card

CMS

P Connor

[20] Patrick L. S. Connor and Radek Žlebčík. "STEP: A tool to perform tests of smoothness on differential distributions based on expansion of polynomials". In: SciPost Phys. Core 6 (2023), p. 040. DOI: 10.21468/SciPostPhysCore.6.2.040 . URL: https://scipost.org/10.21468/SciPostPhysCore.6.2.040.

[21] V. Andreev et al. "Measurement of multijet production in ep collisions at high Q^2 and determination of the strong coupling α_s ". In: **Eur. Phys. J. C** 75.2 (2015), p. 65. DOI: 10.1140/epjc/s10052-014-3223-6^[]. arXiv: 1406.4709 [hep-ex]^[].

UH Ĥ 42/25

CMS

P. Connor

Inclusive jet R_{32} and $R_{\Delta\phi}$ Dijet mass W/Zproduction t \bar{t} production Energy correlators Lund jet plane Acronyms References Visiting card

> UH # 43/25

Patrick L.S. CONNOR

patrick.connor@desy.de Universität Hamburg https://www.desy.de/~connorpa

MIN-Fakultät

Institut für Experimentalphysik

Tel.: +49 40 8998-82165 *Geb.*: DESY Campus 68/121, Luruper Chausse 149, D-22761 Hamburg

Center for Data and Computing in natural Sciences *Tel.*: +49 42838-6109 *Geb.*: Albert-Einstein-Ring 10, D-22761 Hamburg

