Borel-Laplace sum rules for tau decay data

Gorazd Cvetič (UTFSM, Valparaíso), in collaboration with César Ayala (Univ. Tarapacá, Iquique)

(talk presented by G.C.)

[Workshop α_s 2024]

alphas 2024, Trento, February, 2024

Introduction

- We use ALEPH data for the strangeless semihadronic tau decay in the sum rules, for the (V+A)-channel.
- For the (V+ee)-channel, ALEPH data complemented with OPAL and electroproduction data were used (Boito, Peris, et al. (2021)).
- The weight functions in the sum rules are Borel-Laplace, double-pinched.
- For the theoretical expression of the sum rules we use an improved version of the truncated OPE.
 - For D = 0 part we use Adler function $d(Q^2)_{D=0}$ truncated series up to α_s^5 , with the fixed-order (FO) approach in the sum rule.
 - 2 The D = 4 term has the known structure $\sim 1/(Q^2)^2$, while D = 6 terms $\sim 1/(Q^2)^3$ have the form $\sim \alpha_s(Q^2)^{k_6}/(Q^2)^3$ with the known nonzero anomalous dimension $k_6 \approx 0.222$. We truncate OPE at D = 10 (V+A) and D = 14 (V).

The averaged extracted value of α_s will be presented.

Sum rules

The Adler function $\mathcal{D}(Q^2)$ is logarithmic derivative of the quark current polarisation function $\Pi(Q^2)$

$$\mathcal{D}(Q^2) \equiv -2\pi^2 \frac{d\Pi(Q^2)}{d\ln Q^2},\tag{1}$$

where $Q^2 \equiv -q^2$ $(= -(q^0)^2 + \bar{q}^2)$. We will consider either the total (V+A)-channel

$$\Pi(Q^2)_{V+A} = \Pi_V^{(1)}(Q^2) + \Pi_A^{(1)}(Q^2) + \Pi_A^{(0)}(Q^2),$$
(2)

or only the V-channel.

According to the general principles of Quantum Field Theory, $\Pi(Q^2; \mu^2)$ and $\mathcal{D}(Q^2)$ are holomorphic (i.e., analytic) functions of Q^2 in the complex Q^2 -plane with the exception of the real negative axis $(-\infty, -m_{\pi}^2)$. If $g(Q^2)$ is an (arbitrary) holomorphic function of Q^2 , and we apply the Cauchy theorem to the integral $\oint dQ^2g(Q^2)\Pi(Q^2; \mu^2)$ along a closed path in the complex Q^2 -plane (cf. Figure), we obtain

Figure: The closed integration path $C_1 + C_2$ for $\oint dQ^2 g(Q^2) \Pi(Q^2)$. The radius of the circle C_2 is $|Q^2| = \sigma_m$ (= 2.8 GeV² or 3.057 GeV²). On the path C_1 we have $\varepsilon \to +0$.

$$\oint_{C_1+C_2} dQ^2 g(Q^2) \Pi(Q^2) = 0$$

$$\Rightarrow \int_0^{\sigma_{\rm m}} d\sigma g(-\sigma) \omega_{\rm exp}(\sigma) = -i\pi \oint_{|Q^2|=\sigma_{\rm m}} dQ^2 g(Q^2) \Pi_{\rm th}(Q^2),$$
(3b)

where $\omega(\sigma)$ is proportional to the discontinuity (spectral) function of the polarisation function

$$\omega(\sigma) \equiv 2\pi \operatorname{Im} \, \Pi(Q^2 = -\sigma - i\epsilon) \,. \tag{4}$$

Integration by parts replaces the theoretical polarisation function in the sum rule (3b) by the Adler function (1)

$$\int_{0}^{\sigma_{\rm m}} d\sigma g(-\sigma) \omega_{\rm exp}(\sigma) = \frac{1}{2\pi} \int_{-\pi}^{\pi} d\phi \, \mathcal{D}_{\rm th}(\sigma_{\rm m} e^{i\phi}) G(\sigma_{\rm m} e^{i\phi}), \qquad (5)$$

where $\mathcal{D}_{\rm th}(Q^2) = -2\pi^2 d\Pi_{\rm th}(Q^2)/d \ln Q^2$, it is given by the theoretical OPE expansion of the Adler function, and the (holomorphic) function G is an integral of g:

$$G(Q^2) = \int_{-\sigma_{\rm m}}^{Q^2} dQ'^2 g(Q'^2).$$
 (6)

Sum rules

The quantity $\omega(\sigma)$ was measured to a high precision by ALEPH Collaboration, in semihadronic strangeless τ -decays, cf. Figure.

Figure: The spectral function $\omega(\sigma)$ for the (V+A)-channel, as measured by ALEPH Collaboration. The extremely narrow pion peak contribution $2\pi^2 f_{\pi}^2 \delta(\sigma - m_{\pi}^2)$ ($f_{\pi} = 0.1305$ GeV) has to be added to this. The last two bins have large uncertainties, so we exclude them, and this means that $\sigma_{\rm m} = 2.80 \ {\rm GeV}^2$ in the sum rules.

Sum rules

Figure: The spectral function $\omega(\sigma)$ for the (V+ee)-channel, based on a combination of ALEPH, OPAL and electroproduction data (Boito, Maltman, Peris, et al. (2021)); $\sigma_{\max} \equiv \sigma_{m} = 3.0574 \text{ GeV}^2$.

In the (V+A)-channel of ALEPH, we have data bins with reasonable experimental uncertainties up to $\sigma \leq \sigma_m = 2.8 \text{ GeV}^2$ (77 bins); in the V-channel $\sigma_m = 3.057 \text{ GeV}^2_{cy}$

The theoretical OPE expression of the polarisation function has the following form:

$$egin{aligned} &\Pi_{ ext{th}}(Q^2;\mu^2) = -rac{1}{2\pi^2}\ln\left(rac{Q^2}{\mu^2}
ight) + \Pi(Q^2)_{D=0} + rac{\langle O_4
angle}{(Q^2)^2}\left(1 + \mathcal{O}(lpha_{s})
ight) \ &+ rac{\langle O_6
angle a(Q^2)^{k_6}}{(Q^2)^3}\left(1 + \mathcal{O}(lpha_{s})
ight) + \sum_{2p\geq 8}^{D_{ ext{max}}}rac{\langle O_{2p}
angle}{(Q^2)^p}\left(1 + \mathcal{O}(lpha_{s})
ight), \end{aligned}$$

where $k_6 \approx 0.222$ is a nonzero anomalous dimension for D = 6 term (Boito, Hornung, Jamin (2015)).

The corresponding Adler function (1) is then

$$\mathcal{D}_{\rm th}(Q^2) \equiv -2\pi^2 \frac{d\Pi_{\rm th}(Q^2)}{d\ln Q^2} = 1 + d(Q^2)_{D=0} + \delta d(Q^2)_{m_c} + 4\pi^2 \frac{\langle O_4 \rangle}{(Q^2)^2} + 6\pi^2 \frac{\langle O_6 \rangle a(Q^2)^{k_6}}{(Q^2)^3} + 2\pi^2 \sum_{2p \ge 8}^{D_{\rm max}} \frac{p \langle O_{2p} \rangle}{(Q^2)^p},$$
(7)

where $a(Q^2) \equiv \alpha_s(Q^2)/\pi$, and the relative $\mathcal{O}(a)$ -corrections were neglected.

In the (V+A)-channel, the above condensates are interpreted as $\langle O_{2p} \rangle \mapsto \langle O_{2p} \rangle_{V+A}$, and in the V-channel as $\langle O_{2p} \rangle \mapsto 2 \langle O_{2p} \rangle_{V}$.

D = 0 Adler function $d(Q^2)_{D=0}$

The massless $N_f = 3$ perturbation expansion of $d(Q^2)_{D=0}$ in powers of $a(\mu^2) \equiv \alpha_s(\mu^2)/\pi$ is truncated at a^5

$$d(Q^{2})_{D=0} = a(\kappa Q^{2}) + d_{1}(\kappa) \ a(\kappa Q^{2})^{2} + \ldots + d_{4}(\kappa) \ a(\kappa Q^{2})^{5}; \qquad (8)$$

Here $\kappa = \mu^2/Q^2$ (~ 1), the coefficients d_n (n = 1, 2, 3) are known exactly (Chetyrkin, Kataev, Baikov, and others (1979-2008)), and d_4 (with $\kappa = 1$) can be estimated

$$d_4 = 275. \pm 63., \tag{9}$$

where the central value is from ECH approach (Kataev, Starshenko (1995)). Other estimates: $d_4 = 277 \pm 51$ (Boito et al. (2018)); $d_4 = 283$ (Beneke, Jamin (2008)); $d_4 = 338.19$ from a renormalon model (G.C. (2019)).

$$\delta d(Q^2)_{m_c} = C_1 (Q^2)_{m_c} a(Q^2)^2$$
(10)

are charm quark nondecoupling effects $(m_c \neq \infty)$ that are known (Hoang et al. (1994); R.-Sánchez, Pich et al. (2023)) for the V-channel.

Weight functions $g(Q^2)$ used in the sum rules (5) are those corresponding to the double-pinched Borel-Laplace transforms $B(M^2)$ where M^2 is a complex squared energy parameter $(|M^2| \sim 1 \text{ GeV}^2)$

$$g_{M^2}(Q^2) = \left(1 + \frac{Q^2}{\sigma_{\rm m}}\right)^2 \frac{1}{M^2} \exp\left(\frac{Q^2}{M^2}\right) \Rightarrow$$
(11)

$$G_{M^{2}}(Q^{2}) = \left\{ \left[\left(1 + \frac{Q^{2}}{\sigma_{m}} \right)^{2} - 2 \frac{M^{2}}{\sigma_{m}} \left(1 + \frac{Q^{2}}{\sigma_{m}} \right) + 2 \left(\frac{M^{2}}{\sigma_{m}} \right)^{2} \right] \exp\left(\frac{Q^{2}}{M^{2}} \right) - 2 \left(\frac{M^{2}}{\sigma_{m}} \right)^{2} \exp\left(- \frac{\sigma_{m}}{M^{2}} \right) \right\}.$$
(12)

Specific Borel-Laplace sum rule

$$B_{\rm th}(\boldsymbol{M}^{2};\sigma_{\rm m}) = \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\phi \ \boldsymbol{G}_{\boldsymbol{M}^{2}}\left(\sigma_{\rm m}\boldsymbol{e}^{i\phi}\right) \mathcal{D}_{\rm th}\left(\sigma_{\rm m}\boldsymbol{e}^{i\phi}\right)$$

$$= \left[\left(1 - 2\frac{\boldsymbol{M}^{2}}{\sigma_{\rm m}}\right) + 2\left(\frac{\boldsymbol{M}^{2}}{\sigma_{\rm m}}\right)^{2} \left(1 - \exp\left(-\frac{\sigma_{\rm m}}{\boldsymbol{M}^{2}}\right)\right) \right]$$

$$+ \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\phi \boldsymbol{G}_{\boldsymbol{M}^{2}}(\sigma_{\rm m}\boldsymbol{e}^{i\phi}) d\left(\sigma_{\rm m}\boldsymbol{e}^{i\phi}\right)_{D=0}$$

$$+ \frac{1}{2\pi} \int_{-\pi}^{+\pi} d\phi \boldsymbol{G}_{\boldsymbol{M}^{2}}(\sigma_{\rm m}\boldsymbol{e}^{i\phi}) \delta d\left(\sigma_{\rm m}\boldsymbol{e}^{i\phi}\right)_{m_{c}}$$

$$+ \sum_{D=4,8,\ldots} B_{\rm th}(\boldsymbol{M}^{2};\sigma_{\rm m})_{D} + B_{\rm th}(\boldsymbol{M}^{2};\sigma_{\rm m})_{D=6}, \qquad (13)$$

8 February 2024 13 / 24

< 4³ ►

э

Specific Borel-Laplace sum rule

where we have for D>0 and $D\neq 6$ ($D(=2p)=4,8,10,\ldots)$

$$B_{\rm th}(M^{2};\sigma_{\rm m})_{D=2\rho} = \frac{2\pi^{2}\langle O_{2\rho}\rangle}{(\rho-1)!(M^{2})^{\rho}} \Big[1 + 2(\rho-1)\frac{M^{2}}{\sigma_{\rm m}} \\ + (\rho-1)(\rho-2)\left(\frac{M^{2}}{\sigma_{\rm m}}\right)^{2} \Big], \qquad (14)$$
$$B_{\rm th}(M^{2};\sigma_{\rm m})_{D=6} = \frac{1}{2\pi} \frac{6\pi^{2}}{\sigma_{\rm m}^{3}} \sum_{j=1}^{2} \langle O_{6}^{(j)} \rangle \\ \times \int_{-\pi}^{+\pi} d\phi \ e^{-i3\phi} G_{M^{2}}(\sigma_{\rm m}e^{i\phi}) \left(\frac{a(\sigma_{\rm m})}{1 + i\beta_{0}\phi a(\sigma_{\rm m})}\right)^{k_{6}}.$$

The coupling $a(Q^2)^{k_6}$ here, and the coupling $a(Q^2)^2$ in the contributions of $\delta d(Q^2)_{\rm m_c}$ is evolved by 1-loop running along the contour, while the powers $a(Q^2)^n$ in the contributions of $d(Q^2)_{D=0}$ run by the 5-loop $\overline{\rm MS}$ running.

Fixed Order Perturbation Theory using powers (FO): The truncated power expansion $d(\sigma_{\rm m} e^{i\phi})_{D=0,{\rm pt}}$ [cf. Eq. (8)]

$$d(\sigma_{\mathrm{m}}e^{i\phi})_{D=0,\mathrm{pt}} = a(\sigma_{\mathrm{m}}e^{i\phi}) + \sum_{n=1}^{N_{t}-1} d_{n}(\kappa)a(\sigma_{\mathrm{m}}e^{i\phi})^{n+1}, \qquad (15)$$

which appears in the contour integrals in the sum rules, is written as truncated Taylor expansion in powers of $a(\sigma_m)$ up to (and including) $a(\sigma_m)^{N_t}$ where $N_t = 5$.

Fitting

The Borel-Laplace sum rules are applied in practice to the Real parts

$$\operatorname{Re}B_{\exp}(M^{2};\sigma_{\mathrm{m}}) = \operatorname{Re}B_{\mathrm{th}}(M^{2};\sigma_{\mathrm{m}}), \qquad (16)$$

where for the Borel-Laplace scale parameters M^2 we take $M^2 = |M^2| \exp(i\Psi)$, where $0 \le \Psi < \pi/2$. Specifically, we take $0.9 \text{ GeV}^2 \le |M^2| \le 1.5 \text{ GeV}^2$, and $\Psi = 0, \pi/6, \pi/4$. We minimised the difference between the two quantities (16) by minimising, with respect to parameters ($a \equiv \alpha_s/\pi, \langle O_4 \rangle, ..., \langle O_{D_{\text{max}}} \rangle$), the sum of squares

$$\chi^{2} = \sum_{\alpha=1}^{n} \left(\frac{\operatorname{Re}B_{\operatorname{th}}(M_{\alpha}^{2}; \sigma_{\mathrm{m}}) - \operatorname{Re}B_{\exp}(M_{\alpha}^{2}; \sigma_{\mathrm{m}})}{\delta_{B}(M_{\alpha}^{2})} \right)^{2}, \quad (17)$$

where M_{α}^2 is a set of n = 9 points along the chosen rays with $\Psi = 0, \pi/6, \pi/4$ and $0.9 \text{ GeV}^2 \le |\mathbf{M}|^2 \le 1.5 \text{ GeV}^2$. Further, $\delta_B(M_{\alpha}^2)$ are the experimental standard deviations of $\text{Re}B_{\exp}(M_{\alpha}^2; \sigma_{\mathrm{m}})$. We usually get very small $\chi^2 \lesssim 10^{-5}$.

Fitting

Figure: D = 0 part of the Borel-Laplace $B(M^2)$ for real M^2 : the contribution of unity of the Adler function $(B(M^2)_1)$; of the massless truncated perturbation series $(B(M^2)_d)$; and of $\delta d(Q^2)_{m_c}$ $((B(M^2)_{\delta d})$ for $m_c = 1.67$ GeV and 0.5 GeV.

Fitting

Figure: The values of $\operatorname{Re}B(M^2; \sigma_m)$ along the ray $M^2 = |M^2| \exp(i\Psi)$ with $\Psi = \pi/6$. The narrow grey band are the experimental predictions. The red dashed line is the result of the FO global fit with truncation index $N_t = 5$.

Results of fitting and Conclusions

The extracted values for $\alpha_{s},$ for (V+A) and (V+ee)-channel fits, are

$$\begin{aligned} \alpha_{s}(m_{\tau}^{2})^{(V+A)} &= 0.3155 \pm 0.0018(\exp)^{+0.0079}_{-0.0018}(\kappa) \\ &\mp 0.0007(d_{4}) \pm 0.0021(O_{14}) \pm 0.0036(N_{\rm bin}) \\ &= 0.3155^{+0.0091}_{-0.0049} \\ \alpha_{s}(m_{\tau}^{2})^{(V+ee)} &= 0.3076 \pm 0.0049(\exp)^{+0.0052}_{-0.0013}(\kappa) \\ &\mp 0.0007(d_{4}) \pm 0.0008(O_{16}) \\ &= 0.3076^{+0.0072}_{-0.0050}. \end{aligned}$$
(18)

Experimental uncertainties were obtained by the method of Boito, Maltman, Peris et al. (2011). Renormalisation scale parameter κ varies as $\kappa = 1^{+1}_{-0.5}$.

We see that the theoretical uncertainties due to the truncation and/or renormalisation scale variation (κ) are dominant in the ALEPH (V+A)-channel; while in the combined (V+ee)-channel, the experimental (exp) and the theoretical (κ) uncertainties are competing.

At the scale M_Z^2 this gives

$$\alpha_{s}(M_{Z}^{2})^{(V+A)} = 0.1181^{+0.0012}_{-0.0006} \alpha_{s}(M_{Z}^{2})^{(V+ee)} = 0.1171^{+0.0009}_{-0.0006}.$$
 (19)

If we did not include the m_c -nondecoupling contribution $\delta d(Q^2)_{\rm m_c}$ in the Adler function, then the results for $\alpha_s(m_\tau^2)$ would increase by about +0.0010, and for $\alpha_s(M_Z^2)$ by +0.0001.

The above result for (V+ee)-data is very close to a different sum rule analysis of (Boito, Golterman, Maltman, Peris, et al.(2021)), with polynomial weight functions $g(Q^2)$ and a DV-violation model, and using the same set of data (V+ee): $\alpha_s(M_Z^2)^{(V+ee)} = 0.1171 \pm 0.0010$.

Table: Comparison of values of $\alpha_s(m_{\tau}^2)$, extracted by various groups applying sum rules and various methods to the ALEPH τ -decay data:

group	sum rule	FO	CI	PV
Baikov et al.,2008	$a^{(2,1)}=r_{ au}$	0.322 ± 0.020	0.342 ± 0.011	—
Beneke&Jamin, 2008	$a^{(2,1)}=r_{ au}$	$0.320^{+0.012}_{-0.007}$	—	0.316 ± 0.006
Caprini, 2020	$a^{(2,1)}=r_{ au}$	_	—	0.314 ± 0.006
Davier et al., 2013	$a^{(i,j)}$	0.324	0.341 ± 0.008	—
Pich&R.Sánchez, 2016	$a^{(i,j)}$	0.320 ± 0.012	$\textbf{0.335} \pm \textbf{0.013}$	—
Boito et al., 2014	DV in $a^{(i,j)}$	0.296 ± 0.010	$\textbf{0.310} \pm \textbf{0.014}$	_
our work (ren.mod.)*, 2023	BL	0.319 ± 0.012	—	$0.321^{+0.005}_{-0.010}$
present work	BL	$0.316\substack{+0.009\\-0.005}$	—	_

Thank you for your attention.

Table: The results for $\alpha_s(m_{\tau}^2)$ and the condensates of the (V+A)-channel $\langle O_D \rangle_{V+A}$ in units of 10^{-3} GeV^D , and ξ^2 . Added are also central values obtained when $\delta d_{m_c} = 0$.

	$\alpha_s(m_{\tau}^2)$	$\langle O_4 \rangle$	$\langle O_6 \rangle$	$\langle O_8 angle$	$\langle \mathit{O}_{10} angle$	χ^2
δd_{m_c} incl.	$0.3155^{+0.0091}_{-0.0049}$	$-0.8\substack{+0.9\\-2.0}$	$+2.6^{+3.3}_{-2.2}$	$-1.2^{+1.8}_{-1.9}$	$+0.5^{+2.3}_{-2.2}$	$6.7 imes10^{-6}$
no δd_{m_c}	0.3164	-0.8	+2.7	-1.2	+0.5	$7.5 imes10^{-6}$

Table: The results for $\alpha_s(m_{\tau}^2)$ and the condensates of the (V+ee)-channel $2\langle O_D \rangle_V$ in units of 10^{-3} GeV^D , and ξ^2 . Added are also central values obtained when $\delta d_{m_r} = 0$.

	$\alpha_s(m_\tau^2)$	2 (<i>O</i> ₄)	2 (<i>O</i> ₆)	2 (<i>O</i> ₈)	$2\langle O_{10} \rangle$	$2 \langle O_{12} \rangle$	$2 \langle O_{14} \rangle$	χ^2
δd_{m_c} incl.	0.3076 ^{+0.0072} -0.0050 0.3086	$+2.8^{+1.1}_{-2.1}$ -0.8	$-24.0^{+4.5}_{-2.8}$ +2.7	$+23.0^{+2.5}_{-3.6}$ -1.2	$-23.8^{+3.2}_{-4.2}$ +0.5	$+18.3^{+4.2}_{-4.1}$ 7.5 × 10 ⁻⁶	$-8.0\substack{+10.1\\-10.0}$	$2.6 imes 10^{-11}$
no ou _{mc}	0.5000	0.0	12.1	1.2	10.5	1.5 × 10		

Table: (V+A)-channel: The extracted values of $\alpha_s(m_{\tau}^2)$, for different values of truncation of the OPE: D_{max} means that the term with maximal dimension $D = D_{\text{max}}$ is included in the OPE.

Table: (V+ee)-channel: The extracted values of $\alpha_s(m_{\tau}^2)$, for different values of truncation of the OPE.

Table: The values of $\alpha_s(m_{\tau}^2)$, extracted by various groups applying sum rules and various methods to the ALEPH τ -decay data.

group	sum rule	FO	CI	PV	average
Baikov et al.,2008	$a^{(2,1)} = r_{\tau}$	0.322 ± 0.020	0.342 ± 0.011	_	0.332 ± 0.016
Beneke&Jamin, 2008	$a^{(2,1)} = r_{\tau}$	$0.320^{+0.012}_{-0.007}$	_	0.316 ± 0.006	0.318 ± 0.006
Caprini, 2020	$a^{(2,1)} = r_{\tau}$	_	_	0.314 ± 0.006	0.314 ± 0.006
Davier et al., 2013	a ^(i,j)	0.324	0.341 ± 0.008	_	0.332 ± 0.012
Pich&R.Sánchez, 2016	a ^(i,j)	0.320 ± 0.012	$\textbf{0.335} \pm \textbf{0.013}$	_	0.328 ± 0.013
Boito et al., 2014	DV in $a^{(i,j)}$	0.296 ± 0.010	0.310 ± 0.014	_	0.303 ± 0.012
our work (ren.mod.)*, 2023	BL	$0.319 \pm 0.012 \; (V{+}A)$		$0.321^{+0.005}_{-0.010}$	0.320 ^{+0.005} _{-0.010} (V+A)
our work (ren.mod.)*, 2023	BL	$0.312^{+0.008}_{-0.010}$ (V+ee)		$0.312^{+0.006}_{-0.009}$	$0.312^{+0.006}_{-0.009}$ (V+ee)
present work	BL	0.316 ^{+0.009} _{-0.005} (V+A)			0.316 ^{+0.009} _{-0.005} (V+A)
present work	BL	0.308 ^{+0.007} _{-0.005} (V+ee)			0.308 ^{+0.007} _{-0.005} (V+ee)