Determination of $\alpha_{\rm S}$ from the Z-boson transverse-momentum distribution at the Tevatron

Giancarlo Ferrera Milan University & INFN, Milan

Based on:

Stefano Camarda, G. F., Matthias Schott

Eur.Phys.J.C 84 (2024), e-Print: 2203.05394

Workshop α_{s} -2024 ECT* - Trento - 7/2/2024

Stefano Catani (1958-2024)

Wonderful person, outstanding physicist

Giancarlo Ferrera – Milan University & INFN Determination of α_S from the Z-boson q_T distribution

The idea: α_{S} from semi-inclusive processes

QCD COHERENT BRANCHING AND SEMI-INCLUSIVE PROCESSES AT LARGE x*

S. CATANI** and B.R. WEBBER

Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0H3, UK

G. MARCHESINI

Dipartimento di Fisica, Università di Parma, INFN, Gruppo Collegato di Parma, Italy

Received 22 June 1990

 $\alpha_{\rm s}^{\rm (MC)} = \alpha_{\rm s}^{\rm (\overline{MS})} \left(1 + K \frac{\alpha_{\rm s}^{\rm (\overline{MS})}}{2\pi} \right),$

 $\Lambda_{\rm MC} = \Lambda_{\rm \overline{MS}} \exp(K/4\pi\beta_0)$ $\approx 1.569 \Lambda_{\rm \overline{MS}} \quad \text{for } N_{\rm f} = 5.$

In this paper we have studied [...] the next-to-leading logarithmic terms in semi-inclusive hard processes such as the DIS and DY processes at large x. Since the Monte Carlo algorithm with these improvements is accurate to next-to-leading order in the large-x region, it can be used to determine the fundamental QCD scale Λ_{MS}

The idea: $\alpha_{\rm S}$ from semi-inclusive processes

Advantages:

- higher sensitivity to α_s w.r.t. *inclusive* observables;
- calculable at **higher theoretical accuracy** w.r.t. *exclusive* observables.

Challenges:

- sensitivity to infrared (Sudakov) logs;
- sensitivity non perturbative QCD effects.

Classical semi-inclusive obs. at hadron colliders: high invariant-mass Drell–Yan lepton pair at small transverse-momentum (q_T).

α_{S} from Z-boson q_T distribution

Drell–Yan q_T distribution

$$\begin{split} \mathbf{h}_1(\mathbf{p}_1) + \mathbf{h}_2(\mathbf{p}_2) &\to \mathbf{V} + \mathbf{X} \to \ell_1 + \ell_2 + \mathbf{X} \\ \text{where} \quad V = Z^0 / \gamma^*, W^{\pm} \end{split}$$

QCD factorization formula:

$$\frac{d\sigma}{dq_T^2} = \sum_{a,b} \int_0^1 dx_1 \int_0^1 dx_2 f_{a/h_1}(x_1,\mu_F^2) f_{b/h_2}(x_2,\mu_F^2) \frac{d\hat{\sigma}_{ab}}{dq_T^2} (\alpha_S(\mu_R^2),\mu_R^2,\mu_F^2).$$

Fixed-order perturbative expansion reliable

only for $q_T \sim M$. When $q_T \ll M$:

$$\int_{0}^{q_T^2} d\bar{q}_T^2 \frac{d\hat{\sigma}_{q\bar{q}}}{d\bar{q}_T^2} \sim 1 + \alpha_S \bigg[c_{12} L_{q_T}^2 + c_{11} L_{q_T} + \cdots \bigg]$$
$$+ \alpha_S^2 \bigg[c_{24} L_{q_T}^4 + \cdots + c_{21} L_{q_T} + \cdots \bigg] + \mathcal{O}(\alpha_S^3)$$

with $\alpha_S^n L_{q_T}^m \equiv \alpha_S^n \log^m (M^2/q_T^2) \gtrsim 1.$

Resummation of logarithmic corrections mandatory.

7/2/2024

5/21

q_T resummation in QCD [Catani,deFlorian,Grazzini('01)] [Bozzi,Catani,deFlorian,Grazzini('03,'06)]

$$rac{d\hat{\sigma}}{dq_T^2} = rac{d\hat{\sigma}^{(res)}}{dq_T^2} + rac{d\hat{\sigma}^{(fin)}}{dq_T^2};$$

In the impact parameter space: $q_T \ll M \Leftrightarrow Mb \gg 1$, $\log M/q_T \gg 1 \Leftrightarrow \log Mb \gg 1$

$$\frac{d\hat{\sigma}^{(res)}}{dq_T^2} = \frac{M^2}{\hat{s}} \int \frac{d^2 \mathbf{b}}{4\pi} e^{i\mathbf{b}\cdot\mathbf{q}_{\mathsf{T}}} \, \mathcal{W}(\mathbf{b}, \mathbf{M}),$$

In the Mellin space (with respect to $z = M^2/\hat{s}$) we have:

$$\mathcal{W}_{N}(b,M) = \mathcal{H}_{N}(\alpha_{S}) \times \exp \left\{ \mathcal{G}_{N}(\alpha_{S},L) \right\}$$

with $L \equiv \log(M^2 b^2)$ and $\alpha_S L \sim 1$

$$\mathcal{G}(\alpha_{\mathcal{S}}, \mathcal{L}) = \mathcal{L}g^{(1)}(\alpha_{\mathcal{S}}\mathcal{L}) + g^{(2)}(\alpha_{\mathcal{S}}\mathcal{L}) + \frac{\alpha_{\mathcal{S}}}{\pi}g^{(3)}(\alpha_{\mathcal{S}}\mathcal{L}) + \cdots \qquad \mathcal{H}(\alpha_{\mathcal{S}}) = \hat{\sigma}^{(0)}\left(1 + \frac{\alpha_{\mathcal{S}}}{\pi}\mathcal{H}^{(1)} + \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^{2}\mathcal{H}^{(2)} + \cdots\right)$$

 $\mathsf{LL} \ (\sim \alpha_S^n L^{n+1}): \ \mathbf{g}^{(1)}, \ (\hat{\sigma}^{(0)}); \ \mathsf{NLL} \ (\sim \alpha_S^n L^n): \ \mathbf{g}^{(2)}, \ \mathcal{H}^{(1)}; \ \cdots \ \mathsf{N}^k \mathsf{LL} \ (\sim \alpha_S^n L^{n+k-1}): \ \mathbf{g}^{(k+1)}, \ \mathcal{H}^{(k)};$

Resummed result at small q_T matched with corresponding fixed "finite" part at large q_T : uniform accuracy for $q_T \ll M$ and $q_T \sim M$.

- Resummed effects exponentiated in a universal of Sudakov form factor, process-dependence factorized in the hard-virtual factor $H_c^F(\alpha_S)$ via all-order formula [Catani,Cieri,deFlorian,G.F.,Grazzini('14)].
- Resummation performed at partonic cross section level: (collinear) PDF evaluated at $\mu_F \sim M$, $f_N(b_0^2/b^2) = \exp\left\{-\int_{b_0^2/b^2}^{\mu_F^2} \frac{dq^2}{q^2} \gamma_N(\alpha_S(q^2))\right\} f_N(\mu_F^2)$: no PDF extrapolation in the non perturbative region, study of μ_R and μ_F dependence as in fixed-order calculations.
- No need for NP models: Landau singularity of α_S regularized using a Minimal Prescription without power-suppressed corrections [Laenen et al.('00)], [Catani et al.('96)].
- Introduction of resummation scale $Q \sim M$: variations give an estimate of the uncertainty from uncalculated logarithmic corrections.

$$\ln(M^2b^2) \rightarrow \ln(Q^2b^2) + \ln(M^2/Q^2)$$

 Perturbative unitarity constraint: recover *exactly* the total cross-section (upon integration on q_T)

$$\ln(Q^2b^2) \rightarrow \widetilde{L} \equiv \ln(Q^2b^2 + 1) \quad \Rightarrow \quad \exp\left\{\alpha_S^n \widetilde{L}^k\right\}\Big|_{b=0} = 1 \quad \Rightarrow \quad \int_0^\infty dq_T^2 \left(\frac{d\widehat{\sigma}}{dq_T^2}\right) = \widehat{\sigma}^{(tot)};$$

• General procedure to treat the q_T recoil [Catani, de Florian, G.F., Grazzini('15)]:

$$\frac{d\hat{\sigma}^{(0)}}{d\Omega} = \hat{\sigma}^{(0)}(M^2) F(\mathbf{q}_{\mathsf{T}}; M^2, \Omega) \text{ with } F(\mathbf{q}_{\mathsf{T}}; M^2, \Omega) = F(\mathbf{0}; M^2, \Omega) + \mathcal{O}(\mathbf{q}_{\mathsf{T}}^2/M^2)$$

q_T resummation: perturbative accuracy

• Formalism implemented in numerically efficient and publicly available code:

DYTurbo: computes resummed and fixed-order fiducial cross section and related distributions it retains full kinematics of the vector boson and of its leptonic decay products [Camarda,Boonekamp,Bozzi,Catani,Cieri,Cuth,G.F.,deFlorian,Glazov, Grazzini,Vincter,Schott('20)]

https://dyturbo.hepforge.org.

• We have explicitly included in DYTurbo up to:

- N⁴LL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-3})$);
- Approximated N⁴LO corrections (i.e. up to $\mathcal{O}(\alpha_S^4)$) at small q_T ;
- NLO corrections (i.e. up to $\mathcal{O}(\alpha_S^2)$) at large q_T ;
- Matching with NNLO corrections (i.e. up to O(α_S³)) at large q_T from results in [Boughezal et al.('16)], [Gehrmann-DeRidder et al.('16)], [MCFM ('23)];
- Results up to N³LO (i.e. up to $\mathcal{O}(\alpha_{S}^{3})$) recovered for the total cross section (from unitarity).

q_T resummation: perturbative accuracy

• Formalism implemented in numerically efficient and publicly available code:

DYTurbo: computes resummed and fixed-order fiducial cross section and related distributions it retains full kinematics of the vector boson and of its leptonic decay products [Camarda,Boonekamp,Bozzi,Catani,Cieri,Cuth,G.F.,deFlorian,Glazov, Grazzini,Vincter,Schott('20)]

https://dyturbo.hepforge.org.

• We have explicitly included in DYTurbo up to:

- N⁴LL logarithmic contributions to all orders (i.e. up to $exp(\sim \alpha_s^n L^{n-3}))$;
- Approximated N⁴LO corrections (i.e. up to $\mathcal{O}(\alpha_{S}^{4})$) at small q_{T} ;
- NLO corrections (i.e. up to $\mathcal{O}(\alpha_s^2)$) at large q_T ;
- Matching with NNLO corrections (i.e. up to O(α_S³)) at large q_T from results in [Boughezal et al.('16)], [Gehrmann-DeRidder et al.('16)], [MCFM ('23)];
- Results up to N³LO (i.e. up to $\mathcal{O}(\alpha_{S}^{3})$) recovered for the total cross section (from unitarity).

${\rm Z}/\gamma^*$ production at ${\rm N^3LL} + {\rm N^3LO}$ (resummed and matched)

[Camarda,Cieri,G.F.('21)]

DYTurbo results. Resummed (left) and matched (right) NLL, NNLL and N³LL bands for $Z/\gamma^* q_T$ spectrum.

Lower panel: ratio with respect to the N^3LL central value.

\mathbf{Z}/γ^* production: finite part

[Camarda,Cieri,G.F.('21)]

Finite part at $\mathcal{O}(\alpha_5)$, $\mathcal{O}(\alpha_5^2)$ and $\mathcal{O}(\alpha_5^3)$ (left) and ratio wrt matched results (right).

Giancarlo Ferrera – Milan University & INFN Determination of α_{5} from the Z-boson q_{T} distribution

\mathbf{Z}/γ^* production at $\mathbf{N}^4\mathbf{L}\mathbf{L}+\mathbf{N}^4\mathbf{L}\mathbf{O}\mathbf{a}$ resummed

[Camarda,Cieri,G.F.('23)]

DYTurbo results. Left: Resummed NLL, NNLL, N³LL and N⁴LLa bands for Z/γ^* (left). Right: Uncertainties from approximations of the perturbative coefficients at N4LL+N4LOa compared to scale variations.

\mathbf{Z}/γ^* production theory vs data

DYTurbo results at N⁴LLa accuracy compared with data [ATLAS Coll.('23)]. Time performance of $\mathcal{O}(seconds)$: (with exception of V+jet term with fiducial lepton cuts).

Modelling Z (and W) production for $\sin^2 \theta'_{eff}$ and M_W determinations

Comparison of the measurements of the $\sin^2\theta_{eff}^{l}.$

Measured values of M_W compared with the prediction of from the global electroweak fit

Combining QED and QCD q_T resummation

[Cieri,G.F.,Sborlini('18)]

We start considering QED contributions to the q_T spectrum in the case of colourless and **neutral** high mass systems, e.g. on-shell Z boson production

$$h_1 + h_2 \rightarrow Z^0 + X$$

In the impact parameter and Mellin spaces resummed partonic cross section reads:

 $\mathcal{W}_{N}(b,M) = \hat{\sigma}^{(0)} \mathcal{H}'_{N}(\alpha_{S},\alpha) \times \exp\left\{\mathcal{G}'_{N}(\alpha_{S},\alpha,L)\right\}$

$$\mathcal{G}'(\alpha_{\mathcal{S}}, \alpha, L) = \mathcal{G}(\alpha_{\mathcal{S}}, L) + L g'^{(1)}(\alpha L) + g'^{(2)}(\alpha L) + \sum_{n=3}^{\infty} \left(\frac{\alpha}{\pi}\right)^{n-2} g'^{(n)}(\alpha L)$$

+
$$g'^{(1,1)}(\alpha_{\mathsf{S}}\mathsf{L},\alpha\mathsf{L})$$
 + $\sum_{\substack{n,m=1\\n+m\neq 2}}^{\infty} \left(\frac{\alpha_{\mathsf{S}}}{\pi}\right)^{n-1} \left(\frac{\alpha}{\pi}\right)^{m-1} g_{\mathsf{N}}'^{(n,m)}(\alpha_{\mathsf{S}}\mathsf{L},\alpha\mathsf{L})$

$$\mathcal{H}'(\alpha_{\mathcal{S}}, \alpha) \quad = \quad \mathcal{H}(\alpha_{\mathcal{S}}) + \ \frac{\alpha}{\pi} \mathcal{H}'^{(1)} + \sum_{n=2}^{\infty} \left(\frac{\alpha}{\pi}\right)^n \ \mathcal{H}_N^{\prime(n)} \ + \ \sum_{n,m=1}^{\infty} \left(\frac{\alpha_{\mathcal{S}}}{\pi}\right)^n \left(\frac{\alpha}{\pi}\right)^m \ \mathcal{H}_N^{\prime F(n,m)}$$

LL QED
$$(\sim \alpha^n L^{n+1})$$
: $g'^{(1)}$; NLL QED $(\sim \alpha^n L^n)$: $g'^{(2)}$, $\mathcal{H}'^{(1)}$; LL mixed QCD-QED $(\sim \alpha_5^n \alpha^n L^{2n})$: $g'^{(1,1)}$;

Combined QED and QCD q_T resummation for Z production at

[Cieri,G.F.,Sborlini('18)]

the Tevatron

Z qT spectrum at the LHC. NNLL+NNLO QCD combined with the LL (red dashed) and NLL+NLO (blue solid) QED with corresponding QED uncertainty bands. Ratio of the resummation (upper panel) and renormalization (lower panel) QED scale-dependent results with respect to the central value NNLL+NNLO QCD result.

Non perturbative effects

- Up to now discussed result in a complete perturbative framework (except for PDFs).
- Non perturbative intrinsic k_T effects parametrized by a NP form factor S_{NP} = exp{-gb²} with 0<g<1.2 GeV²:

 $\exp\{\mathcal{G}_{N}(\alpha_{\mathcal{S}},\widetilde{L})\} \quad \rightarrow \quad \exp\{\mathcal{G}_{N}(\alpha_{\mathcal{S}},\widetilde{L})\} \; \underline{S}_{NP}$

- NP effects increase the hardness of the q_T spectrum at small values of q_T. Non trivial interplay of perturbative and NP effects.
- However possible to disentangle the effects: scale of the NP effects is $\langle q_T \rangle \sim 1 \ GeV$ $(g \sim 0.5 \ GeV^2)$, scale of "soft gluon" recoil is $\langle q_T \rangle \sim 10 \ GeV$.

Non perturbative effects

- Up to now discussed result in a complete perturbative framework (except for PDFs).
- Non perturbative intrinsic k_T effects parametrized by a NP form factor S_{NP} = exp{-gb²} with 0<g<1.2 GeV²:

 $\exp\{\mathcal{G}_{N}(\alpha_{\mathcal{S}},\widetilde{L})\} \quad \rightarrow \quad \exp\{\mathcal{G}_{N}(\alpha_{\mathcal{S}},\widetilde{L})\} \, \underline{S}_{NP}$

- NP effects increase the hardness of the q_T spectrum at small values of q_T. Non trivial interplay of perturbative and NP effects.
- However possible to disentangle the effects: scale of the NP effects is $\langle q_T \rangle \sim 1 \ GeV$ $(g \sim 0.5 \ GeV^2)$, scale of "soft gluon" recoil is $\langle q_T \rangle \sim 10 \ GeV$.

Z-boson q_T measurement at CDF

The CDF measurement of $Z/\gamma^* \rightarrow e^+e^-$ ($\sqrt{s} = 1.96 \, TeV$ with $\int \mathcal{L} = 2.1 f b^{-1}$) [CDF Coll.('10)] is ideal for $\alpha_S(m_Z)$ determination.

[CDF Coll.('10)]

- Measurement in full-lepton phase space with small extrapolation using angular coefficients method ⇒ allows fast analytic predictions with DYTurbo.
- $p\bar{p}$ collisions: small contribution from heavy-flavour in initial state (0.4% $b\bar{b} \rightarrow Z$, 1.3% $c\bar{c} \rightarrow Z$). Quark mass effects negligible.
- Low pile-up and good electron resolution.
 Fine q_T bins (0.5GeV) with relatively small bin-to-bin correlations.

Methodology

- DYTurbo interfaced to xFitter. Fit region: $Z q_T < 30 \text{ GeV}$, predictions at $N^3LL+\mathcal{O}(\alpha_5^3)$ (i.e. N^3LL+N^3LO at low q_T) with NNPDF4.0 PDF at NNLO.
- Defined χ^2 with experimental (β_{exp}) and PDFs (β_{th}) uncertainties (equivalent to including the new dataset in the PDF using profiling/reweighting).
- The non-perturbative form factor is $S_{NP} = \exp\{-gb^2\}$ with g left free in the fit.

$$\begin{split} \chi^2(\beta_{\mathrm{exp}},\beta_{\mathrm{th}}) &= \sum_{i=1}^{N_{\mathrm{data}}} \frac{\left(\sigma_i^{\mathrm{exp}} + \sum_j \Gamma_{ij}^{\mathrm{exp}} \beta_{j,\mathrm{exp}} - \sigma_i^{\mathrm{th}} - \sum_k \Gamma_{ik}^{\mathrm{th}} \beta_{k,\mathrm{th}}\right)^2}{\Delta_i^2} \\ &+ \sum_j \beta_{j,\mathrm{exp}}^2 + \sum_k \beta_{k,\mathrm{th}}^2 \,. \end{split}$$

	PDF fit	Hessian profiling
$\alpha_S(m_Z)$ g [GeV ²]	$\begin{array}{c} 0.1188 \pm 0.0008 \\ 0.69 \pm 0.05 \end{array}$	$\begin{array}{c} 0.1184 \pm 0.0006 \\ 0.71 \pm 0.05 \end{array}$
Dataset	χ^2 /points	χ^2 /points
NC DIS H1-ZEUS e ⁺ p	955/905	
CC DIS H1-ZEUS e^+p	46/39	
NC DIS H1-ZEUS e^-p	219/159	
CC DIS H1-ZEUS e ⁻ p	53/42	
H1-ZEUS correlated χ^2	91	
CDF Z p_T	41/55	40/55
Total	1405 / 1184	

Bias from α_S-PDFs correlations [Forte,Kassabov('20)] → PDFs refitted.

- Other PDF sets considered. CT18, CT18Z, MSHT20, HERAPDF2.0, ABMP16 (NNLO) and MSHT20an3lo. The midpoint value is the nominal result and the PDF envelope as an additional uncertainty.
- Uncertainty from missing higher orders: $m_{II}/2 < \{\mu_R, \mu_F, Q\} < 2m_{II}$ with $0.5 < \{\mu_R/\mu_F, \mu_R/Q, \mu_F/Q\} < 2.$
- NP effects: b_* -pr. $b_* = b/\sqrt{1 + b^2/b_{lim}^2}$ ($b_{lim} = 2 - 3 \text{ GeV}^{-1}$) and minimal pr. ($b_{lim} \to \infty$); quartic term exp ($-qb^4$) and different parametrization of S_{NP} [Collins,Rogers('15)].
- Uncerainty from finite component at $\mathcal{O}(\alpha_S^3)$.
- Check with D0 data and fit boundaries.

7/2/2024 19/21

	$\alpha_S(m_Z)$	g [GeV ²]	χ^2/dof
NNPDF4.0	0.1192 ± 0.0008	0.66 ± 0.05	41/53
CT18	0.1189 ± 0.0010	0.67 ± 0.05	40/53
CT18Z	0.1198 ± 0.0009	0.62 ± 0.05	41/53
MSHT20	0.1185 ± 0.0009	0.72 ± 0.05	40/53
HERAPDF2.0	0.1188 ± 0.0008	0.69 ± 0.05	40/53
ABMP16	0.1185 ± 0.0007	0.62 ± 0.05	42/53
MSHT20an3lo (N ⁴ LL)	0.1184 ± 0.0009	0.73 ± 0.05	40/53
PDF fit	0.1184 ± 0.0006	0.71 ± 0.05	1405/1184

- Bias from α_S -PDFs correlations [Forte,Kassabov('20)] \rightarrow PDFs refitted.
- Other PDF sets considered. CT18, CT18Z, MSHT20, HERAPDF2.0, ABMP16 (NNLO) and MSHT20an3lo. The midpoint value is the nominal result and the PDF envelope as an additional uncertainty.
- Uncertainty from missing higher orders: $m_{II}/2 < \{\mu_R, \mu_F, Q\} < 2m_{II}$ with $0.5 < \{\mu_R/\mu_F, \mu_R/Q, \mu_F/Q\} < 2.$
- NP effects: b_* -pr. $b_* = b/\sqrt{1 + b^2/b_{lim}^2}$ ($b_{lim} = 2 - 3 \text{ GeV}^{-1}$) and minimal pr. ($b_{lim} \to \infty$); quartic term exp ($-qb^4$) and different parametrization of S_{NP} [Collins,Rogers('15)].
- Uncerainty from finite component at $\mathcal{O}(\alpha_{s}^{3})$.
- Check with D0 data and fit boundaries.

$\mu_R/m_{\ell\ell}$	$\mu_F/m_{\ell\ell}$	$Q/m_{\ell\ell}$	$\alpha_S(m_Z)$	g [GeV ²]	χ ² /dot
1	1	1	0.1192 ± 0.0008	0.66 ± 0.05	41/53
1	1	2	0.1183 ± 0.0007	0.77 ± 0.05	40/53
1	1	0.5	0.1196 ± 0.0008	0.57 ± 0.05	42/53
1	2	1	0.1194 ± 0.0008	0.66 ± 0.05	41/53
1	2	2	0.1183 ± 0.0007	0.77 ± 0.05	41/53
1	0.5	1	0.1193 ± 0.0008	0.68 ± 0.05	42/53
1	0.5	0.5	0.1196 ± 0.0008	0.59 ± 0.05	42/53
2	1	1	0.1193 ± 0.0008	0.67 ± 0.05	42/53
2	1	2	0.1194 ± 0.0008	0.70 ± 0.05	41/53
2	2	1	0.1192 ± 0.0008	0.65 ± 0.05	42/53
2	2	2	0.1192 ± 0.0008	0.67 ± 0.05	41/53
0.5	1	1	0.1184 ± 0.0007	0.75 ± 0.05	42/53
0.5	1	0.5	0.1192 ± 0.0007	0.64 ± 0.05	41/53
0.5	0.5	1	0.1183 ± 0.0007	0.75 ± 0.05	42/53
0.5	0.5	0.5	0.1192 ± 0.0007	0.64 ± 0.05	42/53

- Bias from α_S-PDFs correlations
 [Forte,Kassabov('20)] → PDFs refitted.
- Other PDF sets considered. CT18, CT18Z, MSHT20, HERAPDF2.0, ABMP16 (NNLO) and MSHT20an3lo. The midpoint value is the nominal result and the PDF envelope as an additional uncertainty.
- Uncertainty from missing higher orders: $m_{II}/2 < \{\mu_R, \mu_F, Q\} < 2m_{II}$ with $0.5 < \{\mu_R/\mu_F, \mu_R/Q, \mu_F/Q\} < 2.$
- NP effects: b_* -pr. $b_* = b/\sqrt{1 + b^2/b_{lim}^2}$ ($b_{lim} = 2 - 3 \text{ GeV}^{-1}$) and minimal pr. ($b_{lim} \to \infty$); quartic term exp ($-qb^4$) and different parametrization of S_{NP} [Collins,Rogers('15)].
- Uncerainty from finite component at $\mathcal{O}(\alpha_s^3)$.
- Check with D0 data and fit boundaries.

	$\alpha_S(m_Z)$	$g [{\rm GeV^2}]$
$b_{lim} = 2 \text{ GeV}^{-1}$	0.1187 ± 0.0007	0.83 ± 0.05
$b_{\lim} \rightarrow \infty$	0.1199 ± 0.0008	0.42 ± 0.05
g _k	0.1186 ± 0.0008	0.65 ± 0.05
$q = 0.1 \text{ GeV}^4$	0.1197 ± 0.0008	0.51 ± 0.05
VFN PDF evolution	0.1190 ± 0.0007	0.71 ± 0.05

- Bias from α_S -PDFs correlations [Forte,Kassabov('20)] \rightarrow PDFs refitted.
- Other PDF sets considered. CT18, CT18Z, MSHT20, HERAPDF2.0, ABMP16 (NNLO) and MSHT20an3lo. The midpoint value is the nominal result and the PDF envelope as an additional uncertainty.
- Uncertainty from missing higher orders: $m_{II}/2 < \{\mu_R, \mu_F, Q\} < 2m_{II}$ with $0.5 < \{\mu_R/\mu_F, \mu_R/Q, \mu_F/Q\} < 2.$
- NP effects: b_* -pr. $b_* = b/\sqrt{1 + b^2/b_{lim}^2}$ ($b_{lim} = 2 - 3 \text{ GeV}^{-1}$) and minimal pr. ($b_{lim} \to \infty$); quartic term exp ($-qb^4$) and different parametrization of S_{NP} [Collins,Rogers('15)].
- Uncerainty from finite component at $\mathcal{O}(\alpha_s^3)$.
- Check with D0 data and fit boundaries.

- Bias from α_S -PDFs correlations [Forte,Kassabov('20)] \rightarrow PDFs refitted.
- Other PDF sets considered. CT18, CT18Z, MSHT20, HERAPDF2.0, ABMP16 (NNLO) and MSHT20an3lo. The midpoint value is the nominal result and the PDF envelope as an additional uncertainty.
- Uncertainty from missing higher orders: $m_{II}/2 < \{\mu_R, \mu_F, Q\} < 2m_{II}$ with $0.5 < \{\mu_R/\mu_F, \mu_R/Q, \mu_F/Q\} < 2.$
- NP effects: b_* -pr. $b_* = b/\sqrt{1 + b^2/b_{lim}^2}$ $(b_{lim} = 2 - 3 \text{ GeV}^{-1})$ and minimal pr. $(b_{lim} \to \infty)$; quartic term exp $(-qb^4)$ and different parametrization of S_{NP} [Collins,Rogers('15)].
- Uncerainty from finite component at O(α³₅).
- Check with D0 data and fit boundaries.

- Bias from α_S -PDFs correlations [Forte,Kassabov('20)] \rightarrow PDFs refitted.
- Other PDF sets considered. CT18, CT18Z, MSHT20, HERAPDF2.0, ABMP16 (NNLO) and MSHT20an3lo. The midpoint value is the nominal result and the PDF envelope as an additional uncertainty.
- Uncertainty from missing higher orders: $m_{II}/2 < \{\mu_R, \mu_F, Q\} < 2m_{II}$ with $0.5 < \{\mu_R/\mu_F, \mu_R/Q, \mu_F/Q\} < 2.$
- NP effects: b_* -pr. $b_* = b/\sqrt{1 + b^2/b_{lim}^2}$
 - $(b_{lim} = 2 3 \text{ GeV}^{-1})$ and minimal pr. $(b_{lim} \rightarrow \infty)$; quartic term $\exp(-qb^4)$ and different parametrization of S_{NP} [Collins,Rogers('15)].
- Uncerainty from finite component at $\mathcal{O}(\alpha_5^3)$.
- Check with D0 data and fit boundaries.

Fit results

Statistical uncertainty		±0.7	
Experimental systematic uncertainty		± 0.1	
PDF uncertainty (NNPDF4.0)		± 0.4	
PDF uncertainty (envelope of PDFs)		± 0.7	
Scale variations uncertainties	+0.4		- 0.9
Matching at $O(\alpha_S^3)$		± 0.1	
Non-perturbative model		± 0.7	
Flavour model	0		- 0.3
QED ISR		$< \pm 0.1$	
Lower limit of fit range		± 0.2	
Total	+1.3		- 1.6

Simultaneous fit of $\alpha_5(m_Z)$ and g at N³LL+ $O(\alpha_5^3)$ (N³LL+N³LO):

 $\alpha_{\rm S}({\rm m_Z}) = 0.1191^{+0.0013}_{-0.0016}$

$$g = 0.66 \pm 0.05 \ GeV^2$$

Determination of α_S from the Z-boson q_T distribution

Conclusions

- Novel methodology for determination of $\alpha_S(m_Z)$ based on Z-boson small- q_T distribution.
- Based on N^3LL+N^3LO resummed QCD predictions.
- Result in agreement with the world average. Uncertainty comparable to other determinations.
- Precise collider determination: 1.2% relative uncerainty.
- Crucial development of DYTurbo program to compute fast and accurate theoretical predictions:

https://dyturbo.hepforge.org