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Prototypical as Determination

- Consider an “effective charge” with a single hard scale:

[physical quantit{) Lpovver correction )

#(Q) = R(Q)+Cp

P Qp
power p < factorial growth
(“perturbative part”

( )

perturbative series In _ R N . "
kmass—independent scheme) Q) E)’”I(H/Q) s (1)

- Perturbative part and power correction inseparable.



Factorial Growth

- Even in quantum mechanics, high orders of perturiation
theory grow factorially [e.g., Bender & Wu 1971, 19/3].

- Also in QFT [e.q., Gross & Neveu 1974, Lautrup 1977].

- Static-energy r; grow factorially (known for a long time):
T+ 14Db)
['(1+b)

ry ~ R()(Zﬁ()) — Rl

ne=3
for[» 1. Here b=, /2B2 =" 32/81~ 0.4

- Doesr=41,1.38,5.46,26.7} start growing by [ = 37
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—Xxamples

- Static energy = energy between two static sources (p = 1):
C
Eo(r) = === Y vi(ur)os ()" + Ao
=0

%(1/1’) — —I”E()(I”)/CF

Leino
- Its Fourier transform (p > 1)
R(q) = ;}az(u/Q)%(u)’“
- The “static force” (p = 9)_ Mayer-Steudte
50=-52 F0=FV(1/r) = —P5()/Cr

dr
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Power Corrections and Factorial Growth




u Independence Yields Q Dependence

R(Q)=Y r(u/0)os(u) ™
[=0

- Coefficients’ u dependence must cancel that of as, so RGE
constrains O dependence of R(Q) (modulo massive loops).

- Use this observation to find the factorial growth of the 7;:

* generalize Komijani [arXiv:1701.00347] study of pole mass;

- new method [arXiv:2310.15137] simplifies and clarifies
“minimal renormalon subtraction (MRS) [arXiv:1712.04983];

- show factorial growth already at low orders.
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Power-Term Removal

. AP
- Start with Z(Q) =r_1 +R(Q) +C, or
- To eliminate A?/QP, multiply by Op and differentiate:
1 dOP% .
1+ F — = P
r—1+ (Q) pr—l dQ Q K
- AsaseriesF(Q) =Y fialt!.
k=0
) k—1
fo=rc—=Y (j+1)B1-jr;
P i=0

- Differential equation r(a) + 2 (a)r’ (&) = f(a).



Differential Equation

Differential equation r(er) + 2 (a)r' (&) = f(cv).
- Take f(a) as given and solve for r(a):
Komijani’s solution reproduces R; and yields Ry.

Here, use only the elementary feature —

» general solution is any particular solution plus a
solution of the homogeneous equation (0 on RHS);

- solution to homogeneous equation is < A?,



My Solution

- The relation between the coefficients is a matrix equation

() 2% .
Ji :rk__Z(]+1>ﬁk—1—jrj
P =0
FP) — _1_%1)- r=QW . p
) P

and D is on the lower triangle.

Matrix is infinite, but the lower triangular form makes a
row-pby-row solution straightforward.
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Notation to make the expressions compact: T =28y /p.

1 0 0 0 0 0 0 -

—7 1 0 0 0 0 0 -

—1%pb —27 1 0 0 0 0 -

) —t(tpb)*>  —27°pb —37 1 0 0 0 -
= | —1(tpb)® —21(tpb)*>  —37%pb —47 1 0 0 -
—t(tpb)* —21(tpb)® —3t(tph)*>  —41’pb -5t 1 0 -
—1(tpb)®> —2t(tpb)* —37(tpb)® —4t(Ttpb)> —57°pb —6T 1 -

ne=3
- As before b = B, /282 =" 32/81 ~0.4.
- Scheme for o, Is chosen to simplify algebra (“geometric’).

B Poorg
Pl%) = =18, /o)y
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» Inverse reveals that factorial growth begins at low orders:
_ 1 0 0 0 0 0 O _
T 1 0 0 0 0 O
Ty 27 1 0 0 0 0
['(4+pb ['(4+pb
o e R 3t 1 0 0 0
g — ['(5+pb ['(5+pb [(5+pb
Tt rgzilﬁbg 27° F§3L€b; 37’ Fg4ilgb§ 4T ! 00
I'(6+pb ['(6+pb I'(6+pb 6-+pb
( rgziibg 21* rg3i§bg 37° rE41§b§ 47° rgsigbg ST L0
I'(74+pb I'(74pb I'(74+pb T+pb I'(74+pb
e rgz+§bg 2 FE3+;€b§ 37t r§4+§b§ 47’ rgs+§b§ 5t FE6+§bg 67 1
— Qg’)_l fP)
[ [—1 k
p ['(1+pb) = C(k+2+pb) \2By/) “* 7
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Growth < Power

Larger p = growth takes over at larger [.

13



New Approximation for Perturbative Series



Perturbative Series

- We must be back where we started, right?  r=e's=0"'-e-

In practice, we know r; and, hence, f; for [ < L.
The formula returns these r; (as it must).

For [ = L, the formula tells us (formally) the largest part.
- So truncate on fj, not r. Evaluate Y72 ral™! by —
- taking exact r; from the literature for [ < L;

+ approximating r; = R; for [ = L.

15



Recap & Compendium

. [+1 [+1 p) l+1
That means ZI’[(XS — Zrlas _I_ZRZ( )as
[=0 [=0 [=L

with

RpP) — plp) (2[30>lr(l -1+ pb)

;=1
p ['(1+ pb)

L—1 k
(p) _ ['(1+ pb) < p ) (p)
R = k+1 —
! kz;)( " )F(k+2+pb) 2o Ji

- Justified because the retained terms are formally larger
than the ones omitted.



Sorel Summation
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Rearrange and React

- We have

Z“XHI%Z’”O‘ZH_I_ZR alt!
—Z(’”I ) l+1+ZR alt!

=0
%/_/ %/—/

R (0) RY)(0)

-+ The “renormalon subtracted” part and the “Borel” part.

- The R; from above yield divergent sum for Rg, but we're
not done yet: use Borel summation to assign meaning.



Sorel Summation

- Using the integral representation of 1'(/+1):

0o [

(p) (p) ['(l+1+ pb) /Oo (2ﬁ0f> —t/ 0ty (Q)

RV (0) =R “ ) e %@y
B (@) =R, Zg) (14 pb)T(I+1) Jo p

W [ e /%O
— R p / dt Mathematica knows the sum
°Jo (1=2pot/p)ttrh

where 2nd line comes from (illegally) swapping X and /.

- Branch point in integrand at ¢ = p/20, dubbed
“‘renormalon singularity” ['t Hooft 19/79].

19
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Sorel Summation

- Split integration in two [BKKV, arXiv:1/712.04983]:

P&y [y
° ! 0 (1 —Qﬁot/p)1+pb

(p)/ e /%
+ R dr
! p/2By (1 =2t /p)ttrb

where + on 2nd line comes from choice of contour.

- Without loss, absorb the second line into the power

correction in Z(Q).
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R](gp)(Q) _ R(()P)ZLA)/( b, l/zﬁoag(Q)) the integrals

- 1P
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Sorel Summation
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Q) =Ry = 7 (pb,1)2 e gy
Ry (Q)—R() 2—[3()/( : / ﬁ()OCg(Q)) g
1+pb i Boct: (0)] 17
_ plp) tipr P (—pb) Asts

0 21+pbﬁ0

O
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Definition and Properties of 7

-+ Thus, we now define
R (0) =Ry 55 7 (ph,1/260a ()
S (e.y) =e " T(=c)y'(=c,—)

where 7*(a,x) is an analytic function of both a and x:

limiting function of the incomplete gamma function

+convergent expansion in x = —1/2f0;

- asymptotic expansion in o regenerates the starting
point; the dropped term is O(eP/?Po%)

21



Static
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Static Energy

- Quantity extracted from oblong Wilson loops:

+ perturbative potential has IR divergences starting at 3
loops [Appelquist, Dine, Muzinich 19/78];

- compensated by multipole (retardation) term [Brambilla,

Pineda, Soto, Vairo 1999, 2000].

- Perturbative series:
C
Eo(r) = == Y vi(ur)os ()" + Ao
=0

- In notation used above, Q — 1/r, Z(1/r) = —rEy(r)/Cr.

23
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Related Quantities

- Perturbation theory carried out in momentum space:
R(q) =Y ai(u/q)os(u)™
=0

- Leading power/factorial comes from Fourier transform,
so R(g)has p> 1.

- The “static force”

5 =-2"  F)=FV1/r)=—F()/Cr

has no power corrections (until instantons at p = 9).

24



Coefficients at w=1/r or p=gq

MS geometric 0%
L a() fi(1) a(1) fi(1) a1) fi(1)
0 1 1 1 1 1 1
1 0.557042  —0.0483552 0.557042  —0.048552 0.557042  —0.048552
2 1.702 18 0.687291 1.83497 0.820079 1.83497 0.820079
3 2.43687 0.323257 2.83268 0.558242 3.01389 0.739452
MS geometric %)
Ll ow) w@=vi) | w) v =vi) | w() v =vi()
0 1 0.206061 1 0.182531 1 0.177584
1 1.38384 —0.202668 1.38384 —0.249689 1.38384 —0.259574
2 5.46228 0.019479 5.59507 —0.009046 5.59507 —0.042959
3 | 26.6880 0.219262 27.3034 0.050179 27.4846 0.066468




Good Series (at most p > 1 growth)

W= sq

10%-ish effects at A/g=0.15

o
-J| /.




Great Series (instanton power p = 9)

W= s/r 0.5:

5%-ish effects at rA =0.15




Horrible Series (p = 1)

w=s/r 1.0

s iIndependent only for rA « 1

llllllllllllllllll




MRS Series

M=S/I” 0.5: ................... :

—s=% (.00 0.05 0.10 0.15 0.20

— s=1
— =2 rA



Renormalon Subtracted Series

M:S/]f' 03 ................... :

0.9F big cancellation only for s ~ 1~ _.oe===2=" ]

0.1}
0.0f
0.1}
0.2} .
_03 ................... ]

Rprs(1/7)

—s=%0.00  0.05 010  0.15  0.20

— s=1
— s=2 r/A



The part that is a convergent series in 1/0

Mzs/]/' 05 ..................

0.4}
0.3
0.2f ':
0.1 \
0'03 s dependence compensates Rrs(1/7) -

_0.1: ................... :
— =% (.00 0.0 0.10 0.15 0.20

— s=1
— 5s=2 rA\

Rp(1/r)




Fitting with Power Corrections

- The A on the horizontal axis is Ayg—

- fits to data will have this as free parameter, I.e.,
optimization will stretch/shrink the curves to fit.

- Let’s go back to the plots and get a feel for adding small
amounts of order (A/g)2or3or4 (Ar)9, or Ar.

- Disentangling power-law and logarithmic dependence
seems hard for R(g) and R(1/r), but not for F(1/r) and

Rwmrs(1/r).
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Two or More

Power Corrections
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Next Approximation

- |f there Is another power correction with p> > p1 = p, then fi
will grow In a similar but slower fashion.

- Apply previous procedure with pi; then repeat with p»:
f{p17p2} — Q(pZ) . Q(pl) .7
N Q(Pl)_l ,Q(Pz)_l .f{m,l?z}

[P ey P o] ple)
P2 —Pi pP1— P2

- Extension to any sequence of higher powers by induction.
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Summary
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Summary

MRS revisited for any sequence of power corrections <
dominant, subdominant, sub-subdominant, ... growth.

Formulas for growth and normalization both follow from
RGE and hold exactly at low orders.

- Cancellation scale dependent, but total is not.
- Scale dependence is mild.

- Standard to sum logarithms; let’s sum factorials too!
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Thank you for your attention

Questions?
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