Effect of renormalon scheme and perturbative scale choices on α_s from event shapes **Christopher Lee (LANL)**

ECT* Workshop: alphas-2024 07 Feb 2024

LOS ALABORATORY

LA-UR-24-21080

G. Bell, CL, Y. Makris, J. Talbert, B. Yan, [arXiv:2311.03990]

See also G. Bell, A. Hornig, CL, J. Talbert, [arXiv:1808.07867]

Outline of the talk

- Event shapes, EFT, factorization, resummation of perturbative logs
- Nonperturbative corrections and renormalon subtraction schemes
- Effects of perturbative and nonperturbative scale & scheme choices on fits for $\alpha_{\rm s}$

In a nutshell: some of these choices may have a few % effect on the tails of event shape distributions and the values of α_{s} , or on the uncertainties thereupon, obtained by comparing them to data

•Motivations for additional data and calculations for event shapes

Event Shapes

Event shapes to high precision

e.g.:

Makes e+e- event shapes one of the most precise ways, in principle, to determine α_s

• Up to N³LL' resummed event shape distributions with analytic treatment of nonperturbative corrections,

0.35 0.3 0.25 0.2 0.15 0.1 0.05

Abbate et al., PRD 83 (2011) 074021

Factorization, Resummation and Nonperturbative Effects in EFT

FACTORIZATION

Fn н do Ita S = Str O Sup B $\underbrace{\mathtt{ty}}_{i} = \sum_{i} |\vec{p}_{i}|^{2-\alpha} = t_{j} \left(\underbrace{\mathtt{ty}}_{i} \right)$ × 4 J(+3, p) Jn (+3, p)

= Jo Hller, m) Jots dtz dtz dks S(za - torts - to) J (to, m) J(to, m) S(ko, m)

NUT SHELL IN A

Evolution and resummation of logs

An all-order dijet factorization theorem for the observable is easily derived in SCET:

Evolving all scales to/from their 'natural' settings, one arrives at the resummed cross section:

$$\frac{\sigma_{\rm sing}(\tau_a)}{\sigma_0} = e^{K(\mu,\mu_H,\mu_J,\mu_S)} \left(\frac{\mu_H}{Q}\right)^{\omega_H(\mu,\mu_H)} \left(\frac{\mu_J^{2-a}}{Q^{2-a}\tau_a}\right)^{2\omega_J(\mu,\mu_J)} \left(\frac{\mu_S}{Q\tau_a}\right)^{\omega_S(\mu,\mu_S)} H(Q^2,\mu_H) \qquad \mathcal{F}(\Omega) = \frac{e^{\gamma_E\Omega}}{\Gamma(-\Omega)} \\ \times \tilde{J} \left(\partial_\Omega + \ln\frac{\mu_J^{2-a}}{Q^{2-a}\tau_a},\mu_J\right)^2 \tilde{S} \left(\partial_\Omega + \ln\frac{\mu_S}{Q\tau_a},\mu_S\right) \times \begin{cases} \frac{1}{\tau_a}\mathcal{F}(\Omega) & \sigma = \frac{d\sigma}{d\tau_a} \\ \mathcal{G}(\Omega) & \sigma = \sigma_c \end{cases} \qquad \mathcal{G}(\Omega) = \frac{e^{\gamma_E\Omega}}{\Gamma(1-\Omega)} \end{cases}$$

$$\Omega = 2\omega_J + \omega_S$$
$$\omega_F = -2\kappa_F \int_{\mu_F}^{\mu} \frac{d\mu'}{\mu'} \Gamma_{\text{cusp}}[\alpha_S]$$
$$K = \sum_{F=H,J,S} \int_{\mu_F}^{\mu} \frac{d\mu'}{\mu'} \gamma_F(\mu')$$

03051 hep-ph/1401.4460

11

Perturbative scale profiles

Full prediction. i do = fdk opr(za-k) Sup(k) vo dra = fdk opr(za-k) Will consider two non-singular scale choices "2010" and "2018": $\mu_{\rm ns} =$ F.0. = Using (Ta; MH, J, S) + Una-sug (Ta; Ms)

> variations try to account for uncertainty due to subleading logs that are *not* resummed

$$\begin{cases} \mu_J & \text{default} \\ (\mu_J + \mu_S)/2 & \text{lo} \\ \mu_H & \text{hi} \end{cases} \qquad \mu_{\text{ns}} = \begin{cases} \mu_H & \text{def} \\ (\mu_H + \mu_J)/2 & \text{lo} \\ (3\mu_H - \mu_J)/2 & \text{hi} \end{cases}$$

fault

12

Fixed-order tails

The above predicts the (resummed) singular component of the cross section. One must then match to fixed-order QCD for large τ :

$$\frac{Q}{2}r^{1}(\tau_{a}) + \left(\frac{\alpha_{s}(Q)}{2\pi}\right)^{2}r^{2}(\tau_{a}) + \left(\frac{\alpha_{s}(Q)}{2\pi}\right)^{3}r^{3}(\tau_{a}) + \cdots$$

Singular behavior in EERAD3

• Results for 3-loop fixed-order angularity distributions from EERAD3 (IR cutoff 10^{-7} , 1.5×10^{10} events)

• After subtracting all logs, should go to zero as $\tau \to 0$ if agree with QCD, doesn't quite do so. Calls into question accuracy of nonsingular remainder function itself...

Singular behavior in EERAD3

• Results for 3-loop fixed-order angularity distributions from EERAD3 (IR cutoff 10^{-7} , 1.5×10^{10} events)

• After subtracting all logs, should go to zero as $\tau \rightarrow 0$ if agree with QCD, doesn't quite do so. Calls into question accuracy of nonsingular remainder function itself...

-50

Non-perturbative effects and gapped soft function

- Non-perturbative effects described through the soft function:
- Perturbative matching coefficient and a low-energy model shape function f_{mod}:

$$S(k,\mu) = \int dk' S_{\rm PT}(k-k',\mu) f_{\rm mod}(k'$$

'Gap' parameter accounting for parton \rightarrow hadron transition

• The effect of f_{mod} is to shift the first moment of the perturbative distribution:

$$\langle \tau_a \rangle = \langle \tau_a \rangle_{\text{PT}} + \frac{2\Omega_1}{Q(1-a)}$$
 $\frac{2\Omega_1}{1-a} = 2\overline{\Delta}_a + \int dk \, k f_{\text{mod}}(k)$

• This scaling and the *universality* of Ω_1 can be proven from QCD / SCET factorization: Dokshitzer, Webber [hep-ph/9504219, hep-ph/9704298], Berger, Sterman [hep-ph/0307394] C. Lee & G. Sterman [hep-ph/0611061]

[0709.3519] $-2\Delta_a$ [0807.1926]

> Caltech, March 2019

Sup

~1 GeV

∆a~ ~ 0.1 GeV

Non-perturbative effects and gapped soft function

• However, both the perturbative soft function and gap parameter suffer renormalon ambiguities.

Subtract a series with the same/canceling ambiguity from both PT and NP pieces:

$$\overline{\Delta}_{a} = \Delta_{a}(\mu) + \delta_{a}(\mu) \qquad \xrightarrow{} \qquad \widetilde{S}(\nu,\mu) = \left[e^{-2\nu\Delta_{a}(\mu)}\widetilde{f}_{\mathrm{mod}}(\nu)\right] \left[e^{-2\nu\delta_{a}(\mu)}\widetilde{S}_{\mathrm{PT}}(\nu,\mu)\right]$$

$$-k',\mu) f_{
m mod}(k'-2\overline{\Delta}_a)$$

 $\overline{mm} + \overline{mOm} + \overline{mOmOm} + \dots$ = $\mathcal{O}(\Lambda_{\text{QCD}})$ ambiguity in gap $\overline{\Delta}_a$

renormalon free

renormalon free

R_{gap} scheme

Choosing the R_{gap} scheme to cancel the leading renormalon,

$$Re^{\gamma_E} \frac{d}{d \ln \nu} \Big[\ln \widehat{S}_{\text{PT}}(\nu, \mu) \Big]_{\nu = 1/(Re^{\gamma_E})} = 0 - \frac{1}{\widehat{S}_{\text{PT}}(\nu, \mu)} = e^{-2\nu\delta_a(\mu)} \widetilde{S}_{\text{PT}}(\nu, \mu)$$

Gapped and renormalon free soft function $S(k,\mu) = \int dk' S_{\rm PT}$

Final cross section is expanded orderby-order in bracketed term

$$\frac{1}{\sigma_0} \sigma(\tau_a) = \int dk \,\sigma_{\rm PT} \Big(\tau_a - \frac{k}{Q} \Big) \Big[e^{-2\delta_a(\mu_S, R)\frac{d}{dk}} f_{\rm mod} \big(k - 2\Delta_a(\mu_S, R)\big) \Big]$$

Improves small τ_a behavior and perturbative convergence:

$$\longrightarrow \quad \delta_a(\mu, R) = \frac{1}{2} R e^{\gamma_E} \frac{d}{d \ln \nu} \Big[\ln \widetilde{S}_{\rm PT}(\nu, \mu) \Big]_{\nu = 1/(R e^{\gamma_E})},$$

$$\Gamma(k-k',\mu)\left[e^{-2\delta_a(\mu,R)\frac{d}{dk'}}f_{\mathrm{mod}}(k'-2\Delta_a(\mu,R))\right]$$

[0803.4214] [0806.3852]

R_{gap} scheme

Choosing the R_{gap} scheme to cancel the leading renormalon,

$$Re^{\gamma_E} \frac{d}{d\ln\nu} \Big[\ln \widehat{S}_{\rm PT}(\nu,\mu) \Big]_{\nu=1/(Re^{\gamma_E})} = 0$$

$$\delta^{3}(\mu_{S}, R) = \frac{8}{3} \Gamma_{s}^{0} \beta_{0}^{2} \ln^{3} \frac{\mu_{S}}{R} + \gamma_{s}^{2} + 2c_{\tilde{S}}^{1} \beta_{1} +$$

$$\begin{split} & \longrightarrow \quad \delta_a(\mu, R) = \frac{1}{2} R e^{\gamma_E} \frac{d}{d \ln \nu} \Big[\ln \tilde{S}_{\text{PT}}(\nu, \mu) \Big]_{\nu=1/(Re^{\gamma_E})}, \\ & \delta(\mu, R) = \frac{R e^{\gamma_E}}{2} \sum_{n=1}^{\infty} \left(\frac{\alpha_S(\mu)}{4\pi} \right)^n \delta^n(\mu_S, R) \\ & \delta^1(\mu_S, R) = 2\Gamma_s^0 \ln \frac{\mu_S}{R} \\ & \delta^2(\mu_S, R) = 2\Gamma_s^0 \beta_0 \, \ln^2 \frac{\mu_S}{R} + 2\Gamma_s^1 \, \ln \frac{\mu_S}{R} + \gamma_s^1 + 2c_{\tilde{S}}^1 \\ & \delta^2(\mu_S, R) = 2\Gamma_s^0 \beta_1 \ln^2 \frac{\mu_S}{R} + 2(\Gamma_s^2 + 2\gamma_s^1 \beta_0 + 4c_{\tilde{S}}^1 \beta_0^2) \ln 2 \\ & + 4c_{\tilde{S}}^2 \beta_0 - 2(c_{\tilde{S}}^1)^2 \beta_0 \end{split}$$

[0803.4214] [0806.3852]

R-evolution

• Want to keep R near IR scales, but also avoid large logs $\ln \frac{\mu_S}{R}$ in subtraction terms

• Sum logs by μ and R evolution: μ

$$\iota \frac{d}{d\mu} \Delta_a(\mu, R) = -\mu \frac{d}{d\mu} d\mu$$

$$\frac{d}{dR}\Delta_a(R,R) = -\frac{d}{dR}\delta_a$$

Anomalous dimensions:

 $\gamma^{\mu}_{\Lambda}[\alpha_s(\mu)] = -Re^{\gamma_E}\Gamma_S[\alpha_s(\mu)]$

$$\gamma_R[\alpha_s(R)] = \sum_{n=0}^{\infty} \left(\frac{\alpha_s(R)}{4\pi}\right)^{n+1} \gamma_R^n \qquad \gamma_R^0 = 0,$$
$$\gamma_R^2 = \frac{e^{\gamma_E}}{2\pi} \left[\gamma_R^2 - \frac{e^{\gamma_E}}{2\pi}\right]^{n+1}$$

[0801.0743] [0908.3189]

Effective non-perturbative shifts

Before considering gapped renormalons, the leading-order NP effect is a constant shift:

$$\frac{d\sigma}{d\tau_a} (\tau_a) \xrightarrow{\text{NP}} \frac{d\sigma}{d\tau_a} \left(\tau_a - c_{\tau_a} \frac{\Omega_1}{Q} \right) \qquad c_{\tau_a} = \frac{2}{1-a} \qquad \Omega_1 = \frac{1}{N_C} \text{Tr} \left\langle 0 \right| \overline{Y}_{\bar{n}}^{\dagger} Y_n^{\dagger} \mathcal{E}_T \left(0 \right) Y_n \overline{Y}_{\bar{n}}$$

Note: this is only valid in the tail region!

• Define an 'effective shift' of the distribution in the R_{gap} scheme:

$$\int dk \, k \, e^{-2\delta_a(\mu_S, R)\frac{d}{dk}} f_{\text{mod}}\left(k - 2\Delta_a\left(\mu_S, R\right)\right) = \int dk \, k \left[\sum_i f_{\text{mod}}^{(i)}\left(k - 2\Delta_a\left(\mu_S, R\right)\right)\right] \quad \equiv \frac{2}{1 - a} \Omega_1^{\text{eff}}$$

Shape function expanded order-by-order depending on logarithmic accuracy:

$$\bar{f}_{mod}^{(0)}(k-2\Delta) = f_{mod}(k-2\Delta) \qquad f_{mod}^{(i)}(k-2\Delta) \qquad f_{mod}^{(i)}(k-2\Delta) = -2(Re^{\gamma_E})\delta^1 f_{mod}'(k-2\Delta) \\
\bar{f}_{mod}^{(2)}(k-2\Delta) = -2(Re^{\gamma_E})\delta^2 f_{mod}'(k-2\Delta) + 2(Re^{\gamma_E}\delta^1)^2 f_{mod}''(k-2\Delta) \\
\bar{f}_{mod}^{(3)}(k-2\Delta) = -2(Re^{\gamma_E})\delta^3 f_{mod}'(k-2\Delta) + 4\delta^1 \delta^2 (Re^{\gamma_E})^2 f_{mod}''(k-2\Delta) - \frac{4}{3}(Re^{\gamma_E}\delta_1)^3 f_{mod}''(k-2\Delta)$$

$$f_{\text{mod}}^{(i)} = \left(\frac{\alpha_s(\mu_S)}{4\pi}\right)^i \bar{f}_{\text{mod}}^{(i)}$$

Growing shifts in event shape tails

Distributional shifts at NNLL' accuracy (central profile scales):

Is this reasonable? What might be the effect on extracting α_s ? Can we find a way to vary it?

• Effectively, we shift the distribution to the right by larger amounts as we move from the 2-jet region out to the multi-jet tail.

Limiting (or varying) the growth of the shift

• Can we find a way to cut off the growth of this shift? i.e. turn off R-evolution above some $\tau = \tau_{max}$:

$$\gamma_R \to \theta(R_{\rm max} - R)\gamma_R$$

need:
$$\frac{d}{dR}\delta_a(R,R) = \gamma_R[\alpha_s(R)]$$

recall:
$$\delta_a(R,R) = Re^{\gamma_E} \left[\frac{\alpha_s(R)}{4\pi} \delta_a^1(R,R) + \left(\frac{\alpha_s(R)}{4\pi} \right)^2 \delta_a^2(R,R) + \cdots \right]$$

to the order we need, just change *R* to:

however this can reintroduce large logs of μ_S/R_{max} ... in R_{gap} : $\delta^1(\mu_S, R) = 2\Gamma_s^0 \ln \frac{\mu_S}{R}$ $\delta^2(\mu_S, R) = 2\Gamma_s^0 \beta_0 \ln^2 \frac{\mu_S}{R} + 2\Gamma_s^1 \ln \frac{\mu_S}{R} + \gamma_s^1 + 2c_{\tilde{S}}^1 \beta_0$

$$R = R(\tau)$$

 $P)]\theta(R_{\rm max}-R)$

 $R < R_{\max}$ $R \ge R_{\max}$

Another scheme

"*R** scheme"

$$\delta_a^*(R) = \frac{1}{2} R^* e^{\gamma_E} \frac{d}{d \ln \nu} \left[\ln S_{\text{PT}}(\nu, \mu = R^*) \right]_{\nu = 1/(R^* e^{\gamma_E})}$$

To the order we work:

$$\delta_{a}^{*}(R) = \frac{Re^{\gamma_{E}}}{2} \left[\frac{\alpha_{s}(R)}{4\pi} \cdot 0 + \left(\frac{\alpha_{S}(R)}{4\pi} \right)^{2} (\gamma_{S}^{1} + 2c_{\tilde{S}}^{1}\beta_{0}) + \left(\frac{\alpha_{S}(R)}{4\pi} \right)^{3} (\gamma_{S}^{2} + 2c_{\tilde{S}}^{1}\beta_{1} + 4c_{\tilde{S}}^{2}\beta_{0} - 2(c_{\tilde{S}}^{1})^{2}\beta_{0} - 4\gamma_{s}^{1}\beta_{0} - 8c_{\tilde{S}}^{1}\beta_{0}^{2}) + R-evolution:$$

$$\gamma_{R}^{*} = e^{\gamma_{E}} \left[\frac{\alpha_{s}(R)}{4\pi} \cdot 0 + \left(\frac{\alpha_{S}(R)}{4\pi} \right)^{2} (\gamma_{S}^{1} + 2c_{\tilde{S}}^{1}\beta_{0}) + \left(\frac{\alpha_{S}(R)}{4\pi} \right)^{3} (\gamma_{S}^{2} + 2c_{\tilde{S}}^{1}\beta_{1} + 4c_{\tilde{S}}^{2}\beta_{0} - 2(c_{\tilde{S}}^{1})^{2}\beta_{0} - 4\gamma_{s}^{1}\beta_{0} - 8c_{\tilde{S}}^{1}\beta_{0}^{2}) + \frac{1}{2} \left(\frac{\alpha_{S}(R)}{4\pi} \right)^{2} (\gamma_{S}^{1} + 2c_{\tilde{S}}^{1}\beta_{0}) + \frac{1}{2} \left(\frac{\alpha_{S}(R)}{4\pi} \right)^{2} (\gamma_{S}^{1} + 2c_{\tilde{S}}^{1$$

 $\gamma_{\Delta}[\alpha_{s}(\mu)] = 0$ *µ*-evolution:

• Nothing special about this scheme, just a way to test the impact of changing the effective shift in event shapes.

Bell et al. [this work]

we are not forced to set $\mu = \mu_S$ in the subtraction series, we can pick $\mu = R$

Bachu, Hoang, Mateu, Pathak, Stewart [2012.12304]

no large logs of μ_S/R , yet...

Another scheme

"*R** scheme"

$$\delta_a^*(R) = \frac{1}{2} R^* e^{\gamma_E} \frac{d}{d \ln \nu} \Big[\ln S_{\text{PT}}(\nu, \mu = R^*) \Big]_{\nu = 1/(R^* e^{\gamma_E})}$$

To the order we work:

$$\begin{split} \delta_{a}^{*}(R) &= \frac{Re^{\gamma_{E}}}{2} \left[\frac{\alpha_{s}(R)}{4\pi} \cdot 0 + \left(\frac{\alpha_{S}(R)}{4\pi} \right)^{2} (\gamma_{S}^{1} + 2c_{\tilde{S}}^{1}\beta_{0}) + \left(\frac{\alpha_{S}(R)}{4\pi} \right)^{3} (\gamma_{S}^{2} + 2c_{\tilde{S}}^{1}\beta_{1} + 4c_{\tilde{S}}^{2}\beta_{0} - 2(c_{\tilde{S}}^{1})^{2}\beta_{0} - 4\gamma_{s}^{1}\beta_{0} - 8c_{\tilde{S}}^{1}\beta_{0}^{2}) + \\ \delta_{a}^{*}(R) &= \frac{Re^{\gamma_{E}}}{2} \left[\frac{\alpha_{s}(\mu_{S})}{4\pi} \cdot 0 + \left(\frac{\alpha_{S}(\mu_{S})}{4\pi} \right)^{2} (\gamma_{S}^{1} + 2c_{\tilde{S}}^{1}\beta_{0}) + \left(\frac{\alpha_{S}(\mu_{S})}{4\pi} \right)^{3} (\gamma_{S}^{2} + 2c_{\tilde{S}}^{1}\beta_{1} + 4c_{\tilde{S}}^{2}\beta_{0} - 2(c_{\tilde{S}}^{1})^{2}\beta_{0} - 4\gamma_{s}^{1}\beta_{0} - 8c_{\tilde{S}}^{1}\beta_{0}^{2} + 4\beta_{0}\ln\frac{\mu_{S}}{R} (\gamma_{S}^{1} + 2c_{\tilde{S}}^{1}\beta_{0}) + \mathcal{O}(\alpha_{s}^{4}) \right] \end{split}$$

$$\begin{split} \delta_{a}^{*}(R) &= \frac{Re^{\gamma_{E}}}{2} \left[\frac{\alpha_{s}(R)}{4\pi} \cdot 0 + \left(\frac{\alpha_{S}(R)}{4\pi} \right)^{2} (\gamma_{S}^{1} + 2c_{\tilde{S}}^{1}\beta_{0}) + \left(\frac{\alpha_{S}(R)}{4\pi} \right)^{3} (\gamma_{S}^{2} + 2c_{\tilde{S}}^{1}\beta_{1} + 4c_{\tilde{S}}^{2}\beta_{0} - 2(c_{\tilde{S}}^{1})^{2}\beta_{0} - 4\gamma_{s}^{1}\beta_{0} - 8c_{\tilde{S}}^{1}\beta_{0}^{2}) + \delta_{a}^{*}(R) \\ \delta_{a}^{*}(R) &= \frac{Re^{\gamma_{E}}}{2} \left[\frac{\alpha_{s}(\mu_{S})}{4\pi} \cdot 0 + \left(\frac{\alpha_{S}(\mu_{S})}{4\pi} \right)^{2} (\gamma_{S}^{1} + 2c_{\tilde{S}}^{1}\beta_{0}) + \left(\frac{\alpha_{S}(\mu_{S})}{4\pi} \right)^{3} (\gamma_{S}^{2} + 2c_{\tilde{S}}^{1}\beta_{1} + 4c_{\tilde{S}}^{2}\beta_{0} - 2(c_{\tilde{S}}^{1})^{2}\beta_{0} - 4\gamma_{s}^{1}\beta_{0} - 8c_{\tilde{S}}^{1}\beta_{0}^{2} + 4\beta_{0}\ln\frac{\mu_{S}}{R} (\gamma_{S}^{1} + 2c_{\tilde{S}}^{1}\beta_{0}) + \mathcal{O}(\alpha_{s}^{4}) \right] \end{split}$$

• So, not perfect, but modest effect at $\mathcal{O}(\alpha_s^3)$, simply gives us a handle to study change of "effective shift"

Bell et al. [2311.03990]

we are not forced to set $\mu = \mu_S$ in the subtraction series, we can pick $\mu = R$

Bachu, Hoang, Mateu, Pathak, Stewart [2012.12304]

Scale variations and R vs R* profiles

- In our results, we let R^{*} grow until we hit $\tau_a = t_1(a)$, where we finish transitioning from "shape" function" region to "resummation region" in profile functions:
- Random scans over profile function parameters:

• Up to ~1000 variations considered in our final $\{\alpha_s, \Omega_1\}$ fits • 2018 variations more conservative than 2010/2015 due to motivation of achieving perturbative convergence across wide range of angularities in 1808.07867.

2010: [1006.3080] 2018: [1808.07867] based on [1501.04111]

 $\sigma(\tau) = \sigma_{PT}(\tau; \mu_i, R) \otimes f_{mod}(\tau, \Delta(R))$

Flattened shifts in tails

- framework

• The numerical effect can be loosely compared to the effect of 3-jet power corrections (e.g. $\zeta(e)$) modeled in, e.g. Luisoni, Monni, Salam [2012.00622]; Caola et al. [2108.08897, 2204.02247]; Nason & Zanderighi [2301.03607] • Our method is a way to study variations of how we treat power corrections that exist within a 2-jet factorization

Convergence in R vs R* schemes

$Q = M_Z, a = 0$

Comparison with data and determination of α_s

Data sets

For thrust:

ALEPH-2004: 133. GeV (7)	L3-2004: 172.3 GeV (12)
ALEPH-2004: 161. GeV (7)	L3-2004: 182.8 GeV (12)
ALEPH-2004: 172. GeV (7)	L3-2004: 188.6 GeV (12)
ALEPH-2004: 183. GeV (7)	L3-2004: 194.4 GeV (12)
ALEPH-2004: 189. GeV (7)	L3-2004: 200. GeV (11)
ALEPH-2004: 200. GeV (6)	L3-2004: 206.2 GeV (12)
ALEPH-2004: 206. GeV (8)	L3-2004: 41.4 GeV (5)
ALEPH-2004: 91.2 GeV (26)	L3-2004: 55.3 GeV (6)
AMY-1990: 55.2 GeV (5)	L3-2004: 65.4 GeV (7)
DELPHI-1999: 133. GeV (7)	L3-2004: 75.7 GeV (7)
DELPHI-1999: 161. GeV (7)	L3-2004: 82.3 GeV (8)
DELPHI-1999: 172. GeV (7)	L3-2004: 85.1 GeV (8)
DELPHI-1999: 89.5 GeV (11)	L3-2004: 91.2 GeV (10)
DELPHI-1999: 93. GeV (12)	OPAL-1997: 161. GeV (7)
DELPHI-2000: 91.2 GeV (12)	OPAL-2000: 172. GeV (8)
DELPHI-2003: 183. GeV (14)	OPAL-2000: 183. GeV (8)
DELPHI-2003: 189. GeV (15)	OPAL-2000: 189. GeV (8)
DELPHI-2003: 192. GeV (15)	OPAL-2005: 133. GeV (6)
DELPHI-2003: 196. GeV (14)	OPAL-2005: 177. GeV (8)
DELPHI-2003: 200. GeV (15)	OPAL-2005: 197. GeV (8)
DELPHI-2003: 202. GeV (15)	OPAL-2005: 91. GeV (5)
DELPHI-2003: 205. GeV (15)	SLD-1995: 91.2 GeV (6)
DELPHI-2003: 207. GeV (15)	TASSO-1998: 35. GeV (4)
DELPHI-2003: 45. GeV (5)	TASSO-1998: 44. GeV (5)
DELPHI-2003: 66. GeV (8)	
DELPHI-2003: 76. GeV (9)	
JADE-1998: 35. GeV (5)	Summary
JADE-1998: 44. GeV (7)	Totlal: 516
L3-2004: 130.1 GeV (11)	Q > 95 : 345
L3-2004: 136.1 GeV (10)	Q < 88 : 89
L3-2004: 161.3 GeV (12)	Q ~ MZ : 82

L3 Collaboration

For angularities:

Generalized event shape and energy flow studies in ${
m e^+e^-}$ annihilation at $\sqrt{s}=91.2$ -208.0 GeV

JHEP 10 (2011) 143

Also see PhD thesis by P. Jindal, Panjab University

Data for a = {-1.0, -0.75. -0.5, -0.25, 0.0, 0.25, 0.5, 0.75} at 91.2 and 197 GeV

Total number of bins = (bins per a) x (number of a) = 25 x 7 = 175 bins @ Q = 91.2 GeV • e.g. a = -1 and 0.5, Q = 91.2 GeV, compared to our NNLL' prediction:

Effect on thrust fits [N³LL'+ $\mathcal{O}(\alpha_s^2)$]

 α_s

Effect on thrust fits [N³LL'+ $\mathcal{O}(\alpha_s^2)$]

0.50

0.45

Vary profiles: Dashed Lines: 68% C.L. Solid Lines: 95% C.L. R_{2010} R_{2018} N3LL'+ $O(\alpha_s^2)$

 α_s

Vary renormalon schemes:

Fit in a narrower 2-jet region

- Variability by scheme lessened in more 2-jet like region vs multi jet tail
- Try limiting fit window to, e.g, *τ* < 0.225:

$$Q = M_Z, a =$$

Fit in a narrower 2-jet region

Not too much shift in the fit ellipses, but improved quality of fit:

Future outlook: angularities break degeneracies

In tail region, leading nonperturbative effect is a shift by $c_{\rho}\Omega_1/Q$

Use different Q's. Or different event shapes.

- Angularities: Leading nonperturbative shift is $\frac{1}{Q(1-a)}$: changing *a* is like $2\Omega_1$ changing Q.
- We have preliminary fits based on angularities, but with quite a small amount of data. More would be welcome!

Looking ahead

- Welcome more work to understand robust estimation of theoretical uncertainty due to renormalon schemes
- Encouraging signs pointing to the purely 2-jet-like region for fitting
- Better computation of 3-loop fixed-order thrust distribution also welcome, extracting small contributions out of large singular background challenging
- •We do not yet propose a new value of α_s or Ω_1 [our results limited to N³LL'+ $\mathcal{O}(\alpha_s^2)$]
- •We do observe an upward shift in α_s or of its uncertainties when switching from standard R_{gap} to R* scheme and/or between some perturbative scale choices.
- Dedicated new analyses or measurements of data in *true* two-jet region may yield the best results for fits from two-jet event shapes, complementing more rigorous understanding of nonperturbative effects on 3-jet tail to reduce uncertainties in that region
- May be able to reduce uncertainty from fixed-order nonsingular scale by resumming subleading logs

RELEVANT PHYSICAL SCALES

 $f \rightarrow \hat{t} = \hat{z}$ $m = (1, +\hat{z})$ $m = (1, -\hat{z})$

$$M) \sim Q(1, 2, 52)$$

$$\int_{\infty}^{\infty} Some$$

$$Q(2, 7, 2)$$

(Angularities:) $P_c \sim Q(1, \tau_a^{2a}, \tau_a^{2a})$

1 P1~ RB coll Pc~ (Q, QB2, QB) 1 same set ks~Q(B, B, B)

Angulaitres .

Pc~

set Ta~

	$\tau_a \sim$	P_{1} $\begin{pmatrix} r \\ -r \\$	-) -2	
	~ `	Q (Pt) 1- 97	- (p-)2	
(た) え	¢	Pt ~ P1 ~	Q 22-a Q 2-a Q 2-a	
$Q(l, \tau)$	2 5a, C	z-a)		
ks	3	Ps~ G	z(za, za,	ta)

Angularity event shapes in e⁺e⁻ collisions

• Consider Angularities, which can be defined in terms of the rapidity and p_T of a final state particle 'i', with respect to the thrust axis:

(for some arbitrary, but uniform, definition of "2-jet")

Berger, Kucs, Sterman [hep-ph/0303051]

$$\Delta \langle e \rangle_{s} = \frac{1}{a} \int_{-\infty}^{\infty} d\eta \quad f_{e}(\eta) \quad \frac{1}{Nc} \operatorname{Tr} \langle 0| \overline{T}[Y_{n}^{\dagger} Y_{n}^{\dagger}]$$

$$Lorentz \quad boosts: \quad \Lambda_{\eta}^{\dagger} \Lambda_{\eta},$$

$$Y_{n}: \quad P \quad exp \quad [ig \int_{0}^{\infty}$$

=)
$$\Delta \langle e \rangle_{S} = a \int_{\infty}^{\infty} dn fe(n) \int_{N_{c}}^{L} Tr \langle 0| \overline{T}[Y_{n}^{T}$$

New remainder functions from EERAD3

using LANL Institutional Computing

Uncertainty in nonsingular remainder from EERAD3

• Nonsingular remainder $r^{3}(\tau)$ with different values for the subtracted single log term:

Instability in single log coefficient leads to large uncertainty in fixed-order nonsingular remainder

- For this reason in [2311.03990] we omitted the $\mathcal{O}(\alpha_s^3)$ fixed-order matching, it did not measurably affect our conclusions about scheme/profile dependence of α_s, Ω_1
- We are eager to see alternative calculations of r^3 !

Fit in a narrower 2-jet region

- Variability by scheme lessened in more 2-jet like region vs multi jet tail
- Try limiting fit window to, e.g, $\tau < 0.225$:
- Not too much shift in the fit ellipses, but improved quality of fit:

Angularity distributions

[NNLL'+ $\mathcal{O}(\alpha_s^2)$] 1808.07867

Angularity distributions

[NNLL'+ $\mathcal{O}(\alpha_s^2)$] 1808.07867

Hybrid 2010/2018 scales

