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Motivation
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Λ0 extraction is still a
recent topic



Motivation

Lattice: we use stochastic methods to solve the Euclidean path integral non-perturbatively:

⟨O(t)O(0)⟩ =
1

Z

∫
D[U]e−SE [U]O(t)O(0) ≈

1

N

∑
p(U)∝e−SE

O(t)O(0)

on a discretized space-time grid (lattice), with lattice spacing/lattice regulator a

We are interested in long-t correlation to obtain spectra

Comparing of non-perturbative lattice results and PT expressions → extract αS

Several issues:
large t → larger statistical error/bad signal-to-noise ratio
discretization errors → continuum limit
But: Not trivial in our case
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We use gradient flow to tackle both problems



Methodological background

Gradient flow: smearing technique
(Narayanan, JHEP 03,064 (2006)) (Lüscher, Commun.Math.Phys. 293,899-919 (2010)) (Lüscher, JHEP 08,071 (2010))

Ḃµ(tF , x) = −g2
0

δSYM[B]

δBµ(tF , x)
BLO
µ (tF , x) = g0

∫
d4yKtF (x − y)Aµ(y)

Bµ(tF = 0, x) = Aµ(x) KτF (z) =
e−z2/4tF

(4πtF )2

Introduces new scale: tF /
√
8tF which regularizes/renormalizes observables

ALERT: tF ̸= 0 is not our physical world → need to perform a tF → 0 limit:
Performing a → 0 (continuum limit) while keeping tF/a

2 fixed
Performing a → 0 while keeping tF fixed in physical units
→ perform tF → 0 limit in the continuum

Gradient flow perturbatively treatable → guides the tF → 0 limit
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Physical Background: Static Potential

Static potential V (r) encoded in the spectrum of Wilson loops at fixed r :

⟨Wr×T ⟩
largeT
∝ e−aV (r)

In continuum PT: renormalon ambiguity

On the lattice: 1/a - divergence (r -independent)

renormalize V (r⋆) = 0

Lattice and PT should agree for rΛQCD ≪ 1

Derivative: ∂rV (r) ≡ F (r)
[V ] = fm−1, [F ] = fm−2 → [rV ] = 1 = [r2F ]

numerical derivative of V (r) introduces systematic uncertainties
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We use an alternative definition of F



Physical Background: Static Force

FE (r) = lim
T→0

⟨WEr×T ⟩
⟨Wr×T ⟩

(Vairo, EPJ Web Conf. 126, 02031 (2016)) (Vairo, Mod.Phys.Lett.A 31, 1630039 (2016)) (Brambilla, Phys. Rev. D

63, 014023 (2001))

Chromo E -field insertion in one of the temporal Wilson lines

It is the same quantity as ∂rV (r)

Discretization of E causes a non-trivial behavior to the continuum

may be absorbed into a renormalization constant:

ZEFE (r) = ∂rV (r) ZE → 1 for a → 0

FE and ∂rV (r) are clearly defined on the lattice

use gradient flow to see the impact on ZE
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We use GF to renormalize E -field insertion, and to improve
the signal-to-noise ratio



Remark on the continuum force

Static force/potential is known up to N3LL,
natural scale: µ = 1/r

at finite flow time: known up to NLO
(Brambilla, JHEP 01,184 (2022))

new scales: 1/
√
8tF , 1/

√
r2 + 8tF

We use 1/
√

r2 + 8btF with −0.5 ≤ b ≤ 1, default: b = 0
∼ freedom to choose the scale

tF -expansion:

r2F (r , tF )
tF small

≈ r2F (r , tF = 0) + const︸ ︷︷ ︸
∝nf

tF

r2

⇒ constant at small tF for nf = 0
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Renormalization effect of gradient flow

ZE = ∂rV
FE

with little r -dependence
(Brambilla, Phys.Rev.D105, 054514 (2022))

ZE approaches 1 for
√
8tF > a, for all lattice sizes

(flow time scale dominates over lattice regulator
scale)
→ renormalizes E -field insertion

0 1 2 3 4 5 6 7 8
8 F /a

0.95
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Z E
=

V/
F
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Perform continuum limit at fixed tF for√
8tF > a



Lattice & Scaling details

Simulation parameters:

NS NT β a [fm] t0/a2 Nconf Label
203 40 6.284 0.060 7.868(8) 6000 L20
263 52 6.481 0.046 13.62(3) 6000 L26
303 60 6.594 0.040 18.10(5) 6000 L30
403 80 6.816 0.030 32.45(7) 3300 L40

find reference scale t0/a2 for continuum limit

find r0/a, r1/a

common to set r0 = 0.5 fm for pure gauge

t0-scale is the natural scale for gradient flow studies

√
8t0
r0

= 0.9569(66)

√
8t0
r1

= 1.325(13)

r0
r1
= 1.380(14)

in continuum and after tF → 0
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Continuum limit details

Polynomial interpolations

Tree level improvement at any fixed r and tF :

F impr latt =
F tree cont

F tree latt
F latt

Trivial continuum limit:

F impr latt = Polynomial(a2) = F cont +O(a2)

where
√
8t0 > a for the coarsest lattice 0.00 0.02 0.04 0.06 0.08 0.10 0.12

a2/t0

0.325

0.330

0.335

0.340

0.345

r2 F

r = 0.7323 t0

linear
quadratic

F/t0=1.72 10 02

/t0=1.97 10 02
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tF → 0 limit: Λ0 from F (tF → 0)

1-loop constant at small tF

constant tF → 0 limit

obtain F (tF = 0)

Fit NLO, N2LO, N2LL, N3LO(+u.s.) where Λ0 is
the fit parameter

0.020 0.025 0.030 0.035 0.040 0.045 0.050
F/r2

0.35

0.36

0.37

0.38

0.39
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r2 F

r/ t0 = 0.7982
r/ t0 = 0.8641
r/ t0 = 0.9300
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tF → 0 limit: Λ0 from F (tF → 0)

1-loop constant at small tF

constant tF → 0 limit

obtain F (tF = 0)

Fit NLO, N2LO, N2LL, N3LO(+u.s.) where Λ0 is
the fit parameter

0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15
r/ t0

0.36

0.38

0.40

0.42

0.44

0.46

0.48

0.50

r2 F

F3lLus

AIC range fit
measured

Julian Mayer-Steudte TUM

Static force from the lattice

Λ0 extraction works, but only at larger r



tF → 0 limit: Λ0 from F (tF )

Fit perturbative F (tF ) directly to F (tF ) obtained from the lattice

PT F (tF ) determined by Λ0

Higher order crucial for reliable Λ0 extraction but only up to NLO is
known at finite tF

Combined model function:

Fmodel =

{
F (r) at any order tF = 0

flowtime part from NLO tF ̸= 0
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Julian Mayer-Steudte TUM

Static force from the lattice



tF → 0 limit: Λ0 from F (tF ), tF scale

Fit at fixed r , along tF

scale: µ = 1√
r2+8btF

, −0.5 ≤ b ≤ 1

Obtainings:

slope of fitted function highly depends on b

works less good at larger r
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F/r2
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F3lLus, r/ t0 = 0.6664

b = 1 fit
b = 0 fit

b = 0.5 fit
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tF → 0 limit: Λ0 from F (tF ), tF scale
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Fit works, but tF is not the physical scale



tF → 0 limit: Λ0 from F (tF ), r scale

Fit at fixed tF , along r

scale: µ = 1√
r2+8btF

, −0.5 ≤ b ≤ 1

Obtainings:

fit range depends on b, but slope of fitted function
is more stable

different Λ0 at different fixed tF , but should not
depend too much on that
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Julian Mayer-Steudte TUM

Static force from the lattice



tF → 0 limit: Λ0 from F (tF ), r scale

Fit at fixed tF , along r

scale: µ = 1√
r2+8btF

, −0.5 ≤ b ≤ 1

Obtainings:

fit range depends on b, but slope of fitted function
is more stable

different Λ0 at different fixed tF , but should not
depend too much on that
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8t
0

0
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const zftl
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works at smaller r and along the
physical relevant scale



Uncertainties of Λ0

Statistical error: Jackknife sampling

Fit errors for different fit ranges: Akaike information criterion

Perturbation errors:
µ = 1√

r2+8btF

not unique

at finite tF : variation −0.5 ≤ b ≤ 1
at tF = 0: µ = s

r with 1√
2
≤ s ≤

√
2

Errors are independent of each other
→ sum in quadrature
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Final result includes statistical and perturbative uncertainties



Results of Λ0

All methods agree within their errors

We state fit at fixed tF along r at
N3LO+u.s. as final result:√

8t0Λ0 = 0.629+22
−26

δ(
√

8t0Λ0) = (4)lattice(+18
−25)

s−scale(+13
−7 )b−scale

r0Λ0 = 0.657+23
−28

Λ0 = 259+9
−11MeV, r0 = 0.5 fm 0.80 0.90

8t0 0

fixed r 
 r=0.6664

fixed r 
 r=0.7323

fixed r 
 r=0.7982

large r 

fixed f 

fixed r 
 r=0.6664

fixed r 
 r=0.7323

fixed r 
 r=0.7982

large r 

fixed f 

fixed r 
 r=0.6664

fixed r 
 r=0.7323

fixed r 
 r=0.7982

large r 

fixed f 

fixed r 
 r=0.6664

fixed r 
 r=0.7323

fixed r 
 r=0.7982

large r 

fixed f 

fixed r 
 r=0.6664

fixed r 
 r=0.7323

fixed r 
 r=0.7982

large r 

fixed f 
F1l

0.60 0.70
8t0 0

F2l

0.62 0.70
8t0 0

F2lLus

0.600.63
8t0 0

F3l

0.60 0.70
8t0 0

F3lLus

Julian Mayer-Steudte TUM

Static force from the lattice



Summary

With GF direct force measurement possible

GF renormalizes E -field insertions
→ useful in other NREFT applications

Λ0 extraction in several ways

Λ0 compatible to recent GF studies

Λ0 with GF is systematically larger even in our
study

GF applicable with fermions
0.52 0.54 0.56 0.58 0.60 0.62 0.64

8t0 0

Alpha 98 

QCDSF/UKQCD 05 

Brambilla 10 

Ishikawa 17 

FLAG average 2021 

Kitazawa 16 

Dalla Brida 19 

Wong 23 (prelim) 

Hasenfratz 23 

This work

Thank you for your attention!
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Sample frame title

This is some text in a sample frame. Don’t waste your time and stay focused to the talks.
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Knock Knock!! Who’s there!?


