Λ_0 from the static force on the lattice with gradient flow arXiv:2312.17231

Julian Mayer-Steudte^{*1}, Nora Brambilla¹, Viljami Leino², Antonio Vairo¹

¹Technical University of Munich

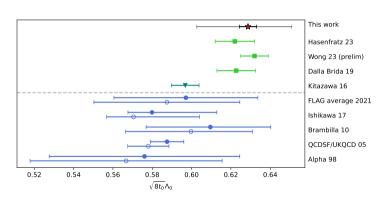
²Helmholtzinsitut Mainz

AlphaS meeting Trento, Feb 5 2024

Motivation

■ REMARK:
$$\Lambda_0 = \Lambda_{\overline{\rm MS}}^{n_f=0}$$

- Below dashed line: without GF
- Beyond dashed line: with GF
- Brambilla 10: from static force → large errors due to scaling uncertainty
- with GF much smaller errors
- with GF value became larger
 - → increased FLAG error



Motivation

■ Lattice: we use stochastic methods to solve the Euclidean path integral non-perturbatively:

$$\langle O(t)O(0)\rangle = rac{1}{Z}\int \mathcal{D}[U]e^{-S_E[U]}O(t)O(0) pprox rac{1}{N}\sum_{p(U)\propto e^{-S_E}}O(t)O(0)$$

on a discretized space-time grid (lattice), with lattice spacing/lattice regulator a

- We are interested in long-t correlation to obtain spectra
- lacktriangle Comparing of non-perturbative lattice results and PT expressions ightarrow extract $lpha_S$
- Several issues:
 - large $t \rightarrow$ larger statistical error/bad signal-to-noise ratio
 - discretization errors → continuum limit But: Not trivial in our case

We use gradient flow to tackle both problems

Methodological background

■ Gradient flow: smearing technique

(Narayanan, JHEP 03,064 (2006)) (Lüscher, Commun.Math.Phys. 293,899-919 (2010)) (Lüscher, JHEP 08,071 (2010))

$$\dot{B}_{\mu}(t_{F},x) = -g_{0}^{2} rac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}(t_{F},x)} \hspace{1cm} B_{\mu}^{LO}(t_{F},x) = g_{0} \int d^{4}y \mathcal{K}_{t_{F}}(x-y) A_{\mu}(y) \ K_{\tau_{F}}(z) = rac{e^{-z^{2}/4t_{F}}}{(4\pi t_{F})^{2}}$$

■ Introduces new scale: $t_F / \sqrt{8t_F}$ which regularizes/renormalizes observables

Methodological background

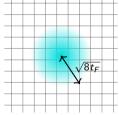
■ Gradient flow: smearing technique

(Narayanan, JHEP 03,064 (2006)) (Lüscher, Commun.Math.Phys. 293,899-919 (2010)) (Lüscher, JHEP 08,071 (2010))

$$\dot{B}_{\mu}(t_{F},x) = -g_{0}^{2} \frac{\delta S_{\mathrm{YM}}[B]}{\delta B_{\mu}(t_{F},x)} \qquad \qquad B_{\mu}^{LO}(t_{F},x) = g_{0} \int d^{4}y \mathcal{K}_{t_{F}}(x-y) A_{\mu}(y)$$

$$B_{\mu}(t_F=0,x) = A_{\mu}(x)$$
 $K_{\tau_F}(z) = rac{e^{-z^2/4t_F}}{(4\pi t_F)^2}$

lacktriangleright Introduces new scale: t_F / $\sqrt{8t_F}$ which regularizes/renormalizes observables



Methodological background

Gradient flow: smearing technique

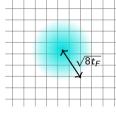
(Narayanan, JHEP 03,064 (2006)) (Lüscher, Commun.Math.Phys. 293,899-919 (2010)) (Lüscher, JHEP 08,071 (2010))

$$\dot{B}_{\mu}(t_F, x) = -g_0^2 \frac{\delta S_{\rm YM}[B]}{\delta B_{\mu}(t_F, x)}$$
 $B_{\mu}^{LO}(t_F, x) = g_0 \int d^4 y K_{t_F}(x - y) A_{\mu}(y)$

$$B_{\mu}(t_F=0,x)=A_{\mu}(x)$$
 $K_{\tau_F}(z)=rac{e^{-z^2/4t_F}}{(4\pi t_F)^2}$

■ ALERT:
$$t_F \neq 0$$
 is not our physical world \rightarrow need to perform a $t_F \rightarrow 0$ limit:

- Performing $a \rightarrow 0$ (continuum limit) while keeping t_F/a^2 fixed
- Performing $a \rightarrow 0$ while keeping t_F fixed in physical units \rightarrow perform $t_F \rightarrow 0$ limit in the continuum
- lacksquare Gradient flow perturbatively treatable o guides the $t_F o 0$ limit

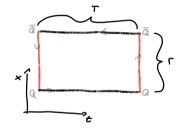


Physical Background: Static Potential

■ Static potential V(r) encoded in the spectrum of Wilson loops at fixed r:

$$\langle W_{r\times T}\rangle \overset{\mathrm{large}\, T}{\propto} e^{-aV(r)}$$

- In continuum PT: renormalon ambiguity
- On the lattice: 1/a divergence (r-independent)
- renormalize $V(r^*) = 0$
- \blacksquare Lattice and PT should agree for $r\Lambda_{\rm QCD}\ll 1$



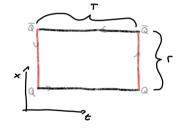
Physical Background: Static Potential

■ Static potential V(r) encoded in the spectrum of Wilson loops at fixed r:

$$\langle W_{r \times T} \rangle \overset{\text{large } T}{\propto} e^{-aV(r)}$$

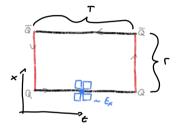
- In continuum PT: renormalon ambiguity
- On the lattice: 1/a divergence (r-independent)
- renormalize $V(r^*) = 0$
- Lattice and PT should agree for $r\Lambda_{\rm QCD}\ll 1$
- Derivative: $\partial_r V(r) \equiv F(r)$ $[V] = \text{fm}^{-1}, [F] = \text{fm}^{-2} \rightarrow [rV] = 1 = [r^2 F]$
- lacktriangleright numerical derivative of V(r) introduces systematic uncertainties

We use an alternative definition of F



Physical Background: Static Force

- $F_E(r) = \lim_{T \to 0} \frac{\langle WE_{r \times T} \rangle}{\langle W_{r \times T} \rangle}$ (Vairo, EPJ Web Conf. 126, 02031 (2016)) (Vairo, Mod.Phys.Lett.A 31, 1630039 (2016)) (Brambilla, Phys. Rev. D 63, 014023 (2001))
- Chromo E-field insertion in one of the temporal Wilson lines
- It is the same quantity as $\partial_r V(r)$
- Discretization of E causes a non-trivial behavior to the continuum



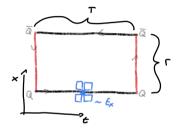
Physical Background: Static Force

- $F_E(r) = \lim_{T \to 0} \frac{\langle WE_{r \times T} \rangle}{\langle W_{r \times T} \rangle}$ (Vairo, EPJ Web Conf. 126, 02031 (2016)) (Vairo, Mod.Phys.Lett.A 31, 1630039 (2016)) (Brambilla, Phys. Rev. D 63, 014023 (2001))
- Chromo *E*-field insertion in one of the temporal Wilson lines
- It is the same quantity as $\partial_r V(r)$
- Discretization of E causes a non-trivial behavior to the continuum
- may be absorbed into a renormalization constant:

$$Z_E F_E(r) = \partial_r V(r)$$
 $Z_E \to 1 \text{ for } a \to 0$

- F_E and $\partial_r V(r)$ are clearly defined on the lattice
- \blacksquare use gradient flow to see the impact on Z_E

We use GF to renormalize E-field insertion, and to improve the signal-to-noise ratio

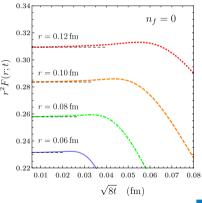


Remark on the continuum force

- Static force/potential is known up to N³LL, natural scale: $\mu = 1/r$
- at finite flow time: known up to NLO (Brambilla, JHEP 01,184 (2022)) new scales: $1/\sqrt{8t_F}$, $1/\sqrt{r^2+8t_F}$
- We use $1/\sqrt{r^2 + 8bt_F}$ with $-0.5 \le b \le 1$, default: b = 0 \sim freedom to choose the scale
- t_F -expansion:

$$r^2 F(r, t_F) \stackrel{t_F \text{ small}}{\approx} r^2 F(r, t_F = 0) + \underbrace{const}_{\propto n_F} \frac{t_F}{r^2}$$

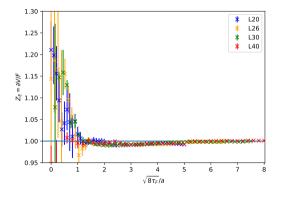
 \Rightarrow constant at small t_F for $n_f = 0$



Renormalization effect of gradient flow

- $Z_E = \frac{\partial_r V}{F_E}$ with little *r*-dependence (Brambilla, Phys.Rev.D105, 054514 (2022))
- Z_E approaches 1 for $\sqrt{8t_F} > a$, for all lattice sizes (flow time scale dominates over lattice regulator scale)
 - \rightarrow renormalizes E-field insertion

Perform continuum limit at fixed t_F for $\sqrt{8t_F} > a$



Lattice & Scaling details

Simulation parameters:

N_S	N_T	β	<i>a</i> [fm]	t_0/a^2	$N_{ m conf}$	Label
20^{3}	40	6.284	0.060	7.868(8)	6000	L20
26 ³	52	6.481	0.046	13.62(3)	6000	L26
30 ³	60	6.594	0.040	18.10(5)	6000	L30
40 ³	80	6.816	0.030	32.45(7)	3300	L40

- find reference scale t_0/a^2 for continuum limit
- find r_0/a , r_1/a
- \blacksquare common to set $r_0 = 0.5 \, \text{fm}$ for pure gauge
- $lacktriangleq t_0$ -scale is the natural scale for gradient flow studies

$$\frac{\sqrt{8t_0}}{r_0} = 0.9569(66)$$

$$\frac{\sqrt{8t_0}}{r_1} = 1.325(13)$$

$$\frac{r_0}{r_1} = 1.380(14)$$

in continuum and after $t_F \to 0$

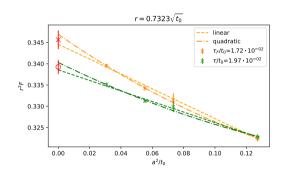
Continuum limit details

- Polynomial interpolations
- Tree level improvement at any fixed r and t_F :

$$F^{ ext{impr latt}} = rac{F^{ ext{tree cont}}}{F^{ ext{tree latt}}} F^{ ext{latt}}$$

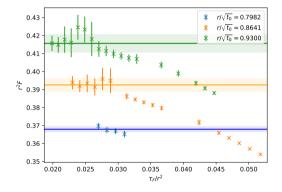
■ Trivial continuum limit:

$$F^{\mathrm{impr\ latt}} = \mathrm{Polynomial}(a^2) = F^{\mathrm{cont}} + \mathcal{O}(a^2)$$
 where $\sqrt{8t_0} > a$ for the coarsest lattice



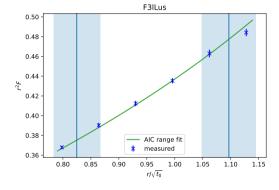
$t_F \rightarrow 0$ limit: Λ_0 from $F(t_F \rightarrow 0)$

- 1-loop constant at small t_F
- lacksquare constant $t_F o 0$ limit
- obtain $F(t_F = 0)$



$t_F \rightarrow 0$ limit: Λ_0 from $F(t_F \rightarrow 0)$

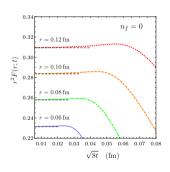
- 1-loop constant at small t_F
- \blacksquare constant $t_F \rightarrow 0$ limit
- obtain $F(t_F = 0)$
- Fit NLO, N^2LO , N^2LL , $N^3LO(+u.s.)$ where Λ_0 is the fit parameter



$t_F \rightarrow 0$ limit: Λ_0 from $F(t_F)$

- Fit perturbative $F(t_F)$ directly to $F(t_F)$ obtained from the lattice
- PT $F(t_F)$ determined by Λ_0
- lacktriangle Higher order crucial for reliable Λ_0 extraction but only up to NLO is known at finite t_F
- Combined model function:

$$F^{
m model} = egin{cases} F(r) & {
m at \ any \ order} & t_F = 0 \\ {
m flowtime \ part \ from \ NLO} & t_F
eq 0 \end{cases}$$

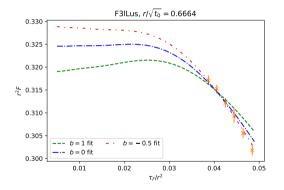


$t_F \rightarrow 0$ limit: Λ_0 from $F(t_F)$, t_F scale

- Fit at fixed r, along t_F
- lacksquare scale: $\mu=rac{1}{\sqrt{r^2+8bt_F}}$, $-0.5\leq b\leq 1$

Obtainings:

- slope of fitted function highly depends on b
- works less good at larger r



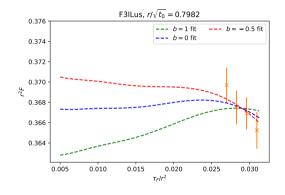
$t_F \rightarrow 0$ limit: Λ_0 from $F(t_F)$, t_F scale

- Fit at fixed r, along t_F
- scale: $\mu = \frac{1}{\sqrt{r^2 + 8bt_E}}, -0.5 \le b \le 1$

Obtainings:

- slope of fitted function highly depends on b
- works less good at larger r

Fit works, but t_F is not the physical scale



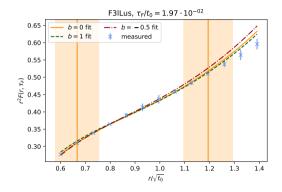
$t_F \rightarrow 0$ limit: Λ_0 from $F(t_F)$, r scale

- Fit at fixed t_F , along r
- scale: $\mu = \frac{1}{\sqrt{r^2 + 8bt_E}}$, $-0.5 \le b \le 1$

Obtainings:

fit range depends on b, but slope of fitted function is more stable

different Λ_0 at different fixed t_F , but should not depend too much on that



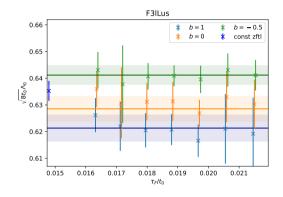
$t_F \rightarrow 0$ limit: Λ_0 from $F(t_F)$, r scale

- Fit at fixed t_F , along r
- scale: $\mu = \frac{1}{\sqrt{r^2 + 8bt_F}}$, $-0.5 \le b \le 1$

Obtainings:

- fit range depends on b, but slope of fitted function is more stable
- different Λ_0 at different fixed t_F , but should not depend too much on that





Uncertainties of Λ_0

- Statistical error: Jackknife sampling
- Fit errors for different fit ranges: Akaike information criterion
- Perturbation errors:

$$\mu = \frac{1}{\sqrt{r^2 + 8bt_F}}$$
 not unique

■ at finite
$$t_F$$
: variation $-0.5 \le b \le 1$

at finite
$$t_F$$
: variation $-0.5 \le b \le 1$
at $t_F = 0$: $\mu = \frac{s}{r}$ with $\frac{1}{\sqrt{2}} \le s \le \sqrt{2}$

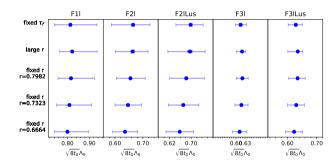
- Errors are independent of each other
 - \rightarrow sum in quadrature

Final result includes statistical and perturbative uncertainties

Results of Λ_0

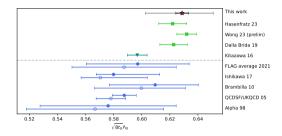
- All methods agree within their errors
- We state fit at fixed t_F along r at N³LO+u.s. as final result:

$$\sqrt{8t_0}\Lambda_0 = 0.629^{+22}_{-26}$$
 $\delta(\sqrt{8t_0}\Lambda_0) = (4)^{\mathrm{lattice}} {+18 \choose -25}^{\mathrm{s-scale}} {+13 \choose -7}^{\mathrm{b-scale}}$ $r_0\Lambda_0 = 0.657^{+23}_{-28}$ $\Lambda_0 = 259^{+9}_{-11} \, \mathrm{MeV}, r_0 = 0.5 \, \mathrm{fm}$



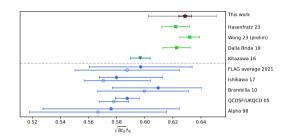
Summary

- With GF direct force measurement possible
- GF renormalizes E-field insertions
 → useful in other NREFT applications
- \blacksquare Λ_0 extraction in several ways
- \blacksquare Λ_0 compatible to recent GF studies
- \blacksquare Λ_0 with GF is systematically larger even in our study
- GF applicable with fermions



Summary

- With GF direct force measurement possible
- GF renormalizes E-field insertions
 → useful in other NREFT applications
- \blacksquare Λ_0 extraction in several ways
- \blacksquare Λ_0 compatible to recent GF studies
- $lack \Lambda_0$ with GF is systematically larger even in our study
- GF applicable with fermions



Thank you for your attention!

Sample frame title

This is some text in a sample frame. Don't waste your time and stay focused to the talks.

Knock Knock!! Who's there!?

