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Introduction



Infrared Divergence and eikonal approximation

p + k

k

p

Mµ = M0 igs ū(p)γµ

(
/p+ /k +m

(p+ k)2 −m2

)
T a

∝ 1

2p0 k0(1− cos θ)

➦ Emitted radiation have vanishing momenta (k0 → 0)

➦ Collinear to the emitting particle (θ → 0)

➦ Infrared singularities · · · now what? −→ KLN Theorem
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Infrared safe observables

An observable X is Infrared safe if

➦ Soft emission

pj
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pj → 0

➦ Collinear splitting
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Event Shape Variables



Different Events and different Shapes
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Event shape variables

➦ Observables to help understand the final state of high energy collisions

➦ Determine the shape of an event

➦ Essential tool for precise measurement of strong coupling constant
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Event shape and αs

➦ Thrust distribution at [LEP, DELPHI collab.]

➦ Prospects for strong coupling measurement at hadron colliders using
soft-drop jet mass [JHEP04(2023)087]

➦ Fitting the Strong Coupling Constant with Soft-Drop Thrust
[JHEP11(2019)179 ]
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Event shape variables

Thrust

Spherocity

C-parameter

Jet mass

Jet broadening

Angularities

1977 [E. Farhi]

1977 [H. Georgi and M. Machacek]

1978 [G. C. Fox, S. Wolfram ...]

1981 [L. Clavelli et. al.]

1992 [S. Catani et. al.]

2003 [C.F. Berger et. al.]



Thrust and C-parameter

➦ Thrust :

T = max
n

∑
i |pi · n|∑

i |pi|
= max{x1, x2, x3}

➦ C-parameter :

C = 3− 3

2

∑
i,j

(
p(i) · p(j)

)2
(p(i) · q) (p(j) · q)

c =
C

6
=

(1− x1) (1− x2) (1− x3)

x1 x2 x3
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Next-to-leading power terms



Next-to-leading Power terms

Distribution in variable ξ

dσ

dξ
∝

∞∑
n=0

(αs

π

)n
2n−1∑
m=0


LP terms︷ ︸︸ ︷

c
(−1)
nm

(
logm ξ

ξ

)
+

+ cnδ(ξ)+ c
(0)
nm logm ξ︸ ︷︷ ︸
NLP terms

+ . . .



Thrust distribution

1

σ0

dσ

dτ
=

2αs

3π

( LP terms︷ ︸︸ ︷
−3− 4 log τ

τ
− 2 + 2 log τ︸ ︷︷ ︸

NLP terms

+ . . .

)



LP and NLP terms

LP terms

➦ Universally process independent form

➦ Linked to soft and collinear divergences

➦ Resummation is well understood

NLP terms

➦ Linked to next-to-soft and collinear divergences

➦ No general Resummation framework
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Event Shape distribution

dσ

dX
=

1

2s

∫
|M|2

new condition︷ ︸︸ ︷
δ(X − f(x1, x2, x3)) dΦ

Thrust distribution for e+e− → qq̄g

1

σ0

dσ

dT
=

2αs

3π

∫ 1

0

dx1

∫ 1−x1

0

dx2

[
x21 + x22

(1− x1)(1− x2)

]
δ[T −max(x1, x2, x3)]



The formalism of shifted kinematics

➦ Shifted kinematic approximation2∑
|Mshift|2 = g2sCF

2p1 · p2
(p1 · k)(p2 · k)︸ ︷︷ ︸

Eikonal

|M0(p1 − δp1, p2 − δp2)|2

pa

pb

q, γ∗

e−

e+

qi

q̄j

p2

p3

e−

e+

q, γ∗

p3

p2

p1

pb

qi
pa

q̄j

p1
g

g

➦ Focuses on contribution from next-to-soft gluon emissions

2Del Duca et. al. (2017)
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The Matrix Elements

➦ Exact approach∑
|Mexact|2 =8(e2eq)

2Ncg
2
sCF

1

3Q2

x21 + x22
(1− x1)(1− x2)

➦ Shifted kinematics∑
|Mshift|2 =8(e2eq)

2Ncg
2
sCF

1

3Q2

2x1 + 2x2 − 2

(1− x1)(1− x2)

➦ Soft quark approximation∑
|Mrem|2 =8(e2eq)

2Ncg
2
sCF

1

3Q2

(
1− x1
1− x2

+
1− x2
1− x1

)
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Thrust distribution

Exact approach

Shifted kinematics

Soft quark

2αs

3π

(
−3− 4 log τ

τ
− 2 + 2 log τ

)

2αs

3π

(
−4− 4 log τ

τ
+ 4 + 4 log τ

)

2αs

3π

(
1

τ
− 6 + 2 log τ

)



Breakdown of thrust distribution from region-I

➦ Upper limit contributions

1

σ0(s)

dσ

dτ

∣∣∣∣∣
I,u

=
2αs

3π

(
−2 log τ

τ
+ 2 + 2 log τ − τ

2
+ τ log τ +O

(
τ2
))

,

➦ Lower limit contributions

1

σ0(s)

dσ

dτ

∣∣∣∣∣
I,l

=
2αs

3π

(
3

2τ
+ 2− 2τ +O(τ2)

)
.

➦ LLs at LP and NLP from soft and next-to-soft gluon emissions
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Breakdown of thrust distribution from region-III

➦ Upper limit contributions

1

σ0(s)

dσ

dτ

∣∣∣∣∣
I,u

=
2αs

3π

(
−2− log τ + (1− log τ)τ +O

(
τ2
))

,

➦ Lower limit contributions

1

σ0(s)

dσ

dτ

∣∣∣∣∣
I,l

=
2αs
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(
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)
.

➦ LL at NLP from soft (anti-) quark emissions3

3JHEP03(2020)106
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c-parameter distribution

Exact approach

Shifted kinematics

Soft quark

2αs

3π

(
−3− 4 log c

c
− 3 + 4 log c

)

2αs

3π

(
−4− 4 log c

τ
+ 4 + 8 log c

)

2αs

3π

(
1

c
− 7− 4 log c

)



Plots for thrust and c-parameter distribution

A comparison graph between Eikonal approximation and Shifted formalism

Exact

Shift (up to NLP)

Exact (up to LP)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

2

4

6

8

τ

1 σ
o

d
σ

d
τ

172GeV

Exact

Shift (up to NLP)

Eikonal (up to NLP

0.00 0.02 0.04 0.06 0.08 0.10

0

5

10

15

20

25

30

c

1 σ
o

d
σ

d
c

172GeV

The shifted formalism provides a better approximation!



Struggles with Elliptic integrals



Elliptic integrals appearing in c-parameter distribution and their quandaries

➦ Final integrand

1

σ0(s)

dσ

dc

∣∣∣∣∣
NLO

=
2αs

3π

∫ y2

y1

dy
2(1− y)

(
y
(
c(y − 2)2 + (y − 3)y + 4

)
− 2
)

c(cy + y − 1)
√
y(cy + y − 1) (c(y − 2)2 + (y − 1)y)

.

➦ The limits

y1 =
1 + 4c−

√
1− 8c

2(1 + c)
, y2 =

1 + 4c+
√
1− 8c

2(1 + c)
.

➦ Final form

1

σ0(s)

dσ

dc

∣∣∣∣∣
NLO

=
2αs

3π

(
e(c) E[m1(c)] + p(c) Π[n1(c),m1(c)] + k(c) K[m1(c)]

)
,
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Transformation of elliptic integrals

The three kinds of incomplete elliptic integrals are

F [ϕ,m] =

∫ sinϕ

0

dt√
(1− t2)(1−mt2)

,

E[ϕ,m] =

∫ sinϕ

0

dt

√
1−mt2

1− t2
,

Π[n, ϕ,m] =

∫ sinϕ

0

dt

(1− nt2)
√

(1− t2)(1−mt2)
.

ϕ, m and n are called the amplitude, parameter and characteristic respectively



Transformation rules

If the amplitude ϕ = π
2

F [ϕ,m] = K[m] ,

E[ϕ,m] = E[m] ,

Π[n, ϕ,m] = Π[n,m] .

The incomplete elliptic integral reduces to complete elliptic integral!



Amplitude of elliptic integrals

Non reducible

Reducible

ϕ1

∣∣∣
y=y2

& ϕ2

∣∣∣
y=y1

ϕ1

∣∣∣
y=y1

& ϕ2

∣∣∣
y=y2

ϕ1

∣∣∣
y=y2

= ϕ2

∣∣∣
y=y1

= 0



Trouble with transformations

Elliptic integral and their amplitudes

ϕ1,2(c, y) =

(
−1 +

√
1− 8c− 4c± 8c/y

2
√
1− 8c

)1/2

.

➦ Non-reducible for ϕ1

∣∣∣
y=y2

& ϕ2

∣∣∣
y=y1

➦ ϕ1

∣∣∣
y=y2

= ϕ2
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y=y1

= 0
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Fixing the trouble with non-reducible elliptic integrals

Use an off-shell parameter4

E

sin−1

( (
−4c+

√
1− 8c− 1

)
(c+ 1)e

√
1− 8c

(
2c(e+ 2) +

√
1− 8c+ 2e+ 1

))1/2

, m1(c)


Argument (ϕ) → 0 as e→ 0

E[ϕ1(c, e),m1(c)] =

√(
−4c+

√
1− 8c− 1

)
(c+ 1)

√
1− 8c

(
4c+

√
1− 8c+ 1

)√e+O(e3/2)

4y(1,2) → y(1,2) + e



The final form

1

σ0(s)

dσ

dc

∣∣∣∣∣
NLO

=
2αs

3π

(
e(c) E[m1(c)] + p(c) Π[n1(c),m1(c)] + k(c) K[m1(c)]

)
,

1

σ0(s)

dσ

dc

∣∣∣∣∣
NLO

=
2αs

3π

(
−3− 4 log c

c
− 3 + 4 log c
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➦ Modify the limits, by introducing an off-shell parameter.

➦ Categorize the elliptic integrals into reducible and non-reducible type

➦ Expand the non-reducible integral around e = 0
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Summary and Outlook

➦ Shifted kinematics together with soft quark approximation captures LL
and NLL upto NLP accuracy.

➦ Non-reducible elliptic integrals can be expanded around an off-shell
parameter.

➦ Application of shifted kinematics to other event shapes such as spherocity,
Angularities and Jet broadening
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Scattering in QFT

➦ Computation of physical observables

➦

σ =
1

2s

∫
dΦ |M|2 ,

dσ

dτ
, τ



QCD - The Theory for Strong Interaction

➦ Interaction between quarks and gluons

➦ Non-abelian gauge theory with gauge group SU(3)

➦ Asymptotically free theory

LQCD = ψ̄(iγµ∂µ −m)ψ − 1

4
(F a

µν)
2 + gψ̄γµT aψAa

µ + LGF + Lghost

➦ F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν

➦ [T a, T b] = ifabcT c

➦ LGF = −1
2ξ

(∂µAa
µ)(∂

νAa
ν)

➦ Lghost = −c̄a
(
∂µ(δab∂µ + gsfabcA

c
µ)
)
cb



Feynman Rules for QCD

a, µ b, νp

δab
−igµν+(1−α)

pµpν
p2

p2+iǫ

i j
p

δij
i(/p+m)

p2−m2+iǫ

a p b
iδab
p2+iǫ



Feynman Rules for QCD

i

j

a

igγµT a
ij

p

k

q

a, µ

b, ν

c, ρ

gfabc[gµν(k − p)ρ + CP ]

a, µ
b, ν

c, ρ
d, σ

−ig2[fabcf cde(gµρgνσ − gµσgνρ) + CP ]

a

c

b, µ

−gfabcpµ



Infrared singularities now what?

KLN Theorem

Singularities from loop integrations will cancel with the singularities from phase
space integrations

k

leaving behind large logs! .... Resummation

δpα1 = −1

2

(
p2 · k
p1 · p2

pα1 − p1 · k
p1 · p2

pα2 + kα
)
,

δpα2 = −1

2

(
p1 · k
p1 · p2

pα2 − p2 · k
p1 · p2

pα1 + kα
)
.


