

Power corrections and α_s from $e^+e^- \rightarrow$ Hadrons

Stephan Narison

Acknowledgements

- Acknowledgements
 - Special thanks to

David, Stefan, Guilia, Ines and some others for their Helps and...patience on my different organizational questions !

- Acknowledgements
 - Special thanks to David, Stefan, Guilia, Ines and some others for their Helps and...patience on my different organizational questions !
 - Thanks to Toni Pich aand Valya Zakharov for some exchanges along the preparation of this talk !

- Acknowledgements
 - Special thanks to David, Stefan, Guilia, Ines and some others for their Helps and...patience on my different organizational questions !
 - Thanks to Toni Pich aand Valya Zakharov for some exchanges along the preparation of this talk !
- Why one needs improved estimates of Power corrections?

- Acknowledgements
 - Special thanks to David, Stefan, Guilia, Ines and some others for their Helps and...patience on my different organizational questions !
 - Thanks to Toni Pich aand Valya Zakharov for some exchanges along the preparation of this talk !
- Why one needs improved estimates of Power corrections?
 - The success of the SVZ QCD specral sum rules (QSSR) for Hadrons phenomenology needs improved value of Power corrections : QSSR results are often confirmed by Lattice calculations few years later indicating that the two approaches are complementary.

- Acknowledgements
 - Special thanks to David, Stefan, Guilia, Ines and some others for their Helps and...patience on my different organizational questions !
 - Thanks to Toni Pich aand Valya Zakharov for some exchanges along the preparation of this talk !
- Why one needs improved estimates of Power corrections?
 - The success of the SVZ QCD specral sum rules (QSSR) for Hadrons phenomenology needs improved value of Power corrections : QSSR results are often confirmed by Lattice calculations few years later indicating that the two approaches are complementary.
 - Test of the convergence of the SVZ OPE.

- Acknowledgements
 - Special thanks to David, Stefan, Guilia, Ines and some others for their Helps and...patience on my different organizational questions !
 - Thanks to Toni Pich aand Valya Zakharov for some exchanges along the preparation of this talk !
- Why one needs improved estimates of Power corrections?
 - The success of the SVZ QCD specral sum rules (QSSR) for Hadrons phenomenology needs improved value of Power corrections : QSSR results are often confirmed by Lattice calculations few years later indicating that the two approaches are complementary.
 - Test of the convergence of the SVZ OPE.
 - Accurate value of α_s from e⁺e⁻ → Hadrons and τ-decay needs more precise values of Power Corrections.

- Acknowledgements
 - Special thanks to David, Stefan, Guilia, Ines and some others for their Helps and...patience on my different organizational questions !
 - Thanks to Toni Pich aand Valya Zakharov for some exchanges along the preparation of this talk !
- Why one needs improved estimates of Power corrections?
 - The success of the SVZ QCD specral sum rules (QSSR) for Hadrons phenomenology needs improved value of Power corrections : QSSR results are often confirmed by Lattice calculations few years later indicating that the two approaches are complementary.
 - Test of the convergence of the SVZ OPE.
 - Accurate value of α_s from e⁺e⁻ → Hadrons and τ-decay needs more precise values of Power Corrections.
 - QCD condensates are used as inputs in some other approaches.

- 🗩 🐥 Motivation
- Fit of the $e^+e^- \rightarrow I=1$ Hadrons data tested from the HPV of $\frac{1}{2}(g-2)_{\mu}$

- 🗩 🐥 Motivation
- Fit of the $e^+e^- \rightarrow I=1$ Hadrons data tested from the HPV of $\frac{1}{2}(g-2)_{\mu}$
- $\langle \alpha_s G^2 \rangle$ and D = 6 condensates from Ratio of Laplace sum rules (LSR)

- 🗩 🐥 Motivation
- Fit of the $e^+e^- \rightarrow I=1$ Hadrons data tested from the HPV of $\frac{1}{2}(g-2)_{\mu}$
- \heartsuit $\langle \alpha_s G^2 \rangle$ and D = 6 condensates from Ratio of Laplace sum rules (LSR)
- $\Rightarrow D \ge 8$ condensates from τ -like decay high moments

- 🗩 🐥 Motivation
- Fit of the $e^+e^- \rightarrow I=1$ Hadrons data tested from the HPV of $\frac{1}{2}(g-2)_{\mu}$
- \heartsuit $\langle \alpha_s G^2 \rangle$ and D = 6 condensates from Ratio of Laplace sum rules (LSR)
- $\Rightarrow D \ge 8$ condensates from τ -like decay high moments
- Re-estimate of the D = 6,4 QCD condensates from Ratio of LSR

- 🗩 🐥 Motivation
- Fit of the $e^+e^- \rightarrow I=1$ Hadrons data tested from the HPV of $\frac{1}{2}(g-2)_{\mu}$
- \heartsuit $\langle \alpha_s G^2 \rangle$ and D = 6 condensates from Ratio of Laplace sum rules (LSR)
- $\Rightarrow D \ge 8$ condensates from τ -like decay high moments
- Re-estimate of the D = 6,4 QCD condensates from Ratio of LSR
- \diamond Summary: QCD condensates from $e^+e^- \rightarrow$ Hadrons

- 🗩 🐥 Motivation
- Fit of the $e^+e^- \rightarrow I=1$ Hadrons data tested from the HPV of $\frac{1}{2}(g-2)_{\mu}$
- \heartsuit $\langle \alpha_s G^2 \rangle$ and D = 6 condensates from Ratio of Laplace sum rules (LSR)
- $\Rightarrow D \ge 8$ condensates from τ -like decay high moments
- Re-estimate of the D = 6,4 QCD condensates from Ratio of LSR
- \diamond Summary: QCD condensates from $e^+e^- \rightarrow$ Hadrons
- $\heartsuit \alpha_s$ from BNP τ -like decay lowest moment within the SVZ OPE.

- 🗩 🐥 Motivation
- Fit of the $e^+e^- \rightarrow I=1$ Hadrons data tested from the HPV of $\frac{1}{2}(g-2)_{\mu}$
- \heartsuit $\langle \alpha_s G^2 \rangle$ and D = 6 condensates from Ratio of Laplace sum rules (LSR)
- $\Rightarrow D \ge 8$ condensates from τ -like decay high moments
- Re-estimate of the D = 6,4 QCD condensates from Ratio of LSR
- \diamond Summary: QCD condensates from $e^+e^- \rightarrow$ Hadrons
- $\heartsuit \alpha_s$ from BNP τ -like decay lowest moment within the SVZ OPE.
- A Estimate of the α_s^5 corrections to $\alpha_s(M_{\tau})$

- 🗩 🐥 Motivation
- Fit of the $e^+e^- \rightarrow I=1$ Hadrons data tested from the HPV of $\frac{1}{2}(g-2)_{\mu}$
- \heartsuit $\langle \alpha_s G^2 \rangle$ and D = 6 condensates from Ratio of Laplace sum rules (LSR)
- $\Rightarrow D \ge 8$ condensates from τ -like decay high moments
- Re-estimate of the D = 6,4 QCD condensates from Ratio of LSR
- \diamond Summary: QCD condensates from $e^+e^- \rightarrow$ Hadrons
- $\heartsuit \alpha_s$ from BNP τ -like decay lowest moment within the SVZ OPE.
- \blacklozenge Estimate of the α_s^5 corrections to $\alpha_s(M_{\tau})$
- A The quest of $1/Q^2$ contribution to $\alpha_s(M_{\tau})$

- 🗩 🐥 Motivation
- Fit of the $e^+e^- \rightarrow I=1$ Hadrons data tested from the HPV of $\frac{1}{2}(g-2)_{\mu}$
- \heartsuit $\langle \alpha_s G^2 \rangle$ and D = 6 condensates from Ratio of Laplace sum rules (LSR)
- $h D \ge 8$ condensates from τ -like decay high moments
- Re-estimate of the D = 6,4 QCD condensates from Ratio of LSR
- \diamond Summary: QCD condensates from $e^+e^- \rightarrow$ Hadrons
- $\heartsuit \alpha_s$ from BNP τ -like decay lowest moment within the SVZ OPE.
- \blacklozenge Estimate of the α_s^5 corrections to $\alpha_s(M_{\tau})$
- \clubsuit The quest of $1/Q^2$ contribution to $\alpha_s(M_{\tau})$
- \diamond Some other non-standard contributions to $\alpha_s(M_{\tau})$

- 🗩 🐥 Motivation
- Fit of the $e^+e^- \rightarrow I=1$ Hadrons data tested from the HPV of $\frac{1}{2}(g-2)_{\mu}$
- \heartsuit $\langle \alpha_s G^2 \rangle$ and D = 6 condensates from Ratio of Laplace sum rules (LSR)
- $h D \ge 8$ condensates from τ -like decay high moments
- Re-estimate of the D = 6,4 QCD condensates from Ratio of LSR
- \diamond Summary: QCD condensates from $e^+e^- \rightarrow$ Hadrons
- $\heartsuit \alpha_s$ from BNP τ -like decay lowest moment within the SVZ OPE.
- Estimate of the α_s^5 corrections to $\alpha_s(M_{\tau})$
- **•** The quest of $1/Q^2$ contribution to $\alpha_s(M_{\tau})$
- \diamond Some other non-standard contributions to $\alpha_s(M_{\tau})$
- \heartsuit Summary: α_s from τ -like decay BNP moment

• Re-estimate of the QCD condensates Using Ratio of LSR $\oplus \tau$ -like decay high moments.

- Re-estimate of the QCD condensates
 Using Ratio of LSR ⊕ τ-like decay high moments.
- \diamondsuit Re-estimate of $\alpha_s(M_{\tau})$ From τ -like decay BNP lowest moment.

- Re-estimate of the QCD condensates Using Ratio of LSR $\oplus \tau$ -like decay high moments.
- \diamondsuit Re-estimate of $\alpha_s(M_{\tau})$ From τ -like decay BNP lowest moment.
- Improvement and extension of the analysis in: SN, Nucl.Phys.A 1039 (2023) 122744 : ArXiv2306.14639 [hep-ph] (SN23)

- Re-estimate of the QCD condensates Using Ratio of LSR $\oplus \tau$ -like decay high moments.
- \diamondsuit Re-estimate of $\alpha_s(M_{\tau})$ From τ -like decay BNP lowest moment.
- Improvement and extension of the analysis in: SN, Nucl.Phys.A 1039 (2023) 122744 : ArXiv2306.14639 [hep-ph] (SN23)
- ♠ Data inputs: $e^+e^- \rightarrow I=1$ Hadrons below 2 GeV from PDG22 compilation + New CMD3 data.

Bridge between High AND Low energy QCD regions

$$\Pi_{H}(Q^{2} \equiv -q^{2}) \equiv i \int d^{4}x \ \langle 0 | \mathcal{T}J_{H}(x)J_{H}^{\dagger}(0) | 0 \rangle$$
$$= \int_{t<}^{\infty} \frac{dt}{t+Q^{2}+i\varepsilon} \mathrm{Im}\Pi(t) + \mathrm{subtraction \ terms}$$

Bridge between High AND Low energy QCD regions

$$\Pi_{H}(Q^{2} \equiv -q^{2}) \equiv i \int d^{4}x \ \langle 0|\mathcal{T}J_{H}(x)J_{H}^{\dagger}(0)|0\rangle$$
$$= \int_{t<}^{\infty} \frac{dt}{t+Q^{2}+i\epsilon} \operatorname{Im}\Pi(t) + \text{subtraction terms}$$

Bridge between High AND Low energy QCD regions

$$\Pi_{H}(Q^{2} \equiv -q^{2}) \equiv i \int d^{4}x \ \langle 0 | \mathcal{T}J_{H}(x)J_{H}^{\dagger}(0) | 0 \rangle$$
$$= \int_{t<}^{\infty} \frac{dt}{t+Q^{2}+i\epsilon} \operatorname{Im}\Pi(t) + \text{subtraction terms}$$

Cauchy Theorem

Bridge between High AND Low energy QCD regions

$$\Pi_{H}(Q^{2} \equiv -q^{2}) \equiv i \int d^{4}x \, \langle 0 | \mathcal{T}J_{H}(x)J_{H}^{\dagger}(0) | 0 \rangle$$
$$= \int_{t<}^{\infty} \frac{dt}{t+Q^{2}+i\epsilon} \operatorname{Im}\Pi(t) + \text{subtraction terms}$$

- Cauchy Theorem
- QCD OPE $(Q^2 \gg \Lambda^2)$ =EXP DATA

Bridge between High AND Low energy QCD regions

$$\Pi_{H}(Q^{2} \equiv -q^{2}) \equiv i \int d^{4}x \ \langle 0 | \mathcal{T}J_{H}(x)J_{H}^{\dagger}(0) | 0 \rangle$$
$$= \int_{t<}^{\infty} \frac{dt}{t+Q^{2}+i\epsilon} \operatorname{Im}\Pi(t) + \text{subtraction terms}$$

- Cauchy Theorem
- QCD OPE $(Q^2 \gg \Lambda^2)$ =EXP DATA

• $J_H^{\mu}(x) = \frac{1}{2} \left[\bar{\psi}_u \gamma^{\mu} \psi_u - \bar{\psi}_d \gamma^{\mu} \psi_d \right]$: I=1 vector current.

Bridge between High AND Low energy QCD regions

$$\Pi_{H}(Q^{2} \equiv -q^{2}) \equiv i \int d^{4}x \, \langle 0 | \mathcal{T}J_{H}(x)J_{H}^{\dagger}(0) | 0 \rangle$$
$$= \int_{t<}^{\infty} \frac{dt}{t+Q^{2}+i\epsilon} \operatorname{Im}\Pi(t) + \text{subtraction terms}$$

- Cauchy Theorem
- QCD OPE $(Q^2 \gg \Lambda^2)$ =EXP DATA

- $J_H^{\mu}(x) = \frac{1}{2} \left[\bar{\psi}_u \gamma^{\mu} \psi_u \bar{\psi}_d \gamma^{\mu} \psi_d \right]$: I=1 vector current.
- $\frac{1}{\pi}$ Im $\Pi(t) \sim \sigma_{tot}(e^+e^- \rightarrow I = 1 \text{ Hadrons})$: Optical theorem.

Bridge between High AND Low energy QCD regions

$$\Pi_{H}(Q^{2} \equiv -q^{2}) \equiv i \int d^{4}x \, \langle 0 | \mathcal{T}J_{H}(x)J_{H}^{\dagger}(0) | 0 \rangle$$
$$= \int_{t<}^{\infty} \frac{dt}{t+Q^{2}+i\epsilon} \operatorname{Im}\Pi(t) + \text{subtraction terms}$$

- Cauchy Theorem
- QCD OPE $(Q^2 \gg \Lambda^2)$ =EXP DATA

- $J_H^{\mu}(x) = \frac{1}{2} \left[\bar{\psi}_u \gamma^{\mu} \psi_u \bar{\psi}_d \gamma^{\mu} \psi_d \right]$: I=1 vector current.
- $\frac{1}{\pi}$ Im $\Pi(t) \sim \sigma_{tot}(e^+e^- \rightarrow I = 1 \text{ Hadrons})$: Optical theorem.

• Vector two-point function $8\pi^2 \Pi(Q^2) = \sum_{D=0,2,4,...} \frac{C_D \langle 0 | O_D | 0 \rangle}{Q^D} : \quad d_D \equiv C_D \langle 0 | O_D | 0 \rangle$

- Vector two-point function $8\pi^2 \Pi(Q^2) = \sum_{D=0,2,4,...} \frac{C_D \langle 0 | O_D | 0 \rangle}{Q^D} : \quad d_D \equiv C_D \langle 0 | O_D | 0 \rangle$
- In terms of the QCD PT and NP parameters

- Vector two-point function $8\pi^2 \Pi(Q^2) = \sum_{D=0,2,4,...} \frac{C_D \langle 0 | O_D | 0 \rangle}{Q^D} : \quad d_D \equiv C_D \langle 0 | O_D | 0 \rangle$
- ◇ In terms of the QCD PT and NP parameters

• D = 0: $\Pi^{I=1}(Q^2)|_{LO} = -\log(\frac{Q^2}{\mu^2})$ usual PT series $(a_s \equiv \alpha_s/\pi)$

- Vector two-point function $8\pi^2 \Pi(Q^2) = \sum_{D=0,2,4,...} \frac{C_D \langle 0 | O_D | 0 \rangle}{Q^D} : \quad d_D \equiv C_D \langle 0 | O_D | 0 \rangle$
- ◇ In terms of the QCD PT and NP parameters
 - D = 0: $\Pi^{I=1}(Q^2)|_{LO} = -\log(\frac{Q^2}{\mu^2})$ usual PT series $(a_s \equiv \alpha_s/\pi)$
 - D = 2: $d_2 | m_q = -3(\bar{m}_u^2 + \bar{m}_d^2) \left(1 + \frac{2}{3}a_s\right)$.: quark mass corrections $d_2 |_{tach} \equiv C_2 \langle O_2 \rangle |_{tach} = \left(\frac{32}{2} - 8\zeta_3\right) \alpha_s \lambda^2 \log \frac{Q^2}{\mu^2}$. : tachyonic gluon CNZ 98

 $\equiv \Sigma$ Large Order PT corrections NZ 09

- Vector two-point function $8\pi^2 \Pi(Q^2) = \sum_{D=0,2,4,...} \frac{C_D \langle 0 | O_D | 0 \rangle}{Q^D} : \quad d_D \equiv C_D \langle 0 | O_D | 0 \rangle$
- ◇ In terms of the QCD PT and NP parameters
 - D = 0: $\Pi^{I=1}(Q^2)|_{LO} = -\log(\frac{Q^2}{\mu^2})$ usual PT series $(a_s \equiv \alpha_s/\pi)$
 - D = 2: $d_2 | m_q = -3(\bar{m}_u^2 + \bar{m}_d^2) \left(1 + \frac{2}{3}a_s\right)$.: quark mass corrections $d_2 |_{tach} \equiv C_2 \langle O_2 \rangle |_{tach} = \left(\frac{32}{2} - 8\zeta_3\right) \alpha_s \lambda^2 \log \frac{Q^2}{\mu^2}$. : tachyonic gluon CNZ 98

 $\equiv \Sigma$ Large Order PT corrections NZ 09

• D = 4: $d_4|_{\langle \bar{\psi}\psi \rangle} = 4\pi^2 \left(1 + \frac{a_s}{3}\right) \langle m_u \bar{\psi}_u \psi_u + m_d \bar{\psi}_d \psi_d \rangle$ quark condensate $d_4|_{\langle G^2 \rangle} = \frac{\pi}{3} \langle \alpha_s G^2 \rangle \left(1 + \frac{7}{6}a_s\right)$ gluon condensate
- Vector two-point function $8\pi^2 \Pi(Q^2) = \sum_{D=0,2,4,...} \frac{C_D \langle 0 | O_D | 0 \rangle}{Q^D} : \quad d_D \equiv C_D \langle 0 | O_D | 0 \rangle$
- In terms of the QCD PT and NP parameters
 - D = 0: $\Pi^{I=1}(Q^2)|_{LO} = -\log(\frac{Q^2}{\mu^2})$ usual PT series $(a_s \equiv \alpha_s/\pi)$
 - D = 2: $d_2 | m_q = -3(\bar{m}_u^2 + \bar{m}_d^2) \left(1 + \frac{2}{3}a_s\right)$.: quark mass corrections $d_2 |_{tach} \equiv C_2 \langle O_2 \rangle |_{tach} = \left(\frac{32}{2} - 8\zeta_3\right) \alpha_s \lambda^2 \log \frac{Q^2}{\mu^2}$. : tachyonic gluon CNZ 98

 $\equiv \Sigma$ Large Order PT corrections NZ 09

- D = 4: $d_4|_{\langle \bar{\Psi}\Psi \rangle} = 4\pi^2 \left(1 + \frac{a_s}{3}\right) \langle m_u \bar{\Psi}_u \Psi_u + m_d \bar{\Psi}_d \Psi_d \rangle$ quark condensate $d_4|_{\langle G^2 \rangle} = \frac{\pi}{3} \langle \alpha_s G^2 \rangle \left(1 + \frac{7}{6}a_s\right)$ gluon condensate
- D = 6: $d_6 = -\frac{896}{81}\pi^3 \rho \alpha_s \langle \bar{\psi}_q \psi_q \rangle^2$: four-quark condensates : $\rho = 1$: factorization.

- Vector two-point function $8\pi^2 \Pi(Q^2) = \sum_{D=0,2,4,...} \frac{C_D \langle 0 | O_D | 0 \rangle}{Q^D} : \quad d_D \equiv C_D \langle 0 | O_D | 0 \rangle$
- ◇ In terms of the QCD PT and NP parameters
 - D = 0: $\Pi^{I=1}(Q^2)|_{LO} = -\log(\frac{Q^2}{\mu^2})$ usual PT series $(a_s \equiv \alpha_s/\pi)$

•
$$D = 2$$
: $d_2 | m_q = -3(\bar{m}_u^2 + \bar{m}_d^2) \left(1 + \frac{2}{3}a_s\right)$.: quark mass corrections
 $d_2 |_{tach} \equiv C_2 \langle O_2 \rangle |_{tach} = \left(\frac{32}{2} - 8\zeta_3\right) \alpha_s \lambda^2 \log \frac{Q^2}{\mu^2}$. : tachyonic gluon CNZ 98

 $\equiv \Sigma$ Large Order PT corrections NZ 09

•
$$D = 4$$
: $d_4|_{\langle \bar{\psi}\psi \rangle} = 4\pi^2 \left(1 + \frac{a_s}{3}\right) \langle m_u \bar{\psi}_u \psi_u + m_d \bar{\psi}_d \psi_d \rangle$ quark condensate
 $d_4|_{\langle G^2 \rangle} = \frac{\pi}{3} \langle \alpha_s G^2 \rangle \left(1 + \frac{7}{6}a_s\right)$ gluon condensate

• D = 6: $d_6 = -\frac{896}{81}\pi^3 \rho \alpha_s \langle \bar{\psi}_q \psi_q \rangle^2$: four-quark condensates : $\rho = 1$: factorization.

• D = 8: $d_8 = \langle GGGG \rangle$: 4-gluon condensate $\oplus \cdots$

- Vector two-point function $8\pi^2 \Pi(Q^2) = \sum_{D=0,2,4,...} \frac{C_D \langle 0 | O_D | 0 \rangle}{Q^D} : \quad d_D \equiv C_D \langle 0 | O_D | 0 \rangle$
- ♦ In terms of the QCD PT and NP parameters
 - D = 0: $\Pi^{I=1}(Q^2)|_{LO} = -\log(\frac{Q^2}{\mu^2})$ usual PT series $(a_s \equiv \alpha_s/\pi)$
 - D = 2: $d_2 | m_q = -3(\bar{m}_u^2 + \bar{m}_d^2) \left(1 + \frac{2}{3}a_s\right)$.: quark mass corrections $d_2 |_{tach} \equiv C_2 \langle O_2 \rangle |_{tach} = \left(\frac{32}{2} - 8\zeta_3\right) \alpha_s \lambda^2 \log \frac{Q^2}{\mu^2}$. : tachyonic gluon CNZ 98
 - $\equiv \Sigma$ Large Order PT corrections NZ 09
 - D = 4: $d_4|_{\langle \bar{\Psi}\Psi \rangle} = 4\pi^2 \left(1 + \frac{a_s}{3}\right) \langle m_u \bar{\Psi}_u \Psi_u + m_d \bar{\Psi}_d \Psi_d \rangle$ quark condensate $d_4|_{\langle G^2 \rangle} = \frac{\pi}{3} \langle \alpha_s G^2 \rangle \left(1 + \frac{7}{6}a_s\right)$ gluon condensate
 - D = 6: $d_6 = -\frac{896}{81}\pi^3 \rho \alpha_s \langle \bar{\psi}_q \psi_q \rangle^2$: four-quark condensates : $\rho = 1$: factorization.
 - D = 8: $d_8 = \langle GGGG \rangle$: 4-gluon condensate $\oplus \cdots$
- Truncation of the OPE

- Vector two-point function $8\pi^2 \Pi(Q^2) = \sum_{D=0,2,4,...} \frac{C_D \langle 0 | O_D | 0 \rangle}{Q^D} : \quad d_D \equiv C_D \langle 0 | O_D | 0 \rangle$
- ◇ In terms of the QCD PT and NP parameters
 - D = 0: $\Pi^{I=1}(Q^2)|_{LO} = -\log(\frac{Q^2}{\mu^2})$ usual PT series $(a_s \equiv \alpha_s/\pi)$

•
$$D = 2$$
: $d_2 | m_q = -3(\bar{m}_u^2 + \bar{m}_d^2) \left(1 + \frac{2}{3}a_s\right)$.: quark mass corrections
 $d_2 |_{tach} \equiv C_2 \langle O_2 \rangle |_{tach} = \left(\frac{32}{2} - 8\zeta_3\right) \alpha_s \lambda^2 \log \frac{Q^2}{\mu^2}$. : tachyonic gluon CNZ 98

 $\equiv \Sigma$ Large Order PT corrections NZ 09

- D = 4: $d_4|_{\langle \bar{\Psi}\Psi \rangle} = 4\pi^2 \left(1 + \frac{a_s}{3}\right) \langle m_u \bar{\Psi}_u \Psi_u + m_d \bar{\Psi}_d \Psi_d \rangle$ quark condensate $d_4|_{\langle G^2 \rangle} = \frac{\pi}{3} \langle \alpha_s G^2 \rangle \left(1 + \frac{7}{6}a_s\right)$ gluon condensate
- D = 6: $d_6 = -\frac{896}{81}\pi^3 \rho \alpha_s \langle \bar{\psi}_q \psi_q \rangle^2$: four-quark condensates : $\rho = 1$: factorization.
- D = 8: $d_8 = \langle GGGG \rangle$: 4-gluon condensate $\oplus \cdots$
- Truncation of the OPE
 - A truncation of the OPE up to D = 6 is enough for Phenomenology !

- Vector two-point function $8\pi^2 \Pi(Q^2) = \sum_{D=0,2,4,...} \frac{C_D \langle 0 | O_D | 0 \rangle}{Q^D} : \quad d_D \equiv C_D \langle 0 | O_D | 0 \rangle$
- ◇ In terms of the QCD PT and NP parameters
 - D = 0: $\Pi^{I=1}(Q^2)|_{LO} = -\log(\frac{Q^2}{\mu^2})$ usual PT series $(a_s \equiv \alpha_s/\pi)$

•
$$D = 2$$
: $d_2 | m_q = -3(\bar{m}_u^2 + \bar{m}_d^2) \left(1 + \frac{2}{3}a_s\right)$.: quark mass corrections
 $d_2 |_{tach} \equiv C_2 \langle O_2 \rangle |_{tach} = \left(\frac{32}{2} - 8\zeta_3\right) \alpha_s \lambda^2 \log \frac{Q^2}{\mu^2}$. : tachyonic gluon CNZ 98

 $\equiv \Sigma$ Large Order PT corrections NZ 09

- D = 4: $d_4|_{\langle \bar{\Psi}\Psi \rangle} = 4\pi^2 \left(1 + \frac{a_s}{3}\right) \langle m_u \bar{\Psi}_u \Psi_u + m_d \bar{\Psi}_d \Psi_d \rangle$ quark condensate $d_4|_{\langle G^2 \rangle} = \frac{\pi}{3} \langle \alpha_s G^2 \rangle \left(1 + \frac{7}{6}a_s\right)$ gluon condensate
- D = 6: $d_6 = -\frac{896}{81}\pi^3 \rho \alpha_s \langle \bar{\psi}_q \psi_q \rangle^2$: four-quark condensates : $\rho = 1$: factorization.
- D = 8: $d_8 = \langle GGGG \rangle$: 4-gluon condensate $\oplus \cdots$
- Truncation of the OPE
 - A truncation of the OPE up to D = 6 is enough for Phenomenology !
 - No good control of condensates beyond D = 6: violation of factorization, mixing under renormalization, often some classes of diagrams are only computed,...

Improvement of the dispersion relation

- Improvement of the dispersion relation
 - Exponential (Borel/Laplace) for the coupling

SVZ 79, SN-de Rafael 81, Bell-Bertlmann 83

$$\mathcal{L}(\tau) = \int_{t_{<}}^{\infty} dt \, \exp^{-t\tau} \, \frac{1}{\pi} \mathrm{Im}\Pi(t)$$

Exponential enhances the low energy contribution.

- Improvement of the dispersion relation
 - Exponential (Borel/Laplace) for the coupling

SVZ 79, SN-de Rafael 81, Bell-Bertlmann 83

$$\mathcal{L}(\tau) = \int_{t_{<}}^{\infty} dt \, \exp^{-t\tau} \, \frac{1}{\pi} \mathrm{Im}\Pi(t)$$

Exponential enhances the low energy contribution.

 Ratio for the Masses svz 79 and Double Ratio for the Splitting SN 88

$$\mathcal{R}(\tau) \equiv -\frac{d}{d\tau} \log \mathcal{L}(\tau) \simeq M^2, \quad r_{12}(\tau_H) \equiv \frac{\mathcal{R}_1}{\mathcal{R}_2} \simeq \frac{M_1^2}{M_2^2}$$

- Improvement of the dispersion relation
 - Exponential (Borel/Laplace) for the coupling

SVZ 79, SN-de Rafael 81, Bell-Bertlmann 83

$$\mathcal{L}(\tau) = \int_{t_{<}}^{\infty} dt \, \exp^{-t\tau} \, \frac{1}{\pi} \mathrm{Im}\Pi(t)$$

Exponential enhances the low energy contribution.

 Ratio for the Masses svz 79 and Double Ratio for the Splitting SN 88

$$\mathcal{R}(\tau) \equiv -\frac{d}{d\tau} \log \mathcal{L}(\tau) \simeq M^2, \quad r_{12}(\tau_H) \equiv \frac{\mathcal{R}_1}{\mathcal{R}_2} \simeq \frac{M_1^2}{M_2^2}$$

• $\mathcal{R}(\tau)$: less senstive to α_s -corrections \implies Good tools for extracting the QCD condensates Launer-SN-Tarrach 84

Spectral Function from $e^+e^- ightarrow Hadrons$

• A Data compiled by PDG22 \oplus New CMD3 ($E \le 1.875$ GeV) $R^{ee} \equiv \frac{\sigma(e^+e^- \to \text{Hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} = 12\pi \text{Im}\Pi(t)$: Optical theorem

We divide the region $0.5 \le \sqrt{t} \le 1.9$ GeV into 7 subregions and use a Mathematica Interpolating Fitting program.

Test / Calibration of the Fit

• \Diamond Hadronic Vacuum Polarisation of $\frac{1}{2}(g-2)_{\mu}$

$$a_{\mu}|_{l.o}^{hvp} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} dt \, K_{\mu}(t) \, \sigma(e^+e^- \to \text{hadrons}) \, : K_{\mu}(t) = \int_0^1 dx \frac{x^2(1-x)}{x^2 + (t/m_{\mu}^2)(1-x)}.$$
$$a_{\mu}|_{l.o}^{hvp} [2m_{\pi} \to 1.875] = (6492.3 \pm 8.8) \times 10^{-11}$$

+ $(100 - 130) \times 10^{-11}$: Larger than Davier et al, Nomura et al using KLOE data (2020) BUT agrees with CMD3 (2023) \implies

 $a_{\mu}|_{l.o}^{hvp} = (7036.5 \pm 36.9) \times 10^{-11} \implies a_{\mu}^{exp} - a_{\mu}^{th} = (142 \pm 42_{th} \pm 41_{exp}) \times 10^{-11}$ SN23

Less tension with SM !

Test / Calibration of the Fit

• \Diamond Hadronic Vacuum Polarisation of $\frac{1}{2}(g-2)_{\mu}$

$$a_{\mu}|_{l.o}^{hvp} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} dt \, K_{\mu}(t) \, \sigma(e^+e^- \to \text{hadrons}) \, : K_{\mu}(t) = \int_0^1 dx \frac{x^2(1-x)}{x^2 + (t/m_{\mu}^2)(1-x)}.$$
$$a_{\mu}|_{l.o}^{hvp} [2m_{\pi} \to 1.875] = (6492.3 \pm 8.8) \times 10^{-11}$$

+ $(100 - 130) \times 10^{-11}$: Larger than Davier et al, Nomura et al using KLOE data (2020) BUT agrees with CMD3 (2023) \implies

$$a_{\mu}|_{l.o}^{hvp} = (7036.5 \pm 36.9) \times 10^{-11} \implies a_{\mu}^{exp} - a_{\mu}^{th} = (142 \pm 42_{th} \pm 41_{exp}) \times 10^{-11}$$
SN23

Less tension with SM !

• V Hadronic contribution to $\Delta \alpha^{(5)}(M_Z) \times 10^5 = 2766.3 \pm 4.5$

Choice of the ratio of LSR Launer-SN-Tarrach 84

$$\mathcal{R}_{10}(\tau) \equiv -\frac{d}{d\tau} \log \mathcal{L}_0(\tau) = f(\alpha_s^2, d_4, d_6, d_8, \cdots)$$

Choice of the ratio of LSR Launer-SN-Tarrach 84

$$\mathcal{R}_{10}(\tau) \equiv -\frac{d}{d\tau} \log \mathcal{L}_0(\tau) = f(\alpha_s^2, d_4, d_6, d_8, \cdots)$$

• In the chiral limit $(m_{u,d} = 0)$: $d_4 = \frac{\pi}{3} \langle \alpha_s G^2 \rangle (1 + \frac{7}{6}a_s)$ gluon condensate $d_6 = -\frac{896}{81} \pi^3 \rho \alpha_s \langle \bar{\psi}_q \psi_q \rangle^2$: four-quark condensates : $\rho = 1$: factorization. $d_8 = \langle GGGG \rangle$: 4-gluon condensate $\oplus \cdots$

Choice of the ratio of LSR Launer-SN-Tarrach 84

$$\mathcal{R}_{10}(\tau) \equiv -\frac{d}{d\tau} \log \mathcal{L}_0(\tau) = f(\alpha_s^2, d_4, d_6, d_8, \cdots)$$

- In the chiral limit $(m_{u,d} = 0)$: $d_4 = \frac{\pi}{3} \langle \alpha_s G^2 \rangle (1 + \frac{7}{6}a_s)$ gluon condensate $d_6 = -\frac{896}{81} \pi^3 \rho \alpha_s \langle \bar{\psi}_q \psi_q \rangle^2$: four-quark condensates : $\rho = 1$: factorization. $d_8 = \langle GGGG \rangle$: 4-gluon condensate $\oplus \cdots$
- $\mathcal{R}_{10}(\tau)$ less sensitive to α_s than the moment $\mathcal{L}_0(\tau)$: starts to $\mathcal{O}(\alpha_s^2)$.

Choice of the ratio of LSR Launer-SN-Tarrach 84

$$\mathcal{R}_{10}(\tau) \equiv -\frac{d}{d\tau} \log \mathcal{L}_0(\tau) = f(\alpha_s^2, d_4, d_6, d_8, \cdots)$$

- In the chiral limit $(m_{u,d} = 0)$: $d_4 = \frac{\pi}{3} \langle \alpha_s G^2 \rangle (1 + \frac{7}{6}a_s)$ gluon condensate $d_6 = -\frac{896}{81} \pi^3 \rho \alpha_s \langle \bar{\psi}_q \psi_q \rangle^2$: four-quark condensates : $\rho = 1$: factorization. $d_8 = \langle GGGG \rangle$: 4-gluon condensate $\oplus \cdots$
- $\mathcal{R}_{10}(\tau)$ less sensitive to α_s than the moment $\mathcal{L}_0(\tau)$: starts to $\mathcal{O}(\alpha_s^2)$.
- Relative contributions of the condensates increased in the OPE !

Fitting procedure

• 3-parameter fit (d_4, d_6, d_8) : not conclusive ! Like τ -decay Moments !

Fitting procedure

• 3-parameter fit (d_4, d_6, d_8) : not conclusive ! Like τ -decay Moments ! • $\langle \alpha_s G^2 \rangle$ from heavy quarkonia \oplus 2-parameter fit of (d_6, d_8) :

 d_6 stable for $\alpha_s^2 \rightarrow \alpha_s^4$ but not d_8 . To order α_s^4 :

 $d_6 = -(20.5 \pm 2.0) \times 10^{-2} \,\text{GeV}^6, \quad d_8 = (4.7 \pm 3.5) \times 10^{-2} \,\text{GeV}^8.$

NB : $\tau \simeq (2 \sim 3)$ GeV⁻² relatively big ! Results to be improved later on !

τ -like decay moments

$$R_n^{ee} = \int_0^1 dx_0 \left(1 - 3x_0^2 + 2x_0^3\right) x_0^n 2R_{ee}^{I=1}(x_0) : x_0 \equiv \left(t/M_0^2\right)$$

• Perturbative corrections $\delta_n^{(0)}$ to order α_s^4 (FO) for $n \ge 1$, :

τ-like decay moments

$$R_n^{ee} = \int_0^1 dx_0 \left(1 - 3x_0^2 + 2x_0^3\right) x_0^n 2R_{ee}^{I=1}(x_0) : x_0 \equiv \left(t/M_0^2\right)$$

- Perturbative corrections $\delta_n^{(0)}$ to order α_s^4 (FO) for $n \ge 1$, :
- Condensates of the standard OPE to lowest order of α_s :

$$R_0^{ee} = f(\delta_0^{(0)}, d_6, d_8), \qquad d_{n \ge 10} = 0$$

$$R_1^{ee} = f(\delta_1^{(0)}, d_4, d_8, d_{10}), \qquad d_{n \ge 12} = 0$$

$$R_2^{ee} = f(\delta_2^{(0)}, d_6, d_{10}, d_{12}), \qquad d_{n \ge 14} = 0$$

$$R_3^{ee} = f(\delta_3^{(0)}, d_8, d_{12}, d_{14}), \qquad d_{n \ge 16} = 0$$

$$R_4^{ee} = f(\delta_4^{(0)}, d_{10}, d_{14}, d_{16}), \qquad d_{n\geq 18} = 0$$

Two parameter fit not Conclusive !

- Two parameter fit not Conclusive !
- One parameter fit to better constrain the parameters.

- Two parameter fit not Conclusive !
- One parameter fit to better constrain the parameters.
- Stability Criteria : optimal results at the stability region (plateau, extremum) versus the M_0 variation.

- Two parameter fit not Conclusive !
- One parameter fit to better constrain the parameters.
- Stability Criteria : optimal results at the stability region (plateau, extremum) versus the M_0 variation.
- Initial Inputs : α_s , and $\langle \alpha_s G^2 \rangle (J/\psi, \Upsilon)$, d_6 (LSR) condensates \implies R_0 gives $d_8 \implies R_1$ gives $d_{10} \implies R_2$ gives d_{12} $\implies R_3$ gives $d_{14} \implies R_4$ gives d_{16}

- Two parameter fit not Conclusive !
- One parameter fit to better constrain the parameters.
- Stability Criteria : optimal results at the stability region (plateau, extremum) versus the M_0 variation.
- Initial Inputs : α_s , and $\langle \alpha_s G^2 \rangle (J/\psi, \Upsilon)$, d_6 (LSR) condensates \implies R_0 gives $d_8 \implies R_1$ gives $d_{10} \implies R_2$ gives d_{12} $\implies R_3$ gives $d_{14} \implies R_4$ gives d_{16}
- We proceed iteratively to improve the results

 $d_4 \quad \longleftrightarrow \quad d_6 \quad \longleftrightarrow \quad d_8 \quad \stackrel{(2)}{\longleftrightarrow} \quad d_{10} \quad \stackrel{(6)}{\longleftrightarrow} \quad d_{12} \quad \longrightarrow \quad d_{14} \quad \longrightarrow \quad d_{16}$ $J/\psi, \Upsilon \quad LSR \qquad R_0 \qquad R_1 \qquad R_2 \qquad R_3 \qquad R_4$

where (2) and (6) indicate the number of iterations.

Analysis from au-like decay moments

Analysis from au-like decay moments

■ d_{14}, d_{16} from R_3 and R_4 : inputs $\alpha_s, d_8, d_{10}, d_{12} \oplus d_{14}$ for d_{16} .

• Include the condensates of dimension $D \le 16$ in the OPE.

- Include the condensates of dimension $D \le 16$ in the OPE.
- Extract d_6 : inputs : $d_4, d_8 \rightarrow d_{16}$ and d_4 : inputs : $d_6 \rightarrow d_{16}$.

- Include the condensates of dimension $D \le 16$ in the OPE.
- Extract d_6 : inputs : $d_4, d_8 \rightarrow d_{16}$ and d_4 : inputs : $d_6 \rightarrow d_{16}$.

• $d_6 = -(14.2 \pm 3.3) \times 10^{-2} \text{ GeV}^6$: for $\tau \simeq (0.85 \sim 0.95) \text{ GeV}^{-2}$

- Agrees with $d_6 = -(20.5 \pm 2.2) \times 10^{-2}$ GeV⁶ (initial inputs obtained at larger τ -values). - Truncation up to d_8 gives : $d_6 = -(18.0 \pm 3.8) \times 10^{-2}$ GeV⁶

- Include the condensates of dimension $D \le 16$ in the OPE.
- Extract d_6 : inputs : $d_4, d_8 \rightarrow d_{16}$ and d_4 : inputs : $d_6 \rightarrow d_{16}$.

• $d_6 = -(14.2 \pm 3.3) \times 10^{-2} \text{ GeV}^6$: for $\tau \simeq (0.85 \sim 0.95) \text{ GeV}^{-2}$

- Agrees with $d_6 = -(20.5 \pm 2.2) \times 10^{-2}$ GeV⁶ (initial inputs obtained at larger τ -values). - Truncation up to d_8 gives : $d_6 = -(18.0 \pm 3.8) \times 10^{-2}$ GeV⁶

$$\begin{array}{ll} \bullet & \langle \alpha_s G^2 \rangle = (8.0 \pm 3.3) \times 10^{-2} \text{ GeV}^4 : & \text{for} & \tau \simeq (0.9 \sim 1.0) \text{ GeV}^{-2} \\ - \text{ Agrees with } (6.49 \pm 0.35) \times 10^{-2} \text{ GeV}^4 \text{ from Heavy quarks but less accurate } \end{array}$$

- Include the condensates of dimension $D \le 16$ in the OPE.
- Extract d_6 : inputs : $d_4, d_8 \rightarrow d_{16}$ and d_4 : inputs : $d_6 \rightarrow d_{16}$.

• $d_6 = -(14.2 \pm 3.3) \times 10^{-2} \text{ GeV}^6$: for $\tau \simeq (0.85 \sim 0.95) \text{ GeV}^{-2}$

- Agrees with $d_6 = -(20.5 \pm 2.2) \times 10^{-2}$ GeV⁶ (initial inputs obtained at larger τ -values). - Truncation up to d_8 gives : $d_6 = -(18.0 \pm 3.8) \times 10^{-2}$ GeV⁶

 $\begin{array}{ll} \bullet & \langle \alpha_s G^2 \rangle = (8.0 \pm 3.3) \times 10^{-2} \ \text{GeV}^4 : & \text{for} \quad \tau \simeq (0.9 \sim 1.0) \ \text{GeV}^{-2} \\ - \ \text{Agrees with} \ (6.49 \pm 0.35) \times 10^{-2} \ \text{GeV}^4 \ \text{from Heavy quarks but less accurate } ! \end{array}$

Good convergence of the OPE at the optimization scale : $\tau R_{10}(\tau) = 1 + \beta_1 a_s^2 + \dots - 0.123 \tau^2 + 0.164 \tau^3 - .140 \tau^4 - 0.015 \tau^5 + 0.050 \tau^6 - 0.034 \tau^7 + 0.193 \tau^8$ $= 1 + 10^{-3} + \sum_{n=2}^{3} d_{2n} \tau^n = 0.127(0.091) + \sum_{n=4}^{8} d_{2n} \tau^n = 0.017(-0.023) \text{ for } \tau = 0.95 (0.85) \text{ GeV}^{-2}$

Summary : QCD condensates from $e^+e^- \rightarrow Hadre$

• This work at (FO) : $\langle \alpha_s G^2 \rangle = (6.49 \pm 0.35) \times 10^{-2} \text{ GeV}^4$ input from $J/\psi, \Upsilon$ for $d_n \ge 6$. Units : 10^{-2} GeV^D : *D* dimension of the condensates

$\langle lpha_s G^2 angle$	$-d_6$	d_8	$-d_{10}$	$-d_{12}$	d_{14}	d_{16}
8.0±3.3	14.2 ± 3.3	18.2 ± 0.6	6.0 ± 0.2	18.4 ± 3.8	59.2 ± 7.1	118.3 ± 3.2

- $-d_6$ confirms the violation of factorization Launer-SN-Tarrach 84, SN96, 23,
- $-d_8$ confirms SN96
- $-d_4$ confirms heavy and light quark sum rules results but less accurate.
- Can be cheked on the lattice !

Summary : QCD condensates from $e^+e^- ightarrow Hadre$

• This work at (FO) : $\langle \alpha_s G^2 \rangle = (6.49 \pm 0.35) \times 10^{-2} \text{ GeV}^4$ input from $J/\psi, \Upsilon$ for $d_n \ge 6$. Units : 10^{-2} GeV^D : *D* dimension of the condensates

$\langle lpha_s G^2 angle$	$-d_{6}$	d_8	$-d_{10}$	$-d_{12}$	d_{14}	<i>d</i> ₁₆
8.0±3.3	14.2 ± 3.3	18.2 ± 0.6	6.0 ± 0.2	18.4 ± 3.8	59.2 ± 7.1	118.3 ± 3.2

- $-d_6$ confirms the violation of factorization Launer-SN-Tarrach 84, SN96, 23,
- $-d_8$ confirms SN96
- $-d_4$ confirms heavy and light quark sum rules results but less accurate.
- Can be cheked on the lattice !
- QCD condensates from some other τ -like decay moments at (FO).

$\langle lpha_s G^2 angle$	$-d_6$	d_8	$-d_{10}$	$-d_{12}$	Refs.
0.67 ± 0.89	15.2 ± 2.2	22.3 ± 2.5			ALEPH 99
5.34 ± 3.64	14.2 ± 3.5	21.3 ± 2.5			OPAL 99
$3.5^{+2.2}_{-3.8}$	$19.7^{+11.8}_{-7.9}$	$23.7^{+11.8}_{-15.8}$	11.8 ± 19.7	7.9 ± 19.7	Pich-Rodriguez 16 ($d_{14,16} = 0$)

Summary : QCD condensates from $e^+e^- ightarrow Hadre$

• This work at (FO) : $\langle \alpha_s G^2 \rangle = (6.49 \pm 0.35) \times 10^{-2} \text{ GeV}^4$ input from $J/\psi, \Upsilon$ for $d_n \ge 6$. Units : 10^{-2} GeV^D : *D* dimension of the condensates

$\langle lpha_s G^2 angle$	$-d_{6}$	d_8	$-d_{10}$	$-d_{12}$	d_{14}	<i>d</i> ₁₆
8.0±3.3	14.2 ± 3.3	18.2 ± 0.6	6.0 ± 0.2	18.4 ± 3.8	59.2 ± 7.1	118.3 ± 3.2

- $-d_6$ confirms the violation of factorization Launer-SN-Tarrach 84, SN96, 23,
- $-d_8$ confirms SN96
- $-d_4$ confirms heavy and light quark sum rules results but less accurate.
- Can be cheked on the lattice !
- QCD condensates from some other τ -like decay moments at (FO).

$\langle lpha_s G^2 angle$	$-d_6$	d_8	$-d_{10}$	$-d_{12}$	Refs.
0.67 ± 0.89	15.2 ± 2.2	22.3 ± 2.5			ALEPH 99
5.34 ± 3.64	14.2 ± 3.5	21.3 ± 2.5			OPAL 99
$3.5^{+2.2}_{-3.8}$	$19.7^{+11.8}_{-7.9}$	$23.7^{+11.8}_{-15.8}$	11.8 ± 19.7	7.9 ± 19.7	Pich-Rodriguez 16 ($d_{14,16} = 0$)

$\alpha_s(M_{\tau})$ from τ -like decay BNP lowest moment

• Use as inputs the previous condensates of dimension $d_4 \rightarrow d_8$.
$\alpha_s(M_{\tau})$ from τ -like decay BNP lowest moment

- Use as inputs the previous condensates of dimension $d_4 \rightarrow d_8$.
- Extract $\alpha_s(M_{\tau})$ versus M_0 for FO and CI PT series.

$\alpha_s(M_{\tau})$ from τ -like decay BNP lowest moment

- Use as inputs the previous condensates of dimension $d_4 \rightarrow d_8$.
- Extract $\alpha_s(M_{\tau})$ versus M_0 for FO and CI PT series.

• One obtains to order $O(\alpha_s^4)$ [$M_0 = 1.675(25)$ GeV (stability point)] :

$$\alpha_s(M_{\tau}) = 0.3238(36) \implies \alpha_s(M_Z) = 0.1190(2) \quad \text{FO}$$

$$= 0.3465(43) \implies \alpha_s(M_Z) = 0.1216(2) \quad \text{CI}$$

$\alpha_s(M_{\tau})$ from τ -like decay BNP lowest moment

- Use as inputs the previous condensates of dimension $d_4 \rightarrow d_8$.
- Extract $\alpha_s(M_{\tau})$ versus M_0 for FO and CI PT series.

• One obtains to order $O(\alpha_s^4)$ [$M_0 = 1.675(25)$ GeV (stability point)] :

$$\alpha_s(M_{\tau}) = 0.3238(36) \Longrightarrow \alpha_s(M_Z) = 0.1190(2)$$
 FO

$$= 0.3465(43) \implies \alpha_s(M_Z) = 0.1216(2) \quad \text{CI}$$

Sum of NP terms :

$$\sum \delta_{NP}(1.675) = (2.8 \pm 0.9) \times 10^{-2},$$

$$\sum \delta_{NP}(M_{\tau}) = (2.0 \pm 0.6) \times 10^{-2} \qquad \approx \alpha_s^3 \ (FO), \quad \alpha_s^2 \ (CI).$$

$\alpha_s(M_{\tau})$ in the World without Condensates

• Assume $d_4 = d_6 = d_8 = 0$.

$\alpha_s(M_{\tau})$ in the World without Condensates

- Assume $d_4 = d_6 = d_8 = 0$.
- Extract $\alpha_s(M_{\tau})$ versus M_0 for FO and CI PT series.

$\alpha_s(M_{\tau})$ in the World without Condensates

- Assume $d_4 = d_6 = d_8 = 0$.
- Extract $\alpha_s(M_{\tau})$ versus M_0 for FO and CI PT series.

$$\alpha_s(M_{\tau}) = 0.3514(68) \implies \alpha_s(M_Z) = 0.1221(7)$$
 FO
= 0.3827(90) $\implies \alpha_s(M_Z) = 0.1252(9)$ CI

Relatively High compared to the PDG 23 average 0.117 !

Estimate of the error due to α_s^5

Geometric growth of different PT series SN-Zakharov 09 :

$$D(Q^{2}) = \sum_{n} a_{s}^{n} c_{n} : c_{0} = c_{1} = 1, \ c_{2} = 1.656, \ c_{3} = 6.37, \ c_{4} = 49.09$$

$$\implies c_{4} \approx c_{3}^{2} \implies c_{5} \simeq (c_{3}/c_{2}) c_{4}^{2} \approx (228 \pm 114).$$

$$R_{0} = \sum_{n} a_{s}^{n} (g_{n} + c_{n}) : \ g_{n} \text{ from RG} - \text{resummation}$$

$$(\text{see e.g: Pich} - \text{Lediberder 92, Kataev} - \text{Starshenko 95})$$

$$g_{5} = -780 \ (FO), \quad 0(CI)$$

$$\implies \Delta \alpha_{s}(M_{\tau}) = \pm 71 \times 10^{-4} \ (FO), \ \pm 62 \times 10^{-4} \ (CI),$$

Estimate of the error due to α_s^5

Geometric growth of different PT series SN-Zakharov 09 :

$$D(Q^{2}) = \sum_{n} a_{s}^{n} c_{n} : c_{0} = c_{1} = 1, \ c_{2} = 1.656, \ c_{3} = 6.37, \ c_{4} = 49.09$$

$$\implies c_{4} \approx c_{3}^{2} \implies c_{5} \simeq (c_{3}/c_{2}) c_{4}^{2} \approx (228 \pm 114).$$

$$R_{0} = \sum_{n} a_{s}^{n} (g_{n} + c_{n}) : \ g_{n} \text{ from RG} - \text{resummation}$$

$$(\text{see e.g} : \text{Pich} - \text{Lediberder} 92, \text{Kataev} - \text{Starshenko} 95)$$

$$g_{5} = -780 \ (FO), \quad 0(CI)$$

$$\implies \Delta \alpha_{s}(M_{\tau}) = \pm 71 \times 10^{-4} \ (FO), \ \pm 62 \times 10^{-4} \ (CI),$$

• $\alpha_s(M_{\tau})$ to order α_s^4 including error due to α_s^5

$$\alpha_s(M_{\tau}) = 0.3238(36)_{fit}(71)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1190(9)(3)_{evol}$$
 FO

$$= 0.3465(43)_{fit}(62)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1216(8)(3)_{evol} \quad \text{CI}$$

Estimate of the error due to α_s^5

Geometric growth of different PT series SN-Zakharov 09 :

$$D(Q^{2}) = \sum_{n} a_{s}^{n} c_{n} : c_{0} = c_{1} = 1, c_{2} = 1.656, c_{3} = 6.37, c_{4} = 49.09$$

$$\implies c_{4} \approx c_{3}^{2} \implies c_{5} \simeq (c_{3}/c_{2}) c_{4}^{2} \approx (228 \pm 114).$$

$$R_{0} = \sum_{n} a_{s}^{n} (g_{n} + c_{n}) : g_{n} \text{ from RG} - \text{resummation}$$

$$(\text{see e.g : Pich} - \text{Lediberder 92, Kataev} - \text{Starshenko 95})$$

$$g_{5} = -780 \ (FO), \quad 0(CI)$$

$$\implies \Delta \alpha_{s}(M_{\tau}) = \pm 71 \times 10^{-4} \ (FO), \quad \pm 62 \times 10^{-4} \ (CI),$$

• $\alpha_s(M_{\tau})$ to order α_s^4 including error due to α_s^5 $\alpha_s(M_{\tau}) = 0.3238(36)_{fit}(71)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1190(9)(3)_{evol}$ $= 0.3465(43)_{fit}(62)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1216(8)(3)_{evol}$

• Mean : assume that $\Delta \alpha_s^5$ absorbs the \neq between FO and CI at H.O : $\alpha_s(M_{\tau}) = 0.3358(55)(107)_{syst} \implies \alpha_s(M_Z) = 0.1204(7)(3)_{evol}$ where syst comes from the distance of the mean central value to the ones of FO or CI.

FO

CI

• $1/Q^2$ term in different places

- $1/Q^2$ term in different places
 - Linear part of the QCD potential Lattice Bali et al 95,97

- $1/Q^2$ term in different places
 - Linear part of the QCD potential Lattice Bali et al 95,97
 - Some holographic models (Andreev-Zakharov 06,07, Jugeau-SN-Ratsimbarison 13)

- $1/Q^2$ term in different places
 - Linear part of the QCD potential Lattice Bali et al 95,97
 - Some holographic models (Andreev-Zakharov 06,07, Jugeau-SN-Ratsimbarison 13)
- Tachyon gluon mass Chetyrkin-SN-Zakharov 97

- $1/Q^2$ term in different places
 - Linear part of the QCD potential Lattice Bali et al 95,97
 - Some holographic models (Andreev-Zakharov 06,07, Jugeau-SN-Ratsimbarison 13)
- Tachyon gluon mass Chetyrkin-SN-Zakharov 97
 - Phenomenological parametrization of UV renormalon (see also Altarelli 95)

- $1/Q^2$ term in different places
 - Linear part of the QCD potential Lattice Bali et al 95,97
 - Some holographic models (Andreev-Zakharov 06,07, Jugeau-SN-Ratsimbarison 13)
- Tachyon gluon mass Chetyrkin-SN-Zakharov 97
 - Phenomenological parametrization of UV renormalon (see also Altarelli 95)
 - Alternative to the large β -approximation: alternate signs and *n*! growth not yet seen !

- $1/Q^2$ term in different places
 - Linear part of the QCD potential Lattice Bali et al 95,97
 - Some holographic models (Andreev-Zakharov 06,07, Jugeau-SN-Ratsimbarison 13)
- Tachyon gluon mass Chetyrkin-SN-Zakharov 97
 - Phenomenological parametrization of UV renormalon (see also Altarelli 95)
 - Alternative to the large β -approximation: alternate signs and *n*! growth not yet seen !
 - Needed to restore the ρ and π and glueballs QCD sum rule scales.

- $1/Q^2$ term in different places
 - Linear part of the QCD potential Lattice Bali et al 95,97
 - Some holographic models (Andreev-Zakharov 06,07, Jugeau-SN-Ratsimbarison 13)
- Tachyon gluon mass Chetyrkin-SN-Zakharov 97
 - Phenomenological parametrization of UV renormalon (see also Altarelli 95)
 - Alternative to the large β -approximation: alternate signs and *n*! growth not yet seen !
 - Needed to restore the ρ and π and glueballs QCD sum rule scales.
 - Dual to the sum of HO contributions to the PT series SN-Zakharov 09 : Short PT series $\oplus \lambda^2 = \text{Long PT series} : \lambda^2$ decreases when more terms are in the series !

- $1/Q^2$ term in different places
 - Linear part of the QCD potential Lattice Bali et al 95,97
 - Some holographic models (Andreev-Zakharov 06,07, Jugeau-SN-Ratsimbarison 13)
- Tachyon gluon mass Chetyrkin-SN-Zakharov 97
 - Phenomenological parametrization of UV renormalon (see also Altarelli 95)
 - Alternative to the large β -approximation: alternate signs and *n*! growth not yet seen !
 - Needed to restore the ρ and π and glueballs QCD sum rule scales.
 - Dual to the sum of HO contributions to the PT series SN-Zakharov 09 : Short PT series $\oplus \lambda^2$ = Long PT series : λ^2 decreases when more terms are in the series !

1.0

 τ [GeV⁻²]

1.1

1.2

0.8

0.9

- $1/Q^2$ term in different places
 - Linear part of the QCD potential Lattice Bali et al 95,97
 - Some holographic models (Andreev-Zakharov 06,07, Jugeau-SN-Ratsimbarison 13)
- Tachyon gluon mass Chetyrkin-SN-Zakharov 97
 - Phenomenological parametrization of UV renormalon (see also Altarelli 95)
 - Alternative to the large β -approximation: alternate signs and *n*! growth not yet seen !
 - Needed to restore the ρ and π and glueballs QCD sum rule scales.
 - Dual to the sum of HO contributions to the PT series SN-Zakharov 09 : Short PT series $\oplus \lambda^2 = \text{Long PT series} : \lambda^2$ decreases when more terms are in the series !

Small size instantons

Contributes as operators of dimension 9 :

$$\delta^{(9)}(M_{\tau}) \simeq -(7.0 \pm 26.5) \times 10^{-4}$$
 SN96
 $\approx +(0.2 \sim 30) \times 10^{-4}$ KK95 Negligible!

Small size instantons

Contributes as operators of dimension 9 :

$$\delta^{(9)}(M_{\tau}) \simeq -(7.0 \pm 26.5) \times 10^{-4}$$
 SN96
 $\approx +(0.2 \sim 30) \times 10^{-4}$ KK95 Negligible!

Duality violation

Small size instantons

Contributes as operators of dimension 9 :

 $\delta^{(9)}(M_{\tau}) \simeq -(7.0 \pm 26.5) \times 10^{-4}$ SN96 $\approx +(0.2 \sim 30) \times 10^{-4}$ KK95 Negligible!

- Duality violation
 - $\Delta \text{Im} \Pi(t) \sim e^{-(\delta + \gamma s)} \sin(\alpha + \beta s)$ above a certain threshold : $\hat{s}_0 \simeq 1.5 \text{ GeV}^2$ Peris et al.. $\delta, \gamma, \alpha, \beta$ are free unknown parameters.

Small size instantons

Contributes as operators of dimension 9 :

 $\delta^{(9)}(M_{\tau}) \simeq -(7.0 \pm 26.5) \times 10^{-4}$ SN96 $\approx +(0.2 \sim 30) \times 10^{-4}$ KK95 Negligible!

- Duality violation
 - $\Delta \text{Im} \Pi(t) \sim e^{-(\delta + \gamma s)} \sin(\alpha + \beta s)$ above a certain threshold : $\hat{s}_0 \simeq 1.5 \text{ GeV}^2$ Peris et al.. $\delta, \gamma, \alpha, \beta$ are free unknown parameters.
 - Negligible ! Pich-Rodriguez

Small size instantons

Contributes as operators of dimension 9 :

 $\delta^{(9)}(M_{\tau}) \simeq -(7.0 \pm 26.5) \times 10^{-4}$ SN96 $\approx +(0.2 \sim 30) \times 10^{-4}$ KK95 Negligible!

- Duality violation
 - $\Delta \text{Im} \Pi(t) \sim e^{-(\delta + \gamma s)} \sin(\alpha + \beta s)$ above a certain threshold : $\hat{s}_0 \simeq 1.5 \text{ GeV}^2$ Peris et al.. $\delta, \gamma, \alpha, \beta$ are free unknown parameters.
 - Negligible ! Pich-Rodriguez
 - On the value of \hat{s}_0 from FESR (local duality) BLR85, BDLPR88:

$$\int_0^{\hat{s}_0} ds R_{ee}^{I=1} = \frac{3}{2} \hat{s}_0 \left[1 + a_s + a_s^2 (1.6398 - \frac{\beta_1}{2} + \cdots) \right]$$

 $-\rho$ -meson only : $\hat{s}_0 = 1.5 \text{ GeV}^2$.

- Complete $e^+e^- \rightarrow$ Hadrons data : $\hat{s}_0 = (4.5 \sim 5)$ GeV² (also checked from LSR) SN23 \implies huge exponential suppression ?

■ Standard SVZ OPE \oplus PT $O(\alpha_s^4) \oplus \Delta(\alpha_s^5)$

 $\alpha_s(M_{\tau}) = 0.3238(36)_{fit}(71)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1190(9)(3)_{evol}$ FO

$$= 0.3465(43)_{fit}(62)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1216(8)(3)_{evol} \quad \text{CI}$$

 \implies Mean = 0.3358(55)(120)_{syst} $\implies \alpha_s(M_Z) = 0.1204(14)(3)_{evol}$

syst = distance between the mean central value to the ones of FO / CI. $\sum \delta^{(np)}(M_{\tau}) = (2.0 \pm 0.6) \times 10^{-2}$

■ Standard SVZ OPE \oplus PT $O(\alpha_s^4) \oplus \Delta(\alpha_s^5)$

 $\alpha_s(M_{\tau}) = 0.3238(36)_{fit}(71)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1190(9)(3)_{evol}$ FO

$$= 0.3465(43)_{fit}(62)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1216(8)(3)_{evol} \quad \text{CI}$$

 $\implies \text{Mean} = 0.3358(55)(120)_{syst} \implies \alpha_s(M_Z) = 0.1204(14)(3)_{evol}$

syst = distance between the mean central value to the ones of FO / CI.

$$\sum \delta^{(np)}(M_{\tau}) = (2.0 \pm 0.6) \times 10^{-2}$$

• OK with SN, Nucl.Phys.A 1039 (2023) 122744 : $\alpha_s(M_{\tau}) = 0.3385(50)(136)_{syst}$ No big effects due to the new values of Power corrections.

■ Standard SVZ OPE \oplus PT $O(\alpha_s^4) \oplus \Delta(\alpha_s^5)$

 $\alpha_s(M_{\tau}) = 0.3238(36)_{fit}(71)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1190(9)(3)_{evol}$ FO

$$= 0.3465(43)_{fit}(62)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1216(8)(3)_{evol} \quad \text{CI}$$

 $\implies \text{Mean} = 0.3358(55)(120)_{syst} \implies \alpha_s(M_Z) = 0.1204(14)(3)_{evol}$

syst = distance between the mean central value to the ones of FO / CI. $\sum \delta^{(np)}(M_{\tau}) = (2.0 \pm 0.6) \times 10^{-2}$

- OK with SN, Nucl.Phys.A 1039 (2023) 122744 : $\alpha_s(M_{\tau}) = 0.3385(50)(136)_{syst}$ No big effects due to the new values of Power corrections.
- Compare with τ decay : $\alpha_s(M_{\tau}) = 0.3290(130)$ Pich-Rodriguez 16

Good agreement as expected from Isospin Symmetry !

■ Standard SVZ OPE \oplus PT $O(\alpha_s^4) \oplus \Delta(\alpha_s^5)$

 $\alpha_s(M_{\tau}) = 0.3238(36)_{fit}(71)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1190(9)(3)_{evol}$ FO

$$= 0.3465(43)_{fit}(62)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1216(8)(3)_{evol} \quad \text{CI}$$

 $\implies \text{Mean} = 0.3358(55)(120)_{syst} \implies \alpha_s(M_Z) = 0.1204(14)(3)_{evol}$

syst = distance between the mean central value to the ones of FO / CI. $\sum \delta^{(np)}(M_{\tau}) = (2.0 \pm 0.6) \times 10^{-2}$

- OK with SN, Nucl.Phys.A 1039 (2023) 122744 : $\alpha_s(M_{\tau}) = 0.3385(50)(136)_{syst}$ No big effects due to the new values of Power corrections.
- Compare with τ decay : $\alpha_s(M_{\tau}) = 0.3290(130)$ Pich-Rodriguez 16

Good agreement as expected from Isospin Symmetry !

• $1/Q^2$ Tachyonic gluon \oplus SVZ OPE \oplus PT $\mathcal{O}(\alpha_s^4)$

 $\alpha_s(M_{\tau}) = 0.3047(32)_{fit}(61)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1165(4)(3)_{evol}$ FO

$$= 0.3209(42)_{fit}(61)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1188(5)(3)_{evol} \quad \text{CI}$$

 \implies Mean = 0.3122(51)(87)_{syst} $\implies \alpha_s(M_Z) = 0.1175(13)(3)_{evol}$

■ Standard SVZ OPE \oplus PT $O(\alpha_s^4) \oplus \Delta(\alpha_s^5)$

 $\alpha_s(M_{\tau}) = 0.3238(36)_{fit}(71)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1190(9)(3)_{evol}$ FO

$$= 0.3465(43)_{fit}(62)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1216(8)(3)_{evol} \quad \text{CI}$$

 $\implies \text{Mean} = 0.3358(55)(120)_{syst} \implies \alpha_s(M_Z) = 0.1204(14)(3)_{evol}$

syst = distance between the mean central value to the ones of FO / CI. $\sum \delta^{(np)}(M_{\tau}) = (2.0 \pm 0.6) \times 10^{-2}$

• OK with SN, Nucl.Phys.A 1039 (2023) 122744 : $\alpha_s(M_{\tau}) = 0.3385(50)(136)_{syst}$ No big effects due to the new values of Power corrections.

• Compare with τ decay : $\alpha_s(M_{\tau}) = 0.3290(130)$ Pich-Rodriguez 16

Good agreement as expected from Isospin Symmetry !

• $1/Q^2$ Tachyonic gluon \oplus SVZ OPE \oplus PT $\mathcal{O}(\alpha_s^4)$

 $\alpha_s(M_{\tau}) = 0.3047(32)_{fit}(61)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1165(4)(3)_{evol}$ FO

$$= 0.3209(42)_{fit}(61)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1188(5)(3)_{evol} \quad \text{CI}$$

 \implies Mean = 0.3122(51)(87)_{syst} $\implies \alpha_s(M_Z) = 0.1175(13)(3)_{evol}$

• Compare with PDG 23 average : $\alpha_s(M_Z) = 0.1178(5)$

■ Standard SVZ OPE \oplus PT $O(\alpha_s^4) \oplus \Delta(\alpha_s^5)$

 $\alpha_s(M_{\tau}) = 0.3238(36)_{fit}(71)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1190(9)(3)_{evol}$ FO

$$= 0.3465(43)_{fit}(62)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1216(8)(3)_{evol} \quad \text{CI}$$

 $\implies \text{Mean} = 0.3358(55)(120)_{syst} \implies \alpha_s(M_Z) = 0.1204(14)(3)_{evol}$

syst = distance between the mean central value to the ones of FO / CI. $\sum \delta^{(np)}(M_{\tau}) = (2.0 \pm 0.6) \times 10^{-2}$

• OK with SN, Nucl.Phys.A 1039 (2023) 122744 : $\alpha_s(M_{\tau}) = 0.3385(50)(136)_{syst}$ No big effects due to the new values of Power corrections.

• Compare with τ decay : $\alpha_s(M_{\tau}) = 0.3290(130)$ Pich-Rodriguez 16

Good agreement as expected from Isospin Symmetry !

• $1/Q^2$ Tachyonic gluon \oplus SVZ OPE \oplus PT $\mathcal{O}(\alpha_s^4)$

 $\alpha_s(M_{\tau}) = 0.3047(32)_{fit}(61)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1165(4)(3)_{evol}$ FO

$$= 0.3209(42)_{fit}(61)_{\alpha_s^5} \implies \alpha_s(M_Z) = 0.1188(5)(3)_{evol} \quad \text{CI}$$

 \implies Mean = 0.3122(51)(87)_{syst} $\implies \alpha_s(M_Z) = 0.1175(13)(3)_{evol}$

• Compare with PDG 23 average : $\alpha_s(M_Z) = 0.1178(5)$

Misaotra Anareo @ ny Faharetana !

Merci pour Votre Patience !

Thanks for Your Patience !

https://www.lupm.in2p3.fr/users/qcd/agmm

alphas 2024 - 8th February 2024 (Trento - IT) - p. 23/23