Rodríguez-Sánchez, A.P., 2205.07587

Standard Model Antonio Pich , Univ. Valencia – CSIC

alphas-2024: Workshop on precision measurements of the QCD coupling constant ECT* Trento, 5 – 9 February 2024

au Hadronic Width: $R_{ au}$

 $\Pi^{(J)}(s) \equiv |V_{ud}|^2 \left(\Pi^{(J)}_{ud,V}(s) + \Pi^{(J)}_{ud,A}(s)\right) + |V_{us}|^2 \Pi^{(J)}_{us,V+A}(s)$

Davier et al, 1312.1501

$$v_1 = 2\pi \operatorname{Im} \Pi^{(1)}_{ud,V}(s)$$
, $a_1 = 2\pi \operatorname{Im} \Pi^{(1)}_{ud,A}(s)$

Braaten-Narison-Pich, 1992

$$R_{\tau} = \frac{\Gamma[\tau^{-} \to \nu_{\tau} \text{hadrons}]}{\Gamma[\tau^{-} \to \nu_{\tau} e^{-} \overline{\nu}_{e}]} = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$$
$$= 12\pi \int_{0}^{m_{\tau}^{2}} \frac{ds}{m_{\tau}^{2}} \left(1 - \frac{s}{m_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{m_{\tau}^{2}}\right) \text{Im } \Pi^{(0+1)}(s) - 2\frac{s}{m_{\tau}^{2}} \text{ Im } \Pi^{(0)}(s) \right]$$

 $\Gamma_{\tau \to \nu_{\tau} + had} \sim Im \left\{ \begin{array}{c} \bullet \\ \bullet \end{array} \right\}$

Theoretical Framework

-

Theoretical Framework

• Standard Strategy: Minimize $\Delta A_{\mathcal{T}}^{\omega}(s_0)$

Take s_0 large enough and/or pinched weights, $\omega(s_0) = 0$, so that the tiny correction $\Delta A_{\tau}^{\omega}(s_0)$ can be neglected

• **DV Approach:** Maximize and "measure" $\Delta A^{\omega}_{\mathcal{T}}(s_0)$ Boito et al

Non-protected weights. Usual default: $\omega(s) = 1$

Modelling of $\Delta \rho_{\mathcal{J}}^{\mathrm{DV}}(s)$ needed \rightarrow Additional fit parameters

QCD precision can never be better than the reached control on $\Delta \rho_{\mathcal{J}}^{\mathrm{DV}}(s)$ (but high accuracy on α_s claimed)

• Standard Strategy: Minimize $\Delta A^{\omega}_{\tau}(s_0)$ Take s_0 large enough and/or pinched weights, $\omega(s_0) = 0$, so that the tiny correction $\Delta A^{\omega}_{\tau}(s_0)$ can be neglected **DV** Approach: Maximize and "measure" $\triangle A^{\omega}_{\tau}(s_0)$ Boito et al Non-protected weights. Usual default: $\omega(s) = 1$ Modelling of $\Delta \rho_{\tau}^{\rm DV}(s)$ needed \rightarrow Additional fit parameters QCD precision can never be better than the reached control on $\Delta \rho_{\tau}^{\rm DV}(s)$ (but high accuracy on α_s claimed) LO OPE approximation: $\mathcal{P}_{D..\mathcal{T}}=0$

$$\begin{split} \left. \Pi_{\mathcal{J}}^{\text{OPE}}(s) \right|_{D>0}^{\text{NLO}} &= \sum_{D>0} \frac{\mathcal{O}_{D,\mathcal{J}}(\mu) + \mathcal{P}_{D,\mathcal{J}} \log\left(-s/\mu^2\right)}{(-s)^{D/2}} \\ \omega_n(s) &= \left(\frac{s}{s_0}\right)^n \quad \Longrightarrow \quad \Delta A_{\mathcal{J}}^{(n)}(s_0) \Big|_{D>0}^{\text{OPE}} = -\pi \sum_{p=2} \frac{d_{p,\mathcal{J}}^{(n)}}{(-s_0)^p} \quad , \quad d_{p,\mathcal{J}}^{(n)} = \begin{cases} \mathcal{O}_{2p,\mathcal{J}}(s_0) & \text{if } p = n+1 \\ \frac{\mathcal{P}_{2p,\mathcal{J}}}{n-p+1} & \text{if } p \neq n+1 \end{cases} \end{split}$$

 $\mathcal{P}_{D,\mathcal{J}} = 0$ justified if OPE is well behaved. Meaningless otherwise

Duality Violations

ALEPH Spectral Functions

Davier et al. 2014

A. Pich

Duality Violations

5

Detailed analysis of ALEPH data

Standard Approach

Rodríguez-Sánchez, Pich, arXiv:1605.06830

Mothod $(V \perp A)$		$lpha_{s}(\pmb{m}_{ au}^{2})$					
	CIPT	FOPT	Average				
ALEPH moments ¹	$0.339^{+0.019}_{-0.017}$	$0.319 {}^{+ 0.017}_{- 0.015}$	$0.329 {}^{+ 0.020}_{- 0.018}$				
Mod. ALEPH moments ²	$0.338 {}^{+ 0.014}_{- 0.012}$	$0.319 {}^{+ 0.013}_{- 0.010}$	$0.329 {}^{+ 0.016}_{- 0.014}$				
$A^{(2,m)}$ moments ³	$0.336 {}^{+ 0.018}_{- 0.016}$	$0.317 {}^{+ 0.015}_{- 0.013}$	$0.326 {}^{+ 0.018}_{- 0.016}$				
s ₀ dependence ⁴	0.335 ± 0.014	0.323 ± 0.012	0.329 ± 0.013				
Borel transform ⁵	$0.328 {}^{+ 0.014}_{- 0.013}$	$0.318 {}^{+ 0.015}_{- 0.012}$	$0.323 {}^{+ 0.015}_{- 0.013}$				
Combined value	0.335 ± 0.013	0.320 ± 0.012	0.328 ± 0.013				

 $\begin{array}{ll} 1) & \omega_{kl}(x) = (1+2x) \, (1-x)^{2+k} x^l & (k,l) = (0,0), \, (1,0), \, (1,1), \, (1,2), \, (1,3) & x \equiv s/s_0 \\ 2) & \tilde{\omega}_{kl}(x) = (1-x)^{2+k} x^l & (k,l) = (0,0), \, (1,0), \, (1,1), \, (1,2), \, (1,3) \\ 3) & \omega^{(2,m)}(x) = (1-x)^2 \sum_{k=0}^m (k+1) x^k = 1 - (m+2) x^{m+1} + (m+1) x^{m+2} &, \quad 1 \leq m \leq 5 \\ 4) & \omega^{(2,m)}(x) & 0 \leq m \leq 2 &, \quad 1 \text{ single moment in each fit} \\ 5) & \omega_a^{(1,m)}(x) = (1-x^{m+1}) e^{-ax} & 0 \leq m \leq 6 \end{array}$

Experiment vs. (pinched) Perturbation Theory (only)

Rodríguez-Sánchez, A.P.

No OPE corrections at LO Not protected against DV Beautiful DV in V & A

(below 2.4 GeV^2)

DV largely cancels in V + A

Pinched weight (protected against DV)

No obvious signal of DV seen

Clear D = 6 OPE correction with opposite signs in V & A which cancels to a large extent in V+A

Non-Perturbative Contributions Neglected

Rodríguez-Sánchez, A.P.

$$\omega^{(1,m)}(x) = 1 - x^{m+1} \rightarrow \mathcal{O}_{2m+4}$$

 $\omega^{(2,m)}(x) = (1-x)^2 \sum_{k=0}^{m} (k+1) x^k = 1 - (m+2) x^{m+1} + (m+1) x^{m+2} \implies \mathcal{O}_{2m+4,2m+6}$

Moment	$\alpha_s($	m_{τ}^2)	Moment	$\alpha_s($	m_{τ}^2) (Amazir stabilit
(<i>n</i> , <i>m</i>)	FOPT	CIPT	(<i>n</i> , <i>m</i>)	FOPT	CIPT	\sim
(1,0)	$0.315^{+0.012}_{-0.007}$	$0.327^{+0.012}_{-0.009}$	(2,0)	$0.311{}^{+0.015}_{-0.011}$	$0.314{}^{+0.013}_{-0.009}$]
(1,1)	$0.319^{+0.010}_{-0.006}$	$0.340^{+0.011}_{-0.009}$	(2,1)	$0.311{}^{+0.011}_{-0.006}$	$0.333^{+0.009}_{-0.007}$	
(1,2)	$0.322{}^{+0.010}_{-0.008}$	$0.343^{+0.012}_{-0.010}$	(2,2)	$0.316{}^{+0.010}_{-0.005}$	$0.336^{+0.011}_{-0.009}$	
(1,3)	$0.324{}^{+0.011}_{-0.010}$	$0.345^{+0.013}_{-0.011}$	(2,3)	$0.318{}^{+0.010}_{-0.006}$	$0.339^{+0.011}_{-0.008}$	
(1,4)	$0.326{}^{+0.011}_{-0.011}$	$0.347^{+0.013}_{-0.012}$	(2,4)	$0.319{}^{+0.009}_{-0.007}$	$0.340{}^{+0.011}_{-0.009}$	
(1,5)	$0.327 {}^{+0.015}_{-0.013}$	$0.348^{+0.014}_{-0.012}$	(2,5)	$0.320 {}^{+0.010}_{-0.008}$	$0.341 {}^{+0.011}_{-0.009}$	

Duality Violations

Modelling Duality Violations

$$\Delta A^{\omega}_{\mathcal{J}}(s_0) \ = \ \frac{i}{2} \ \oint_{|s|=s_0} \frac{ds}{s_0} \ \omega(s) \ \left\{ \Pi_{\mathcal{J}}(s) - \Pi_{\mathcal{J}}(s)^{\mathrm{OPE}} \right\} \ = \ -\pi \ \int_{s_0}^{\infty} \frac{ds}{s_0} \ \omega(s) \ \Delta \rho^{\mathrm{DV}}_{\mathcal{J}}(s)$$

Algorithmic procedure:

• $\omega_0(x) = 1$ \rightarrow no OPE corrections at LO (assumes well-behaved OPE) • Fit s_0 dependence in $\hat{s}_0 < s_0 < m_\tau^2$ (bin by bin) \rightarrow Direct fit of $\rho(s)_{exp}$ $\omega_n(x) = x^n \rightarrow \text{Im } \Pi_{\mathcal{J}}(s_0) = \frac{1}{s_0^n} \frac{d\left[s_0^{n+1}A_{\mathcal{J}}^{\omega_n}(s_0)\right]}{ds_0}$

Direct fit of ansatz parameters (largely insensitive to α_s , OPE not valid in \mathbb{R} axis)

Modelling Duality Violations

$$\Delta A^{\omega}_{\mathcal{J}}(s_0) \ = \ \frac{i}{2} \ \oint_{|s|=s_0} \frac{ds}{s_0} \ \omega(s) \ \left\{ \Pi_{\mathcal{J}}(s) - \Pi_{\mathcal{J}}(s)^{\mathrm{OPE}} \right\} \ = \ -\pi \ \int_{s_0}^{\infty} \frac{ds}{s_0} \ \omega(s) \ \Delta \rho^{\mathrm{DV}}_{\mathcal{J}}(s)$$

Algorithmic procedure:

• $\omega_0(x) = 1$ \longrightarrow no OPE corrections at LO (assumes well-behaved OPE) • Fit s_0 dependence in $\hat{s}_0 < s_0 < m_{\tau}^2$ (bin by bin) \longrightarrow Direct fit of $\rho(s)_{exp}$ $\omega_n(x) = x^n \quad \longrightarrow \quad \text{Im } \Pi_{\mathcal{J}}(s_0) = \frac{1}{s_0^n} \frac{d \left[s_0^{n+1} A_{\mathcal{J}}^{\omega_n}(s_0)\right]}{ds_0}$

Direct fit of ansatz parameters (largely insensitive to α_s , OPE not valid in \mathbb{R} axis)

- $\forall \omega \& \forall s_0 \geq \hat{s}_0$, the fitted ansatz determines $\Delta A^{\omega}_{\mathcal{J}}(s_0)$ Modelling error?
- α_s mainly extracted from $A_{\mathcal{J}}^{\omega_0}(\hat{s}_0)_{\text{pert}} \approx A_{\mathcal{J}}^{\omega_0}(\hat{s}_0)_{\exp} \Delta A_{\mathcal{J}}^{\omega_0}(\hat{s}_0)$ Low scale $\hat{s}_0^{1/2} \sim 1.2 \text{ GeV} < m_{\tau}$ \rightarrow Large theory uncertainties

Modelling Duality Violations

$$\Delta A^{\omega}_{\mathcal{J}}(s_0) \ = \ \frac{i}{2} \ \oint_{|s|=s_0} \frac{ds}{s_0} \ \omega(s) \ \left\{ \Pi_{\mathcal{J}}(s) - \Pi_{\mathcal{J}}(s)^{\mathrm{OPE}} \right\} \ = \ -\pi \ \int_{s_0}^{\infty} \frac{ds}{s_0} \ \omega(s) \ \Delta \rho^{\mathrm{DV}}_{\mathcal{J}}(s)$$

Algorithmic procedure:

• $\omega_0(x) = 1$ \rightarrow no OPE corrections at LO (assumes well-behaved OPE) • Fit s_0 dependence in $\hat{s}_0 < s_0 < m_\tau^2$ (bin by bin) \rightarrow Direct fit of $\rho(s)_{exp}$ $\omega_n(x) = x^n \rightarrow \text{Im } \Pi_{\mathcal{J}}(s_0) = \frac{1}{s_0^n} \frac{d \left[s_0^{n+1} A_{\mathcal{J}}^m(s_0)\right]}{ds_0}$

Direct fit of ansatz parameters (largely insensitive to α_s , OPE not valid in \mathbb{R} axis)

- $\forall \omega \& \forall s_0 \geq \hat{s}_0$, the fitted ansatz determines $\Delta A^{\omega}_{\mathcal{J}}(s_0)$ Modelling error?
- α_s mainly extracted from $A_{\mathcal{J}}^{\omega_0}(\hat{s}_0)_{\text{pert}} \approx A_{\mathcal{J}}^{\omega_0}(\hat{s}_0)_{\exp} \Delta A_{\mathcal{J}}^{\omega_0}(\hat{s}_0)$ Low scale $\hat{s}_0^{1/2} \sim 1.2 \text{ GeV} < m_{\tau}$ \rightarrow Large theory uncertainties
- Taking additional weights $\omega_n(x)$: $A_{\mathcal{J}}^{\omega_n}(\hat{s}_0) \rightarrow$ A. Pich Duality Violations

 \mathcal{O}_{2n}

Boito et al ansatz:

$$\mathcal{G}_\mathcal{J}(s) = 1$$
 , $\hat{s_0} = 1.55~\mathrm{GeV}^2$, $\mathcal{J} = V$

ALEPH data, FOPT

$lpha_s^{(n_f=3)}(m_{ au}^2)$	δ_V	γ_V	α_V	β_V	p-value (%)
0.298 ± 0.010	3.6 ± 0.5	0.6 ± 0.3	-2.3 ± 0.9	4.3 ± 0.5	5.3

Numerical size of duality violations

	$A_V^{\omega_n}(\hat{s}_0)$								
	$\hat{s}_0=1$	$.55 { m ~GeV^2}$	<i>s</i> ₀ =	$2.8 \ { m GeV}^2$					
n	DV	Exp	DV	Exp					
0 1 4	0.00288 0.00228 -0.00032	0.09735 (51) 0.04447 (34) 0.01049 (20)	0.00142 0.00143 0.00133	0.09340 (114) 0.04529 (100) 0.01896 (77)					

	0	$-\sqrt{n}$	1
ω_n	. ×.	$) = x^{-1}$	

	$A_V^{\hat{\omega}_n}(\hat{\mathfrak{s}}_0)$								
	$\hat{s}_0 = 1$	$.55 { m ~GeV^2}$	$s_0 = 2$	$2.8 \ { m GeV}^2$					
n	DV	Exp	DV	Exp	û				
1 2 4	0.00061 0.00139 0.00320	0.05288 (24) 0.07356 (36) 0.08686 (52)	$\begin{array}{c} -0.00001 \\ 0.00000 \\ 0.00008 \end{array}$	0.04810 (24) 0.06342 (36) 0.07444 (51)					

 $\hat{\omega}_n(x) = 1 - x^n$

Pinching suppresses duality violations very efficiently at $\hat{s}_0 \sim m_{ au}^2$

Boito et al ansatz:

$${\mathcal G}_{\mathcal J}(s)=1$$
 , $\omega_0(x)=1$

ALEPH data, FOPT

$$\Delta \rho_{\mathcal{J}}^{\mathrm{DV}}(s) = e^{-(\delta_{\mathcal{J}} + \gamma_{\mathcal{J}} s)} \sin(\alpha_{\mathcal{J}} + \beta_{\mathcal{J}} s) \quad , \quad s > \hat{s}_{0}$$

Bad quality fit (Model dependence. Instabilities. Very low p-value)

A. Pich

Duality Violations

Sensitivity to the Assumed Ansatz

 $\Delta \rho_{\mathcal{J}}^{\mathrm{DV}}(s) = s^{\lambda_{\mathcal{J}}} e^{-(\delta_{\mathcal{J}} + \gamma_{\mathcal{J}} s)} \sin(\alpha_{\mathcal{J}} + \beta_{\mathcal{J}} s) \quad , \quad s > \hat{s}_{0}$

1

	$\wedge V \geq$	50 , $50 \sim 1$.55 Gev	$, \omega_0(x)$	= 1	Rodriguez-Sanchez, A.P.		
	λ_V	$\alpha_s(m_{ au}^2)^{\text{FOPT}}$	δ_V	γ_V	α_V	β_V	p-value	
Boito	0	0.298 ± 0.010	3.6 ± 0.5	0.6 ± 0.3	-2.3 ± 0.9	4.3 ± 0.5	(5.3%)	
	2	0.302 ± 0.011	$\textbf{2.9}\pm\textbf{0.5}$	1.6 ± 0.3	-2.2 ± 0.9	4.2 ± 0.5	6.0%	
	4	0.306 ± 0.013	2.3 ± 0.5	2.6 ± 0.3	-1.9 ± 0.9	4.1 ± 0.5	6.6%	
	8	0.314 ± 0.015	1.0 ± 0.5	4.6 ± 0.3	-1.5 ± 1.1	$\textbf{3.9}\pm\textbf{0.6}$	7.7%	

 $\sum 0$

 $2 1 \text{ FE } O_{-} V^2$

- Fitted α_s is model dependent
- $\lambda_V = 0$ (Boito) gives the worse fit
- Fit quality & α_s increase with λ_V
 - \rightarrow closer to data at $s < \hat{s}_0$
- $\Delta \hat{s}_0 \Rightarrow$ 3 times larger errors

```
Not competitive & unreliable
```

Sensitivity to the Assumed Ansatz

 $\Delta \rho_{\mathcal{J}}^{\mathrm{DV}}(s) = s^{\lambda_{\mathcal{J}}} e^{-(\delta_{\mathcal{J}} + \gamma_{\mathcal{J}} s)} \sin(\alpha_{\mathcal{J}} + \beta_{\mathcal{J}} s) \quad , \quad s > \hat{s}_{0}$

$\lambda_V \ge 0$, $\hat{s}_0 < $	~ 1.55	$5 \mathrm{GeV}^2$,	addi	tional we	ights	Rodríguez-Sánchez, A.F
	λ_V	$\mathcal{O}_{6,V}$	$\mathcal{O}_{8,V}$	$\mathcal{O}_{10,V}$	$\mathcal{O}_{12,V}$	
Boito et al →	0	-0.0082	0.014	-0.019	0.023	CoV units
	4	-0.0064	0.010	-0.012	0.014	Gev units
	8	-0.0037	0.004	0.001	-0.0099	

Fitted condensates are model dependent

The size of $\mathcal{O}_{2n,V}$ decreases when α_s (& fit quality) increases

Huge condensates claimed by Boito et al (OPE breakdown), but:

- $|\mathcal{O}_{6,V/A}| < |\mathcal{O}_{6,V-A}| = |(-3.5 \pm 0.9)| \times 10^{-3} \ {\rm GeV}^6$
- Opposite signs found with e^+e^- data: $$\mathcal{O}_6^{\rm EM}\sim+0.008$}$, $$\mathcal{O}_8^{\rm EM}\sim-0.03$$

(Boito et al, 1805.08176)

Experiment vs. (pinched) Perturbation Theory (only)

Rodríguez-Sánchez, A.P.

No OPE corrections at LO Not protected against DV

Beautiful DV in V & A(below 2.4 GeV²)

DV largely cancels in V + A

Pinched weight (protected against DV)

No obvious signal of DV seen

Clear D = 6 OPE correction with opposite signs in V & A which cancels to a large extent in V+A

Sensitivity to the Assumed Ansatz

 $\Delta \rho_{\mathcal{J}}^{\mathrm{DV}}(\boldsymbol{s}) \; = \; \mathcal{G}_{\mathcal{J}}(\boldsymbol{s}) \; e^{-(\delta_{\mathcal{J}} + \gamma_{\mathcal{J}} \; \boldsymbol{s})} \; \sin\left(\alpha_{\mathcal{J}} + \beta_{\mathcal{J}} \; \boldsymbol{s}\right) \qquad, \qquad \boldsymbol{s} > \hat{\boldsymbol{s}}_{0}$

|--|

Rodríguez-Sánchez, A.P.

 $\omega_0(x) = 1$

	Variation	$\mathcal{G}_V(s)$	ŝ ₀	$lpha_s(m_{ au}^2)^{ m FOPT}$	δ_V	γ_V	α_V	β_V	p-value
Boito	Default	1	1.55	0.298	3.6	0.6	-2.3	4.3	5.3%
	1	s ⁸	1.55	0.314	1.0	4.6	-1.5	3.9	7.7%
	2	$1 - \frac{1.35}{s}$	1.55	0.319	-0.19	1.8	-0.8	3.5	7.8%
	3	$1 - \frac{2}{5}$	1.55	0.260	0.23	1.2	3.2	2.1	6.4 %
	4	1	2	0.320	0.56	1.9	0.15	3.1	6.9%

- Fitted α_s is model dependent
- Higher p-values than default fit
- Bad behaviour outside fitted region

Below \hat{s}_0 data deviate from DV models much more than from OPE at $\sim m_{ au}^2$

• Models with low values of $\alpha_{\rm s}$ (def, 3) have large bumps above m_{τ}^2

Sensitivity to the Assumed Ansatz $\omega_n(x) = x^n$

 $\Delta \rho_{\mathcal{J}}^{\mathrm{DV}}(s) \; = \; \mathcal{G}_{\mathcal{J}}(s) \; e^{-(\delta_{\mathcal{J}} + \gamma_{\mathcal{J}} \, s)} \; \sin\left(\alpha_{\mathcal{J}} + \beta_{\mathcal{J}} \, s\right) \qquad , \qquad s > \hat{s}_{0}$

GeV ² units Rodríguez-Sánch									
Variation	$\mathcal{O}_{4,V}$	$\mathcal{O}_{6,V}$	$\mathcal{O}_{8,V}$	$\mathcal{O}_{10,V}$	$\mathcal{O}_{12,V}$	$\mathcal{O}_{14,V}$	$\mathcal{O}_{16,V}$	α_s	
Default	0.0016	-0.0082	0.014	-0.019	0.023	-0.028	0.037	0.298	
1	-0.0003	-0.0037	0.004	0.001	-0.010	0.006	0.079	0.314	
2	-0.0009	-0.0023	0.001	0.008	-0.026	0.046	-0.032	0.319	
3	0.0079	-0.0318	0.091	-0.25	0.59	-1.04	0.24	0.260	
4	-0.0009	-0.0012	-0.003	0.021	-0.06	0.13	-0.20	0.320	

Variation	$\mathcal{O}_{4,A}$	$\mathcal{O}_{6,A}$	$\mathcal{O}_{8,A}$	$\mathcal{O}_{10,\mathcal{A}}$	$\mathcal{O}_{12,\mathcal{A}}$	$\mathcal{O}_{14,A}$	$\mathcal{O}_{16,\mathcal{A}}$	α_s
Default	0.0006	-0.0016	0.016	-0.052	0.11	-0.11	-0.28	0.298
1	-0.0015	0.0039	0.0024	-0.023	0.060	-0.084	-0.037	0.314
2	-0.0021	0.0055	-0.0012	-0.015	0.047	-0.074	-0.000	0.319
3	0.0054	-0.017	0.058	-0.16	0.31	-0.16	-2.15	0.260
4	-0.0014	0.0048	-0.0005	-0.016	0.048	-0.08	0.028	0.320

Minor ansatz modifications can generate huge changes of $\mathcal{O}_{2n,\mathcal{J}}$ Once the ansatz and α_s get fixed, $\mathcal{O}_{2n,\mathcal{J}}$ must reabsorb all perturbative (through a slightly off α_s) and DV deformations introduced by the models

Numerical Size of Duality Violations: $\hat{\omega}_N(x) = 1 - x^N$

$$\Delta \rho_{\mathcal{J}}^{\mathrm{DV}}(s) \ = \ \mathcal{G}_{\mathcal{J}}(s) \ e^{-(\delta_{\mathcal{J}} + \gamma_{\mathcal{J}} \ s)} \ \sin\left(\alpha_{\mathcal{J}} + \beta_{\mathcal{J}} \ s\right) \qquad , \qquad s > \hat{s}_{0}$$

Rodríguez-Sánchez, A.P.

		$A_V^{\hat{\omega}_N}(s_0)$				
			ŝ ₀	$s_0=2.8~{ m GeV}^2$		
Ansatz	Ν	DV	Exp	DV	Exp	
$\begin{array}{l} \mbox{Default} \\ \mathcal{G}_V(s) = 1 \\ \hat{s}_0 = 1.55 \ {\rm GeV}^2 \end{array}$	1 2 4	0.00061 0.00139 0.00320	0.05288 (24) 0.07356 (36) 0.08686 (52)	$\begin{array}{c} -0.00001 \\ 0.00000 \\ 0.00008 \end{array}$	0.04810 (24) 0.06342 (36) 0.07444 (51)	
$\frac{1}{\mathcal{G}_V(s) = s^8}$ $\hat{s}_0 = 1.55 \text{ GeV}^2$	1 2 4	0.00151 0.00358 0.00859	0.05288 (24) 0.07356 (36) 0.08686 (52)	$\begin{array}{c} -0.00008\\ -0.00016\\ -0.00031\end{array}$	0.04810 (24) 0.06342 (36) 0.07444 (51)	
$\begin{array}{c} 2 \\ \mathcal{G}_V(s) = 1 - \frac{1.35}{s} \\ \hat{s}_0 = 1.55 \ \mathrm{GeV}^2 \end{array}$	1 2 4	0.00177 0.00421 0.01053	0.05288 (24) 0.07356 (36) 0.08686 (52)	$\begin{array}{c} -0.00011 \\ -0.00021 \\ -0.00040 \end{array}$	0.04810 (24) 0.06342 (36) 0.07444 (51)	
$\frac{3}{\mathcal{G}_{V}(s) = 1 - \frac{2}{s}} \\ \hat{s}_{0} = 1.55 \text{ GeV}^{2}$	1 2 4	-0.00470 0.00358 -0.073411	0.05288 (24) 0.07356 (36) 0.08686 (52)	$\begin{array}{c} -0.00071 \\ -0.00137 \\ -0.00191 \end{array}$	0.04810 (24) 0.06342 (36) 0.07444 (51)	
$\begin{array}{c} 4 \\ \mathcal{G}_V(s) = 1 \\ \hat{s}_0 = 2 \ \mathrm{GeV}^2 \end{array}$	1 2 4	0.00064 0.00126 0.00214	0.05019 (24) 0.06707 (32) 0.07720 (38)	$\begin{array}{r} -0.00009 \\ -0.00018 \\ -0.00039 \end{array}$	0.04810 (24) 0.06342 (36) 0.07444 (51)	

Pinching suppresses duality violations very efficiently at $s_0 \sim m_{ au}^2$

DV modelling of the V + A Spectral Function

Rodríguez-Sánchez, A.P.

- Big disagreement with data below fitted region
- Fake violation of duality at s ≥ m²_τ (larger than a₁ resonance peak) in models 'default' & '3' (the models giving low values of α_s)

A. Pich

Duality Violations

- Unphysical behaviour outside fitted region for models D & 3 Huge DV at m_{τ}^2 needs to fall down abruptly to zero to comply with Asymptotic Freedom
- The non-pathological scenarios 1, 2 & 4 give values of α_s within our estimated 1σ interval (standard approach)

A. Pich

Duality Violations

Numerical Size of Power Corrections

$\Delta \rho_{\mathcal{J}}^{\mathrm{DV}}(s) = \mathcal{G}_{\mathcal{J}}(s) e^{-(\delta_{\mathcal{J}} + \gamma_{\mathcal{J}} s)}$	$\sin \left(lpha_{\mathcal{J}} + eta_{\mathcal{J}} s \right)$,	$s>\hat{s}_0$
--	---	---	---------------

$\omega^{(2,n)}(x) = 1 - (n+2) x^{n+1} + (n+1) x^{n+2}$

Rodríguez-Sánchez, A.P.

Weight	Model	Pert	$\mathcal{O}_{2(n+2),V+A}$	$\mathcal{O}_{2(n+3),V+A}$	DV	Exp
(2.1)	D	0.0938 (5)	0.0029	-0.0019	-0.0001	0.0954 (3)
$A_{V+A}^{\omega^{(2,1)}}(m_{\tau}^2)$	1	0.0952 (7)	-0.0001	-0.0004	-0.0000	0.0954 (3)
VTA C //	2	0.0957 (8)	-0.0010	0.0000	-0.0000	0.0954 (3)
	3	0.0908 (2)	0.0145	-0.0095	-0.0007	0.0954 (3)
	4	0.0958 (8)	-0.0011	-0.0005	-0.0000	0.0954 (3)
(2.4)	D	0.1316 (4)	0.0025	-0.0007	0.0001	0.1344 (8)
$A_{V+A}^{\omega^{(2,4)}}(m_{\tau}^2)$	1	0.1331 (5)	0.0009	-0.0004	0.0001	0.1344 (8)
V T A \ / /	2	0.1336 (5)	0.0004	-0.0001	0.0000	0.1344 (8)
	3	0.1282 (2)	0.0171	-0.0061	-0.0056	0.1344 (8)
	4	0.1337 (5)	-0.0002	0.0002	0.0001	0.1344 (8)
Woight	Model	Port	0	0	DV	Evp
Weight	Model	Pert	$\mathcal{O}_{2(n+2),V+A}$	$\mathcal{O}_{2(n+3),V+A}$	DV	Exp
Weight	Model D	Pert 0.1010 (18)	<i>O</i> _{2(<i>n</i>+2),<i>V</i>+<i>A</i>} 0.0248	$O_{2(n+3),V+A}$ -0.0326	DV 0.0062	Exp 0.0994 (4)
Weight $A_{V+A}^{\omega^{(2,1)}}(\hat{s}_0)$	Model D 1	Pert 0.1010 (18) 0.1043 (28)	$\begin{array}{c} \mathcal{O}_{2(n+2),V+A} \\ 0.0248 \\ -0.0006 \end{array}$	$\begin{array}{c} \mathcal{O}_{2(n+3),V+A} \\ -0.0326 \\ -0.0071 \end{array}$	DV 0.0062 0.0028	Exp 0.0994 (4) 0.0994 (4)
$\frac{Weight}{A_{V+A}^{\omega^{(2,1)}}(\hat{s}_0)}$	Model D 1 2	Pert 0.1010 (18) 0.1043 (28) 0.1054 (32)	$\begin{array}{c} \mathcal{O}_{2(n+2),V+A} \\ 0.0248 \\ -0.0006 \\ -0.0081 \end{array}$	$\begin{array}{c} \mathcal{O}_{2(n+3),V+A} \\ -0.0326 \\ -0.0071 \\ 0.0003 \end{array}$	DV 0.0062 0.0028 0.0018	Exp 0.0994 (4) 0.0994 (4) 0.0994 (4)
$\frac{Weight}{A_{V+A}^{\omega^{(2,1)}}(\hat{s}_0)}$	Model D 1 2 3	Pert 0.1010 (18) 0.1043 (28) 0.1054 (32) 0.0948 (06)	$\begin{array}{c} \mathcal{O}_{2(n+2),V+A} \\ 0.0248 \\ -0.0006 \\ -0.0081 \\ 0.1221 \end{array}$	$\begin{array}{c} \mathcal{O}_{2(n+3),V+A} \\ -0.0326 \\ -0.0071 \\ 0.0003 \\ -0.1629 \end{array}$	DV 0.0062 0.0028 0.0018 0.0452	Exp 0.0994 (4) 0.0994 (4) 0.0994 (4) 0.0994 (4)
$\frac{\text{Weight}}{A_{V+A}^{\omega^{(2,1)}}(\hat{s}_0)}$	Model D 1 2 3 4	Pert 0.1010 (18) 0.1043 (28) 0.1054 (32) 0.0948 (06) 0.1010 (18)	$\begin{array}{c} \mathcal{O}_{2(n+2),V+A} \\ 0.0248 \\ -0.0006 \\ -0.0081 \\ 0.1221 \\ -0.0042 \end{array}$	$\begin{array}{c} \mathcal{O}_{2(n+3),V+A} \\ -0.0326 \\ -0.0071 \\ 0.0003 \\ -0.1629 \\ 0.0015 \end{array}$	DV 0.0062 0.0028 0.0018 0.0452 -0.0001	Exp 0.0994 (4) 0.0994 (4) 0.0994 (4) 0.0994 (4) 0.0980 (3)
Weight $A_{V+A}^{\omega^{(2,1)}}(\hat{s}_0)$	Model D 1 2 3 4 D	Pert 0.1010 (18) 0.1043 (28) 0.1054 (32) 0.0948 (06) 0.1010 (18) 0.1391 (10)	\$\mathcal{O}_{2(n+2),V+A}\$ 0.0248 -0.0006 -0.0081 0.1221 -0.0042 0.1808	$\begin{array}{c} \mathcal{O}_{2(n+3),V+A} \\ -0.0326 \\ -0.0071 \\ 0.0003 \\ -0.1629 \\ 0.0015 \\ -0.1012 \end{array}$	DV 0.0062 0.0028 0.0018 0.0452 -0.0001 -0.0787	Exp 0.0994 (4) 0.0994 (4) 0.0994 (4) 0.0994 (4) 0.0980 (3) 0.1401 (5)
$\frac{\text{Weight}}{A_{V+A}^{\omega^{(2,1)}}(\hat{s}_0)}$ $A_{V+A}^{\omega^{(2,4)}}(\hat{s}_0)$	Model D 1 2 3 4 D 1 1	Pert 0.1010 (18) 0.1043 (28) 0.1054 (32) 0.0948 (06) 0.1010 (18) 0.1391 (10) 0.1424 (14)	\$\mathcal{O}_{2(n+2),V+A}\$ 0.0248 -0.0006 -0.0081 0.1221 -0.0042 0.1808 0.0676	$\begin{array}{c} \mathcal{O}_{2(n+3),V+A} \\ -0.0326 \\ -0.0071 \\ 0.0003 \\ -0.1629 \\ 0.0015 \\ -0.1012 \\ -0.0572 \end{array}$	DV 0.0062 0.0028 0.0018 0.0452 -0.0001 -0.0787 -0.0128	Exp 0.0994 (4) 0.0994 (4) 0.0994 (4) 0.0994 (4) 0.0980 (3) 0.1401 (5) 0.1401 (5)
$\frac{Weight}{A_{V+A}^{\omega^{(2,1)}}(\hat{s}_0)}$ $A_{V+A}^{\omega^{(2,4)}}(\hat{s}_0)$	Model D 1 2 3 4 D 1 2 1 2	Pert 0.1010 (18) 0.1043 (28) 0.1054 (32) 0.0948 (06) 0.1010 (18) 0.1391 (10) 0.1424 (14) 0.1434 (16)	$\begin{array}{c} \mathcal{O}_{2(n+2),V+A} \\ 0.0248 \\ -0.0006 \\ -0.0081 \\ 0.1221 \\ -0.0042 \\ 0.1808 \\ 0.0676 \\ 0.0281 \end{array}$	$\begin{array}{c} \mathcal{O}_{2(n+3),V+A} \\ -0.0326 \\ -0.0071 \\ 0.0003 \\ -0.1629 \\ 0.0015 \\ -0.1012 \\ -0.0572 \\ -0.0203 \end{array}$	DV 0.0062 0.0028 0.0018 0.0452 -0.0001 -0.0787 -0.0128 -0.0112	Exp 0.0994 (4) 0.0994 (4) 0.0994 (4) 0.0994 (4) 0.0980 (3) 0.1401 (5) 0.1401 (5)
$\frac{Weight}{A_{V+A}^{\omega^{(2,1)}}(\hat{s}_0)}$ $A_{V+A}^{\omega^{(2,4)}}(\hat{s}_0)$	Model D 1 2 3 4 D 1 2 3 3 3 3 3 4 1 2 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1	Pert 0.1010 (18) 0.1043 (28) 0.1054 (32) 0.0948 (06) 0.1010 (18) 0.1391 (10) 0.1424 (14) 0.1434 (16) 0.1327 (05)	$\begin{array}{c} \mathcal{O}_{2(n+2),V+A} \\ 0.0248 \\ -0.0006 \\ -0.0081 \\ 0.1221 \\ -0.0042 \\ 0.1808 \\ 0.0676 \\ 0.0281 \\ 1.2216 \end{array}$	$\begin{array}{c} \mathcal{O}_{2(n+3),V+A} \\ -0.0326 \\ -0.0071 \\ 0.0003 \\ -0.1629 \\ 0.0015 \\ -0.1012 \\ -0.0572 \\ -0.0203 \\ -0.8833 \end{array}$	DV 0.0062 0.0028 0.0018 0.0452 -0.0001 -0.0787 -0.0128 -0.0112 -0.3309	Exp 0.0994 (4) 0.0994 (4) 0.0994 (4) 0.0994 (4) 0.0980 (3) 0.1401 (5) 0.1401 (5) 0.1401 (5)

Summary

- Violations of quark-hadron duality are interesting per se, but they cannot be used to determine α_s precisely
 - Strong sensitivity to the assumed DV model
 - Unstable algorithmic procedure
 - Accuracy necessarily limited by our lack of control of DV effects

• A precise determination of α_s requires minimizing DV

- Use inclusive observables (moments)
- Take s₀ large enough (exponential suppression)
- Use pinched weights (with low values of *n*)
- R_{τ} ideally suited (doubly pinched, m_{τ}^2 large enough, V + A)
- Accurate, robust and reliable determination: (standard approach)

 $\alpha_s(m_\tau^2) = \begin{cases} 0.320 \pm 0.012\\ 0.335 \pm 0.013 \end{cases} \implies \alpha_s(M_Z^2) = \begin{cases} 0.1187 \pm 0.0015 & (\text{FOPT})\\ 0.1205 \pm 0.0015 & (\text{CIPT}) \end{cases}$

Backup

alphas-2024: Workshop on precision measurements of the QCD coupling constant ECT* Trento, 5 – 9 February 2024

R_{τ} suitable for a precise α_s determination

- Known to $\mathcal{O}(\alpha_s^4)$. Sizeable $\delta_P \sim 20\%$. Strong sensitivity to α_s
- m_{τ} large enough to safely use the OPE. Flat V + A distribution
- OPE only valid away from real axis: $(1-x)^2$ pinched at $s = m_{\tau}^2$

•
$$m_{u,d} = 0 \implies s \Pi^{(0)} = 0 \implies R_{\tau,V+A} = 6\pi i \oint_{|x|=1} (1 - 3x^2 + 2x^3) \Pi^{(0+1)}_{ud,V+A}(m^2_{\tau}x)$$

 $\Rightarrow \delta_{\rm NP} \sim 1/{\rm m}_{ au}^6$ Strong suppression of non-perturbative effects

- D = 6 OPE contributions have opposite sign for V & A. Cancellation
- $\delta_{
 m NP}$ can be determined from data: $\delta_{
 m NP}=-0.0064\pm0.0013$ Davier et al

$$\mathsf{R}_{\tau} \implies \alpha_{\mathsf{s}}(\mathsf{m}_{\tau}^2) = 0.331 \pm 0.013$$

Pich 2014

• Criticism 1: DV model is not stable against variations

$$\Delta
ho^{
m DV}(s) \;=\; \left(1+rac{c}{s}
ight) \, e^{-(\delta+\gamma \; s)} \; \sin\left(lpha+eta \, s
ight) \qquad,\qquad s>\hat{s}_0$$

 $c \sim -2~{\rm GeV}^2$ is not a small correction for $s \sim 2~{\rm GeV}^2$

None of the analysed ansatzs is theoretically justified at $\hat{s}_0 \sim 1.55 \text{ GeV}^2$ The large variations exhibit the very strong dependence on the assumed model Ansatz can be adapted to reproduce small changes of data and input value of α_s

Regge-inspired model: (Boito et al, 1711.10316)

$$\Delta \rho^{\mathrm{DV}}(s) = e^{-(\delta + \gamma s)} \sin(\alpha + \beta s) \left\{ 1 + \frac{\mathsf{a}}{\log\left(\frac{\beta s}{2\pi}\right)} + \frac{b}{\log^2\left(\frac{\beta s}{2\pi}\right)} + \cdots \right\}$$

 $\frac{1}{\log\left(\frac{\beta s}{2\pi}\right)} < \infty \implies s > \frac{2\pi}{\beta} \implies \langle s > 1.7 \text{ GeV}^2 \qquad (\beta_V = 3.8 \text{ GeV}^2; \text{ Boito et al, 2012.10440})$ $s > 1.5 \text{ GeV}^2 \qquad (\beta_V = 4.3 \text{ GeV}^2; \text{ Boito et al, 1410.3528})$ $\frac{1}{\log\left(\frac{\beta s}{2\pi}\right)} < \frac{1}{2} \implies s > \frac{2\pi}{\beta} \text{ e}^2 \implies \langle s > 12.2 \text{ GeV}^2 \qquad (\beta_V = 3.8 \text{ GeV}^2; \text{ Boito et al, 2012.10440})$ $s > 10.8 \text{ GeV}^2 \qquad (\beta_V = 4.3 \text{ GeV}^2; \text{ Boito et al, 2012.10440})$ $\beta_V = 4.3 \text{ GeV}^2; \text{ Boito et al, 2012.10440})$ $\beta_V = 4.3 \text{ GeV}^2; \text{ Boito et al, 2012.10440})$ $\beta_V = 4.3 \text{ GeV}^2; \text{ Boito et al, 1410.3528})$ $\beta_V = 4.3 \text{ GeV}^2; \text{ Boito et al, 1410.3528})$ $\beta_V = 10.8 \text{ GeV}^2; \text{ Boito et al, 1410.3528})$

• Criticism 2: Logarithmic corrections to OPE

Higher-order logarithms $(\mathcal{P}_{D,\mathcal{J}})$ affect sum rules with low-degree (n) polynomials

$$\begin{split} \left. \Pi_{\mathcal{J}}^{\text{OPE}}(s) \right|_{D>0}^{\text{NLO}} &= \sum_{D>0} \frac{\mathcal{O}_{D,\mathcal{J}}(\mu) + \mathcal{P}_{D,\mathcal{J}} \log (-s/\mu^2)}{(-s)^{D/2}} \\ \omega_n(s) &= \left(\frac{s}{s_0}\right)^n \quad \Longrightarrow \quad \Delta A_{\mathcal{J}}^{(n)}(s_0) \Big|_{D>0}^{\text{OPE}} = -\pi \sum_{p=2} \frac{d_{p,\mathcal{J}}^{(n)}}{(-s_0)^p} \quad , \quad d_{p,\mathcal{J}}^{(n)} = \begin{cases} \mathcal{O}_{2p,\mathcal{J}}(s_0) & \text{if } p = n+1 \\ \frac{\mathcal{P}_{2p,\mathcal{J}}}{n-p+1} & \text{if } p \neq n+1 \end{cases} \end{split}$$

 $\mathcal{P}_{D,\mathcal{J}} = 0$ justified if OPE is well behaved. Meaningless otherwise:

$$\begin{array}{lll} \mathsf{OPE validity} & & \frac{|\mathcal{O}_{D+2k,\mathcal{J}}|}{\mathfrak{s}_{0}^{k}} \lesssim |\mathcal{O}_{D,\mathcal{J}}| & , & |\mathcal{P}_{D,\mathcal{J}}| \equiv \xi_{D,\mathcal{J}} |\mathcal{O}_{D,\mathcal{J}}| & , & \xi_{D,\mathcal{J}} \sim O(\frac{\alpha_{s}}{\pi}) \\ |\mathcal{P}_{D,\mathcal{J}}| \ll \frac{|\mathcal{O}_{D+2k,\mathcal{J}}|}{\mathfrak{s}_{0}^{k}} & \forall k & \blacktriangleright & \left|\frac{\mathcal{O}_{D+2k,\mathcal{J}}}{\mathcal{O}_{D,\mathcal{J}}}\right|^{1/(2k)} < \sqrt{\mathfrak{s}_{0}} \ll \underbrace{\xi_{D,\mathcal{J}}^{-1/(2k)}}_{\approx 1} \left|\frac{\mathcal{O}_{D+2k,\mathcal{J}}}{\mathcal{O}_{D,\mathcal{J}}}\right|^{1/(2k)} \end{array}$$

Educated guess estimate: $\xi_{D,\mathcal{J}} \sim O(0.1 - 0.2)$ [$|\xi_{6,V+A}| \sim 0.15$, (Boito-Hornung-Jamin, 1510.03812)]

Golterman's justification based on a large- N_C estimate $\xi_6 \sim 0.03$, while assuming $|\mathcal{O}_{6,V+A}| \sim 200 |\mathcal{O}_{6}|_{N_C \to \infty}$

Duality Violations

• Criticism 3: DV strategy is "tautological" - additional weights do not add information

- $\omega_0(x) = 1$ \implies no OPE corrections at LO (assumes well-behaved OPE)
- Fit s_0 dependence in $\hat{s}_0 < s_0 < m_{\tau}^2$ (bin by bin) \rightarrow Direct fit of $\rho(s)_{\exp}$ $\omega_n(x) = x^n \rightarrow \operatorname{Im} \Pi_{\mathcal{J}}(s_0) = \frac{1}{s_n^n} \frac{d \left[s_0^{n+1} A_{\mathcal{J}}^{\omega_n}(s_0)\right]}{ds_0}$

Direct fit of ansatz parameters (largely insensitive to α_s , OPE not valid in \mathbb{R} axis)

- $\forall \omega \& \forall s_0 \geq \hat{s}_0$, the fitted ansatz determines $\Delta A^{\omega}_{\mathcal{J}}(s_0)$ Modelling error?
- α_s mainly extracted from $A_{\mathcal{J}}^{\omega_0}(\hat{s}_0)_{\text{pert}} \approx A_{\mathcal{J}}^{\omega_0}(\hat{s}_0)_{\exp} \Delta A_{\mathcal{J}}^{\omega_0}(\hat{s}_0)$ Low scale $\hat{s}_n^{1/2} \sim 1.2 \text{ GeV} < m_{\tau}$ \rightarrow Large theory uncertainties
- Taking additional weights $\omega_n(x)$: $A^{\omega_n}_{\mathcal{J}}(\hat{s}_0) \rightarrow \mathcal{O}_{2n}$

Golterman takes n = 0, 2 and claims that the wrong correction \hat{C}_6/s_0^5 (why doesn't call it C_{10} ?) modifies α_s . He is actually enforcing $C_6 = 0$ ($\hat{C}_6 \equiv C_{10}$ does not contribute to those moments). Therefore, he constraints α_s with two sum rules without any other free parameters

A. Pich

Duality Violations

- Criticism 4: DV strategy determines α_s at 1.55 GeV²
 - $\omega_0(x) = 1$ \implies no OPE corrections at LO (assumes well-behaved OPE)
 - Fit s_0 dependence in $\hat{s}_0 < s_0 < m_{\tau}^2$ (bin by bin) \rightarrow Direct fit of $\rho(s)_{\exp}$ $\omega_n(x) = x^n \rightarrow \operatorname{Im} \Pi_{\mathcal{J}}(s_0) = \frac{1}{s_0^n} \frac{d \left[s_0^{n+1} A_{\mathcal{J}}^{\omega_n}(s_0)\right]}{ds_0}$

Direct fit of ansatz parameters (largely insensitive to α_s , OPE not valid in \mathbb{R} axis)

- $\forall \omega \& \forall s_0 \geq \hat{s}_0$, the fitted ansatz determines $\Delta A^{\omega}_{\mathcal{J}}(s_0)$ Modelling error?
- α_s mainly extracted from $A_{\mathcal{J}}^{\omega_0}(\hat{s}_0)_{\text{pert}} \approx A_{\mathcal{J}}^{\omega_0}(\hat{s}_0)_{\exp} \Delta A_{\mathcal{J}}^{\omega_0}(\hat{s}_0)$ Low scale $\hat{s}_0^{1/2} \sim 1.2 \text{ GeV} < m_{\tau}$ → Large theory uncertainties
- Taking additional weights $\omega_n(x)$: $A_{\mathcal{T}}^{\omega_n}(\hat{s}_0) \rightarrow \mathcal{O}_{2n}$

All parameters obtained from fits using all data. True, but... Data above \hat{s}_0 fix the ansatz. $A_{\mathcal{J}}^{\omega_n}(\hat{s}_0)$ are the ONLY additional information

Numerical Size of Duality Violations:

 $\Delta \rho_{\mathcal{J}}^{\mathrm{DV}}(\boldsymbol{s}) \; = \; \mathcal{G}_{\mathcal{J}}(\boldsymbol{s}) \; \boldsymbol{e}^{-(\delta_{\mathcal{J}} + \gamma_{\mathcal{J}} \; \boldsymbol{s})} \; \sin\left(\alpha_{\mathcal{J}} + \beta_{\mathcal{J}} \; \boldsymbol{s}\right) \qquad, \qquad \boldsymbol{s} > \hat{\boldsymbol{s}}_{0}$

Rodríguez-Sánchez, A.P.

 $\omega_N(x) = x^N$

		$A_V^{\omega_N}(s_0)$			
		ŝ ₀		$s_0=2.8~{ m GeV}^2$	
Ansatz	Ν	DV	Exp	DV	Exp
$\begin{array}{c} Default\\ \mathcal{G}_V(s) = 1\\ \hat{s}_0 = 1.55 \ \mathrm{GeV}^2 \end{array}$	0 1 4	0.00288 0.00228 -0.00032	0.09735 (51) 0.04447 (34) 0.01049 (20)	0.00142 0.00143 0.00133	$\begin{array}{c} 0.09340 \ (114) \\ 0.04529 \ (100) \\ 0.01896 \ \ (77) \end{array}$
$\frac{1}{\mathcal{G}_V(s) = s^8}$ $\hat{s}_0 = 1.55 \text{ GeV}^2$	0 1 4	0.00132 -0.00019 -0.00726	0.09735 (51) 0.04447 (34) 0.01049 (20)	0.00088 0.00096 0.00119	0.09340 (114) 0.04529 (100) 0.01896 (77)
$\frac{2}{\mathcal{G}_{V}(s) = 1 - \frac{1.35}{s}}{\hat{s}_{0} = 1.55 \text{ GeV}^{2}}$	0 1 4	$\begin{array}{r} 0.00082 \\ -0.00095 \\ -0.00970 \end{array}$	0.09735 (51) 0.04447 (34) 0.01049 (20)	0.00088 0.00098 0.00128	0.09340 (114) 0.04529 (100) 0.01896 (77)
$\frac{3}{\mathcal{G}_V(s) = 1 - \frac{2}{s}} \\ \hat{s}_0 = 1.55 \text{ GeV}^2$	0 1 4	0.00611 0.01081 0.07952	0.09735 (51) 0.04447 (34) 0.01049 (20)	0.00429 0.00500 0.00620	$\begin{array}{c} 0.09340 \ (114) \\ 0.04529 \ (100) \\ 0.01896 \ \ (77) \end{array}$
$\begin{array}{c} 4 \\ \mathcal{G}_V(s) = 1 \\ \hat{s}_0 = 2 \ \mathrm{GeV}^2 \end{array}$	0 1 4	$-0.00511 \\ -0.00575 \\ -0.00725$	0.08944 (52) 0.03926 (40) 0.01224 (27)	0.00042 0.00051 0.00081	0.09340 (114) 0.04529 (100) 0.01896 (77)