

Matthias Schott on behalf of the ATLAS Collaboration Measurement of the Strong Coupling Constant with ATLAS

Drell-Yan Process

Measure $\alpha_s(m_Z)$ from the p_T(Z) distribution

- Z bosons produced in hadron collisions recoil against QCD initialstate radiation:
 - by momentum conservation, ISR gluons will boost the Z in the transverse plane
- The Sudakov factor is responsible for the existence of a peak in the Zboson p_T distribution, at values of approximately 4 GeV
- The position of the peak is sensitive to α_s(m_z)
- Semi-inclusive observable, which has advantages of
 - exclusive obs. (higher exp. sensitivity)
 - inclusive obs. (higher order theory, smaller non-pQCD effects)

Anatomy of Drell-Yan differential cross section

- DY not only interesting physics wise, but required for all aspects of detector calibration
- DY cross section: factorize the production dynamic and the decay kinematic properties of the dilepton system

$$\frac{d\sigma}{dpdq} = \frac{d^3\sigma^{U+L}}{dp_T dy dm} \left(1 + \cos^2\theta + \sum_{i=0}^7 A_i(y, p_T, m) P_i(\cos\theta, \phi) \right)$$

- ds/dp_T: transverse dynamics
- ds/dy: longitudinal dynamics (PDFs)
- decomposition of (cosθ,Φ) into 9 helicity cross sections
- basis of spherical harmonics

Event selection

Three Channels

- eeCC: two electrons (6.2M events) $p_T>20$ GeV, $|\eta| < 2.4$
- μμCC: two muons (7.8M events)
 p_T>20 GeV, |η| < 2.4
- eeCF: central electron with $p_T > 25$ GeV, $|\eta| < 2.4$, forward electron with $p_T > 20$ GeV, 2.5 < $|\eta| < 4.9$ (1.2M events)
- 80<mll <100GeV</p>

Full-lepton phase space rapidity cross section

 Interpretation of fiducial cross sections hampered by breakdown of fixed order perturbation theory

 Problem: low pT(Z) spectrum impacts pT lepton spectrum

Proposed solutions:

- Change the definition of fiducial cuts arXiv:2106.08329
- Use Ai theory predictions to extrapolate the measured cross sections arXiv:2001.02933
- Include resummation corrections into predictions arXiv:2209.13535 Amoroso et al.
- All above solutions introduce either experimental or theoretical uncertainties/problems

Ai-based elegant solution:

- Fiducial cuts removed by analytic integration of (cosθ,Φ) in the full phase space of the decay leptons through the measured Ai coefficients
- few permille total uncertainties for ds/dy and negligible theoretical uncertainties

Full-lepton phase space rapidity cross section

- Exquisite permille level precision in the central region
- Subpercent uncertainties up to |y| < 3.6 thanks to dedicated forward electron calibration
- First comparison to N3LO QCD predictions
- Enables precise and unambiguous PDF interpretation with QCD scale variations now smaller than PDF uncertainties

- Likelihood defined in 22528 (cosθ,Φ,pT,y) bins
- Parameters of interests are the 8 Ai + 1 cross section in pT-y bins: 9 parameters in 176 bins

- Measuring the angular coefficients corresponds to building a synthetic "quantized" representation of the (cosθ,Φ) kinematic space
- Trade systematics for statistics
- Very powerful: avoids theoretical extrapolation of fiducial lepton cuts to full phase space and thereby opens the door to a rich field of precise interpretations

do/dp_Tdy measurement uncertainties

- First measurement at the LHC of fulllepton phase space cross sections
- Statistically dominated measurement
- Negligible theory uncertainties: cross sections are parameters of the fit, and not the result of an extrapolation

- All three channels (eeCC, μμCC, eeCF) yield compatible results
 - Important cross-check of detector calibration
 - Forward electrons allow to minimize PDF dependence

p⊤ cross section measurement

- Measurement compared to six predictions currently involved in the at N³LL/ N⁴LL logarithmic accuracy
 - including O(a_s³) matching from MCFM/NNLOJET
- Excellent agreement between data and predictions
 - impressive progress in the understanding of the boson p_T modelling from the experimental and theoretical points of view

Extraction of the strong coupling constant

Methodology

- DYTurbo interfaced to xFitter arXiv:1410.4412
- Evaluate $\chi^2(\alpha_s)$ with as variations as provided in LHAPDF
- Include experimental ($\beta_{j,exp}$) and PDF ($\beta_{k,th}$) uncertainties in the χ^2

$$\chi^{2}(\boldsymbol{\beta_{\mathrm{exp}}},\boldsymbol{\beta_{\mathrm{th}}}) = \sum_{i=1}^{N_{\mathrm{data}}} \frac{\left(\sigma_{i}^{\mathrm{exp}} + \sum_{j} \Gamma_{ij}^{\mathrm{exp}} \beta_{j,\mathrm{exp}} - \sigma_{i}^{\mathrm{th}} - \sum_{k} \Gamma_{ik}^{\mathrm{th}} \beta_{k,\mathrm{th}}\right)^{2}}{\Delta_{i}^{2}} + \sum_{j} \beta_{j,\mathrm{exp}}^{2} + \sum_{k} \beta_{k,\mathrm{th}}^{2}$$

At each value of α_s(m_Z) the β_{k,th} terms explore the PDF space to find the best fit to the p_T(Z) data

■→ equivalent to including the new dataset in the PDF without refitting, using profiling/reweighting ^{Eur,Phys,J,C 75} (2015) 9, 458

- The non-perturbative form factor is added with unconstrained nuisance parameters (b = 0) i.e. left free in the fit
- Fit the region of p_T(Z) <29GeV

Determination of $a_s(m_Z)$ from $p_T(Z)$ at 8 TeV

- a_s(m_Z) from a fit to the doubledifferential p_T-y_Z cross section measured in full-lepton phase space
- Postfit χ^2 /dof = 82/72
- Determination performed at lower orders, demonstrating good convergence of the perturbative series

Uncertainties

- Use MSHT20 PDF (only PDF Set which is available at N3LO order)
- Repeat Fit using lower orders (also with MSHT20)
 - aS at higher orders is always within uncertainties of lower orders
- Scale Variations: independent uR, uF and Q variations
- Variations of the lower fit range (0 GeV → 5GeV) and the upper fit range (29 GeV → 22 GeV) of the fit range, are performed to test the stability
 - test for non-perturbative and quark flavor effects

Experimental uncertainty	± 0.44		
PDF uncertainty	± 0.51		
Scale variation uncertainties	± 0.42		
Matching to fixed order	0	-0.08	
Non-perturbative model	+0.12	-0.20	
Flavour model	+0.40	-0.29	
QED ISR	± 0.14		
N^4LL approximation	± 0.04		
Total	+0.91	-0.88	

NNLO PDF Sets (1/2)

- At order N4LLa+N3LO, only one N3LO PDF set available: MSHT20aN3LO
 - Study the dependence of the results on the choice of PDF set by fitting one order lower, i.e. N3LLa+N3LO using NNLO PDFs.

PDF set	$\alpha_{\rm s}(m_Z)$	PDF uncertainty	$g \; [{\rm GeV}^2]$	$q \; [{\rm GeV}^4]$	$\chi^2/{ m dof}$
MSHT20 [32]	0.11839	0.00040	0.44	-0.07	96.0 /69
NNPDF40 [78]	0.11779	0.00024	0.50	-0.08	116.0/69
CT18A [79]	0.11982	0.00050	0.36	-0.03	97.7 / 69
HERAPDF20 $[63]$	0.11890	0.00027	0.40	-0.04	132.3/69

- At this order, the spread observed is ±0.00102
 - driven by the difference between the NNPDF4.0 and CT18A PDF sets
- What causes this difference?

NNLO PDF Sets (2/2)

p_T(Z) very sensitive to gluon PDF

 PDF determinations at NNLO are affected by significant tension between low-x (from HERA) and high-x gluon PDFs (Hadron Collider Jets)

Effect of this tension has been studied at N³LL

- Refit when including DIS cross-section data from HERA with Q²>10 GeV2 plus p_T(Z)
 - → Double Count HERA to reduce impact of other data-sets. CT18A is shifted downwards and the spread is reduced to ± 0.00016.
- Using MSHT20an³lo largely removes the tension in the gluon PDF
 - indicated by the significant improvement in the χ² of the p_T(Z) and DIS Data.
 - →indication that the spread of PDFs at NNLO is not representative of the true PDF uncertainty on N3LO.

PDF profiling

• PDF profiling at the best $\alpha_s(m_z)$ shows reduction of gluon and sea quark PDF uncertainties

Non perturbative QCD model

 NP model is generally determined from the data, parameters values depend on the chosen prescription to avoid the Landau pole in b-space

$$S_{\rm NP}(b) = \exp\left[-g_{j}(b) - g_{K}(b)\log\frac{m_{\ell\ell}^{2}}{Q_{0}^{2}}\right]$$

$$g_{j}(b) = \frac{g b^{2}}{\sqrt{1 + \lambda b^{2}}} + \operatorname{sign}(q)\left(1 - \exp\left[-|q|b^{4}\right]\right) \quad g_{K}(b) = g_{0}\left(1 - \exp\left[-\frac{C_{F}\alpha_{s}(b_{0}/b_{*})b^{2}}{\pi g_{0}b_{\lim}^{2}}\right]\right)$$

- g_j functions include a quadratic/quartic term: g and q free parameters of the fit
 The theory aboutd pet depend on by (freezing eacle) and Q (starting eacle)
 - The theory should not depend on b_{lim} (freezing scale) and Q₀ (starting scale), provided SNP is flexible enough. Q₀ and b_{lim} estimated as parameterisation unc.
- g₀ controls the very high b (very small p_T) behaviour, should be fitted to data, but we have no sensitivity to it, so it is varied
- Lambda controls transition from Gaussian to exponential: varied between 0.5-2
 - Fits excluding 0-5 GeV yields $\alpha_s(m_z)$ with a spread of + 0.00017 0.00010
 - Fit uncertainty increased from 0.00067 to 0.00071
 - Correlation between α_s(m_z) and g largely reduced

More checks

- Simultaneous determination of α_s, the PDFs, and the non-perturbative parameters
 N3LL+N3LO, with PDFs evolved at NNLO.
- The light-quark coefficient functions of the DIS cross sections are calculated in the MS scheme.
- The heavy quarks (c, b) generated dynamically
 - using general-mass variable-flavour-number scheme, with up to five active quark flavours.
- Fits performed at fixed values of α_s via a quadratic interpolation of the χ^2 function
 - 0.11866±0.00064
- The dependence of α_s on the minimum squared four-momentum transfer Q² of the HERA data is studied in the range from 2.5 GeV to 25 GeV
 - No sign. dependence is observed for >5 GeV .

Final Result

- α_s(m_z) = 0.11828 +0.00084 -0.00088
- Most precise experimental determination of α_s(m_z), as precise as the PDG and Lattice world averages
- First α_s(m_Z) determination at N3LO+N4LL
- Clean experimental signature (leptons) with highest exp sensitivity
- Determination focusing on the Sudakov region (usually avoided to determine as)
- Observable not suitable for inclusion in PDF fits → no correlation with α_s(m_z) determinations from PDF fits

Summary

New window for the determination of the strong coupling using the transverse momentum of Z bosons

New measurements might reduce further PDF uncertainties

New measurements required to constrain further non-perturbative effects

THE MALLENSE

Prof. Dr. Matthias Schott

Orders

	Virtual		Sudakov		Real	
	H[δ(1-z)]	H[z]	Cusp AD	Collinear, RAD	PDF	CT,V+jet
LL+LO	1	1	1-loop	0	const.	1
NLL+NLO	α_s	C1	2-loop	1-loop	LO	α_{s}
NLL*+NLO	α_s	C1	2-loop	1-loop	NLO	α_{s}
NNLL+NNLO	α_s^2	C2	3-loop	2-loop	NLO	α_s^2
N3LL+N3LO	$\alpha_s{}^3$	C3	4-loop	3-loop	NNLO	$\alpha_s{}^3$
N4LLa+N3LO	α_s^4	C4	5-loop	4-loop	N3LO	α_s^4

Known analytically Approximated numerically Unknown, estimated with series acceleration Not included

Strong Coupling in Jet Correlations

Jet Measurements

- Use Transverse enery-energy correlations (TEEC) and Associated asymmetry (ATEEC)
- TEEC: defined as the transverse-energyweighted distribution of the azimuthal differences between jet pairs in the final state
- ATEEC: defined as the difference between the forward (cos\$\phi\$>0) and the backward (cos\$\phi\$<0) part of TEEC
- TEEC and ATEEC functions are sensitive to gluon radiation and show a clear dependence on the strong coupling

Event Selection and Results ATLAS Collab. Eur.Phys.J. C77 (2017) 12, 872

Selection: Multijet events

- Leading Jet p_T>460 GeV
- Leading Two Jets with pT1+pT2>1 TeV
- All Jet p_T's>60 GeV
- 57.6M events at 8 TeV

Selection: Multijet events

- Leading Jet p_T>460 GeV
- Leading Two Jets with pT1+pT2>1 TeV
- All Jet p_T's>60 GeV
- 57.6M events at 8 TeV

Extraction of $\alpha_s(m_Z)$

- Determination of α_s with a χ^2 fit

- Predictions based in NNLO
- Dominant uncertainties from PDFs

Prof. Dr. M. Schott (Rheinische Friedrich-Wilhelms-Universität Bonn)

 $\alpha_{\rm s}(m_Z) = 0.1175 \pm 0.0006 \ (\text{exp.})^{+0.0034}_{-0.0017} \ (\text{theo.})$ $\alpha_{\rm s}(m_Z) = 0.1185 \pm 0.0009 \ (\text{exp.})^{+0.0025}_{-0.0012} \ (\text{theo.})$

