

Accurate determination of the strong coupling

Alberto Ramos <alberto.ramos@ific.uv.es>IFIC (CSIC/UV)

In collaboration with:

• Mattia Dalla Brida, Roman Höllwieser, Francesco Knechtli, Tomasz Korzec, Stefan Sint, Rainer Sommer.

The problem: Summary on a difficult multi-scae problem

$$\mathcal{O}(Q) \stackrel{Q \to \infty}{\sim} \alpha_s(Q) + \sum_{n=2}^N c_n \alpha_s^n(Q) + \mathcal{O}(\alpha_s^{N+1}(Q)) + \mathcal{O}\left(\frac{\Lambda^p}{Q^p}\right) + \dots$$

Difficulties in extracting α_s "solved" by using large Q

- Difficult to compute (NP physics is difficult!)
- Difficult to estimate (i.e. scale variation might fail)
- ► PT errors decrease very slowly (i.e. $\alpha(Q)$ runs logarithmically) \implies One needs large scales

Problem in using large Q

- Experimental sensitivity to α_s is small at large $Q \implies$ precision requires a "low energy" scale
- ▶ In most lattice simulations $aQ \ll 1 \Longrightarrow Q \ll 4$ GeV

Real challenge: Have determinations with errors dominated by statistics

- Clear meaning of error bars!
- ► Keep high statistical precision...While removing all systematic related with PT at low energies

Fix **QL** = constant

THE SOLUTION: FINITE VOLUME RENORMALIZATION SCHEMES [LÜSCHER, WEISZ, WOLFF '91]

Simply change $L/a \rightarrow 2L/a!$

We need dedicated simulations of the **femto-universe**

Example: massless running in $N_{\rm f}=3\,{\rm QCD}$ [alpha '17]

Gradient flow scheme [P. Fritzsch, AR '13; Phys.Rev.D 95 (2017)]

Determine lattice version of SSF

 $\Sigma(u, L/a) = \alpha(Q/2)\Big|_{\alpha(Q)=u, \text{fixed}L/a}$

Use 8 \rightarrow 16, 12 \rightarrow 24, 16 \rightarrow 32 at fixed (g_0, am_0)

Continuum limit

$$\sigma(u) = \lim_{a/L \to 0} \Sigma(u, L/a) \, .$$

• Use to determine β -function

$$\log(2) = \int_{u}^{\sigma(u)} \frac{\mathrm{d}x}{\beta(x)} \,.$$

Example: massless running in $N_{\rm f}=3~QCD$ [alpha $'_{\rm 17]}$

We can determine ratio of scales

$$\begin{array}{cc} \alpha_{\rm GF}(\mu_{\rm had}) &= 0.9\\ \alpha_{\rm GF}(\mu_{\rm dec}) &= 0.314 \end{array} \right\} \Longrightarrow \frac{\mu_{\rm had}}{\mu_{\rm dec}} = 3.988(45)$$

We can match schemes

 $\alpha_{\rm SF}(\mu_0) = 0.16 \Longrightarrow \alpha_{\rm GF}(\mu_0/2) = 0.2127(5)$

• Using PT for $Q \in [100 \text{ GeV}, \infty]$ we get α_s

$$\frac{\Lambda_{\overline{\rm MS}}^{(3)}}{\mu_{\rm had}} =$$

Most of the uncertainty:

NP running from $\mu_0 - 100 \text{ GeV}$

How to improve?

1. Better ways to reduce statistical uncertainties than using more machines?

2. α_s relying only on one computation/method?

USING HEAVY QUARKS AND DECOUPLING

• Match non-perturbatively $N_f = 3 \text{ QCD}$ with $N_f = 0$ using three heavy quarks $M \gg \Lambda$ $\begin{array}{ll} \alpha_{\rm GF}(\mu_{\rm dec}) & = & 0.314 \\ \alpha_{\rm GF}(\mu_{\rm dec}, M) & \stackrel{M \to \infty}{\sim} & \alpha_{\rm GF}^{(0)}(\mu_{\rm dec}) \end{array}$ • Get $\Lambda_{MG}^{(0)}$ in units of μ_{dec} $\Lambda_{\overline{\rm MS}}^{(0)} = \dots$ $\mu_{\rm dec}$ ▶ Using PT to cross the **three** quark thresholds $\frac{\Lambda_{\overline{MS}}^{(3)}}{MS} =$ $= \lim_{M \to \infty} \frac{\Lambda_{\overline{\text{MS}}}^{(0)}}{\mu_{\text{dec}} \times P(M/\Lambda)}$ $\mu_{\rm dec}$ ► Most of the uncertainty: Pure gauge

3M: A universe with three heavy degenerate quarks $(M\gg\Lambda)$

Alice uses fundamental theory

$$S_{\text{fund}}[A_{\mu},\psi,\bar{\psi}] = \int d^4x \left\{ -\frac{1}{2g^2} \text{Tr} \left(F_{\mu\nu}F_{\mu\nu}\right) + \sum_{i=1}^3 \bar{\psi}_i(\gamma_{\mu}D_{\mu} + M)\psi_i \right\}$$

3M: A universe with three heavy degenerate quarks $(M \gg \Lambda)$

Alice uses fundamental theory

$$S_{\text{fund}}[A_{\mu},\psi,\bar{\psi}] = \int d^4x \left\{ -\frac{1}{2g^2} \text{Tr} \left(F_{\mu\nu}F_{\mu\nu}\right) + \sum_{i=1}^3 \bar{\psi}_i(\gamma_{\mu}D_{\mu} + M)\psi_i \right\}$$

Decoupling

► Dimensionless "low energy quantities" $\sqrt{t_0}/r_0$, $w_0/\sqrt{8t_0}$, r_0/w_0 , ... from effective theory

$$\frac{\mu_1^{\text{fund}}(M)}{\mu_2^{\text{fund}}(M)} = \frac{\mu_1^{\text{eff}}}{\mu_2^{\text{eff}}} + \mathcal{O}\left(\frac{\mu^2}{M^2}\right)$$

Renormalization in 3M: Bob determines the strong coupling

$$\frac{\Lambda_s}{\mu} = \left[b_0 \bar{g}^2(\mu) \right]^{-\frac{b_1}{2b_0^2}} e^{-\frac{1}{2b_0 \bar{g}^2(\mu)}} \exp\left\{ -\int_0^{\bar{g}(\mu)} \mathrm{d}x \left[\frac{1}{\beta(x)} + \frac{1}{b_0 x^3} - \frac{b_1}{b_0^2 x} \right] \right\}$$

- Determine non-perturbatively the β -function in the effective ($N_f = 0$) theory.
- Integral up to $\bar{g}^{(0)}(\mu'_{dec})$ = value gives (exactly known):

$$\frac{\Lambda_{\overline{\text{MS}}}^{(0)}}{\mu_{\text{dec}}'} = \frac{\Lambda_s^{(0)}}{\mu_{\text{dec}}'} \times \frac{\Lambda_{\overline{\text{MS}}}^{(0)}}{\Lambda_s^{(0)}}$$

• Match across quark threshold to convert to $\Lambda^{(3)}$ (using perturbation theory)

$$\frac{\Lambda_{\overline{\text{MS}}}^{(3)}}{\mu_{\text{dec}}'} = \frac{\Lambda_{\overline{\text{MS}}}^{(0)}}{\mu_{\text{dec}}'} \times \frac{1}{P(\Lambda/M)}$$

But what is μ'_{dec} ? What about Λ/M ?

Bob **needs** input from the "real" world (and help from Alice!)

10/21

STEP SCALING DECOUPLING OF HEAVY OUARKS Conclusions BOB AND ALICE DETERMINATION OF THE STRONG COUPLING Alice fixes one scale in a massive scheme: $\alpha(\mu_{dec}, M) = \text{value}$. • Decoupling: since $M \gg \Lambda$ $\alpha(\mu_{dec}, M) = \alpha^{(0)}(\mu'_{dec}) + \mathcal{O}(1/M^2) \iff \mu_{dec} = \mu'_{dec} + \mathcal{O}(1/M^2)$ ► Therefore $\frac{\Lambda_{\overline{\text{MS}}}^{(3)}}{\mu_{\text{dec}}} = \frac{\Lambda_{\overline{\text{MS}}}^{(0)}}{\mu_{\text{dec}}'} \times \frac{1}{P\left(\Lambda_{\overline{\text{MS}}}^{(3)}/M\right)} + \mathcal{O}(\alpha^4(m^\star)) + \mathcal{O}\left(\frac{\mu_{\text{dec}}^2}{M^2}\right)$ is an implicit equation for $\Lambda_{Me}^{(3)}/\mu_{dec}$ (note: $\Lambda_{Me}^{(3)}/M = \Lambda_{Me}^{(3)}/\mu_{dec} \times \mu_{dec}/M$) ► We need: • Running in pure gauge: $\Lambda^{(0)} / \mu'_{dec}$ • A scale in a world with degenerate massive quarks: μ_{dec} (determined by Alice!) We do not live in 3M, but we can simulate it!

Our setup: Choices optimized to be able to simulate heavy quarks

$$\frac{\Lambda_{\overline{\text{MS}}}^{(3)}}{\mu_{\text{dec}}} = \frac{\Lambda_{\overline{\text{MS}}}^{(0)}}{\mu_{\text{dec}}'} \times \frac{1}{P\left(z\Lambda_{\overline{\text{MS}}}^{(3)}/\mu_{\text{dec}}\right)} + \mathcal{O}(\alpha^4(m^*)) + \mathcal{O}\left(\frac{\mu_{\text{dec}}}{M}\right) + \mathcal{O}\left(\frac{\mu_{\text{dec}}}{M^2}\right)$$

- ► Work in <u>finite volume</u> $T \times L^3$ with Dirichlet bcs. in time (SF). ($\mu \sim 1/L$): "Only" two scales.
- ► Use Gradient Flow couplings

$$\bar{g}^2(\mu) = \mathcal{N}^{-1}(c, a/L) t^2 \langle E(t) \rangle \Big|_{\mu^{-1} = \sqrt{8t} = cL}$$

- Fix $\bar{g}^2(\mu_{dec}) \Big|_{N_f=3, M=0, T=L} = 3.95$. This defines μ_{dec}
- ► Small volume \implies We can simulate heavy quarks (i.e. $a \sim 30 50 \text{ GeV}^{-1}$)
- ▶ Matching condition ($\{N_f = 3, M\} \leftrightarrow \{N_f = 0\}$) between massive scheme and effective theory

$$\bar{g}^2(\mu_{\text{dec}}(M))\Big|_{N_{\text{f}}=3,M,T=2L} = \bar{g}^2(\mu_{\text{dec}})\Big|_{N_{\text{f}}=0,T=2L}$$

Matching: QCD in a finite volume!

• Convenient variable: $z = M/\mu_{dec}$

12/21

Our setup: Choices optimized to be able to simulate heavy quarks

$\frac{\Lambda_{\overline{\text{MS}}}^{(3)}}{\mu_{\text{dec}}} = \frac{\Lambda_{\overline{\text{MS}}}^{(0)}}{\mu_{\text{dec}}'} \times \frac{1}{P}$	$\frac{1}{\left(z\Lambda_{\overline{\rm MS}}^{(3)}/\mu_{\rm dec}\right)}$	- + C	$\mathcal{P}(\alpha^4(m^\star)) +$	$-\mathcal{O}\left(\frac{\mu_{0}}{N}\right)$	$\left(\frac{\mathrm{dec}}{M}\right) + \mathcal{O}\left(\frac{\mu_{\mathrm{dec}}^2}{M^2}\right)$	
We only need to fill in a table!						
	$M/\mu_{ m dec}(M)$	\bar{g}_z^2	$\Lambda^{(0)}/\mu_{ m ref}$	$\Lambda^{(3)}_{ m eff}$		
	1.972	-	-	-		
	4 6	-	-	-		
	8 10	-	-	-		
	12	-	-	-		

• Difficult continuum extrapolations to determine $\bar{g}_z^2 = \bar{g}^2(\mu_{dec}(M))\Big|_{N_f=3,M,T=2L}$

► Use combined Heavy-Quark / Symanzik effective theories.

The continuum extrapolation of massive couplings

Quadratic dependence on lattice spacing (a) via $a\mu_{dec}$ and aM

For large enough masses, effective theory applies:

$$\bar{g}^2(z_i,a) = \frac{C_i + p_1[\alpha_(a^{-1})]^{\hat{\Gamma}}(a\mu_{\rm dec})^2 + p_2[\alpha_(a^{-1})]^{\hat{\Gamma}'}(aM_i)^2.$$

- Continuum values (our target quantity)
- Mass independent cutoff effects
- Mass dependent cutoff effects
- Loop corrections in effective theory: $-1 \le \hat{\Gamma} \le 1$ and $-1/9 \le \Gamma' \le 1$

Additional assumptions about $\mathcal{O}(aM)$ effects

Partial knowledge based on PT: Propagate difference between last known orders as additional uncertainty

- Schrödinger functional boundaries: Small (negligible to our level of precision). Explicit computation.
- Quark mass improvement: b_m, b_A, b_P, \ldots . Very small effect.
- ▶ Improved bare coupling: b_g . Large effect at large masses (comparable to statistical uncertainties). Decreases as $aM \rightarrow 0$.

STEP SCALING

The continuum extrapolation of massive couplings

0.25

 $(\mu_{dec}/M)^2$

0.20

0.10

0.05

0.00

Improved running at low scales

Determination of μ_{had}

- Use as intermediate scale $\mu_{\text{ref}} = 1/\sqrt{t_0^*}$ in fm
- Use all scales entering FLAG average
- ► Use conservative average

$$\frac{1}{\sqrt{t_0^{\star}}} = 486.6(6.1), \text{ MeV}$$

$$\sqrt{t_0^{\star}} \times \mu_{\text{had}} = 0.4119(31),$$

$$\mu_{\text{had}} = 200.4(2.9) \text{ MeV}$$

Serious discrepancies between individual computation

- Subdominant in α_s but crucial for LOCD (i.e. g 2)
- Needs serious discussion/clarification

Final results for α_s

$$\Lambda_{\overline{\mathrm{MS}}}^{(3)} = \frac{1}{\sqrt{t_0^\star}} \times (\sqrt{t_0^\star} \times \mu_{\mathrm{dec}}) \times \frac{\Lambda_{\overline{\mathrm{MS}}}^{(3)}}{\mu_{\mathrm{dec}}}$$

- $\begin{array}{rll} \text{QCD:} & \sqrt{t_0^\star} \times \Lambda_{\overline{\text{MS}}}^{(3)} = & 0.712(22) \\ \text{Decoupling:} & \sqrt{t_0^\star} \times \Lambda_{\overline{\text{MS}}}^{(3)} = & 0.703(18) \\ \text{Average:} & \sqrt{t_0^\star} \times \Lambda_{\overline{\text{MS}}}^{(3)} = & 0.706(15) \,. \end{array}$
- Result in physical units (PRELIMINARY)

$$\Lambda_{\overline{\rm MS}}^{(3)} = 343.7(83)$$

• Crossing c, b thresholds

 $\alpha_s(m_Z) = 0.11871(56), \quad [0.47\%].$

Introduction	STEP SCALING	Decoupling of heavy quarks	New results	Conclusions
Final results for a	χ_{s}			

Introduction	Step scaling	Decoupling of heavy quarks	New results	Conclusions
Conclusions and e	DISCUSSION			
Precise and ac ► Non perturba	curate determination of α_s ative running from 200 Me	\forall to m_z		٦

- "High" energy running $(2 \text{ GeV} m_Z)$ done in two independent ways:
 - ► QCD
 - Pure gauge

Decoupling used to match theories

Average result conservative and precise

 $\alpha_s(m_Z) = 0.11871(56), \quad [0.47\%].$

- Most error from non-perturbative running 4 GeV m_Z
- Errors dominated by statistics: meaningful σ !
- ► Improvements?
 - Better pure gauge running
 - Better scale
 - Isospin breaking corrections if one wants serious improvement

Introduction	Step scaling	Decoupling of heavy quarks	New results	Conclusions

Conclusions and discussion

MANY THANKS