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Integrated correlation functions

‣ Heavy quark moments for the determination of , in particular: 
 
time slice correlator: 
                                       
      
 
4th moment: 
 

        
                                                                                            [Bochkharev, DeForcrand] 
 
dimensionless, normalized  
 

       

‣ large mass: perturbative, determine         [HPQCD+Karlsruhe group, …]

αs

G(x0, M) = ∫ d3x ⟨PRGI(x)PRGI(0)⟩ , PRGI = ZRGIc̄γ5c′ 

M4(M) = ∫
∞

−∞
dt t4 G(t, M) M = Mc = M′ c = RGI mass

R4(M) = M2M4(M)
M2M4(M)

g=0

= 1 +
3

∑
k=1

ck αk
MS(m⋆) + unknown

αMS → ΛMS
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Integrated correlation functions

‣ but: window problem (large scale needs very small lattice spacing)

‣ and log-enhanced discretisation errors  
 
 

from small   

 
 
 
 
 
 
 
 
 
 
 

t : ∫
ϵ

0
dt t4 G(t, M) ∼ ∫

ϵ

0
dt t [ḡ2(1/t)]η → a∑

t
…
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Numerical results from

‣ quenched -> no numerical estimate of 

‣ 2fm x 5fm

‣ open BC (no topology freezing)

‣ tmQCD at maximal twist + NP clover

‣ lattice spacings    
 
       
 
                                                                      [Husung, Krah, Koren, S. 2018] 
 
 
 
 
 
 
 
 

αs(Mz)

a = 0.01 fm × 2n/2, n = 0…6 : 0.01 fm … 0.08 fm
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The problem

•
lattice normalized:                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rlatnorm
4 (M) = M2M4(M)

M2M4(M) aM≠0

g=0



Rainer Sommer |  @ Trento  | Feb 5, 2024αsmoments method

The problem

•
lattice normalized:                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rlatnorm
4 (M) = M2M4(M)

M2M4(M) aM≠0

g=0



Rainer Sommer |  @ Trento  | Feb 5, 2024αsmoments method

The problem

•
lattice normalized:                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rlatnorm
4 (M) = M2M4(M)

M2M4(M) aM≠0

g=0



Rainer Sommer |  @ Trento  | Feb 5, 2024αsmoments method

The problem

•
lattice normalized:                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rlatnorm
4 (M) = M2M4(M)

M2M4(M) aM≠0

g=0



Rainer Sommer |  @ Trento  | Feb 5, 2024αsmoments method

The problem

•
lattice normalized:                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rlatnorm
4 (M) = M2M4(M)

M2M4(M) aM≠0

g=0



Rainer Sommer |  @ Trento  | Feb 5, 2024αsmoments method

The problem

•
lattice normalized:                        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Rlatnorm
4 (M) = M2M4(M)

M2M4(M) aM≠0

g=0



Rainer Sommer |  @ Trento  | Feb 5, 2024αsmoments method

Tree level (free theory)

‣ on the lattice (Symanzik expansion for )  
                            

     

   
 
     

t ≫ a

G(t, M, a) = a3 ∑
x

⟨P(x)P(0)⟩ = [G(t,0,0) + kL
a2

t5 ] [1 + O(tM)] + O( a4

t4 )

M4(M, a) = a∑
t

t4 G(t, M )
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Tree level (free theory)

‣ on the lattice (Symanzik expansion for )  
                            

     

   
 
     

t ≫ a

G(t, M, a) = a3 ∑
x

⟨P(x)P(0)⟩ = [G(t,0,0) + kL
a2

t5 ] [1 + O(tM)] + O( a4

t4 )

M4(M, a) = a∑
t

t4 G(t, M )

‣ short distance contribution to discretisation errors  with ( )  
 

     

 
 
for   :  (Symanzik expansion) and  
 

     

ΔI w(t) = 1/2 at end points (trapezoidal)

ΔI(t1, t2) = 2a
t2

∑
t=t1

w(t) t4 G(t, M, a) − 2∫
t2

t1
dt t4 G(t, M, 0) , t1M ≪ 1, t2M ≪ 1 .

t2 > t1 ≫ a t1M ≪ 1, t2M ≪ 1 .

ΔI(t1, t2) = kL a2 ∫
t2

t1
dt t−1+… = kL a2 log(t2/t1) + … = kLa2 [log(t2/a) − log(t1/a)] + …
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‣ on the lattice (Symanzik expansion for )  
                            

     

   
 
     

t ≫ a

G(t, M, a) = a3 ∑
x

⟨P(x)P(0)⟩ = [G(t,0,0) + kL
a2

t5 ] [1 + O(tM)] + O( a4

t4 )

M4(M, a) = a∑
t

t4 G(t, M )

‣ short distance contribution to discretisation errors  with ( )  
 

     

 
 
for   :  (Symanzik expansion) and  
 

     

ΔI w(t) = 1/2 at end points (trapezoidal)

ΔI(t1, t2) = 2a
t2

∑
t=t1

w(t) t4 G(t, M, a) − 2∫
t2

t1
dt t4 G(t, M, 0) , t1M ≪ 1, t2M ≪ 1 .

t2 > t1 ≫ a t1M ≪ 1, t2M ≪ 1 .

ΔI(t1, t2) = kL a2 ∫
t2

t1
dt t−1+… = kL a2 log(t2/t1) + … = kLa2 [log(t2/a) − log(t1/a)] + …

‣ now   does not depend on  =>  
 
                 

ΔI(0,t) = ΔI(0,t1) + ΔI(t1, t) t1
ΔI(0,t) = ΔI(0,t1) + ΔI(t1, t) = [ΔI(0,t1) − a2kL log(t1/a)]

=ka2

+kLa2 log(t/a)
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Tree level (free theory)

‣ short distance part:       ΔI(0,t) = a2k+kLa2 log(t/a)
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Tree level (free theory)

‣ short distance part:       ΔI(0,t) = a2k+kLa2 log(t/a)

‣ full integral   
 
     

t → 1/M
M2M4 − M2M4 |a=0 = M2ΔI(0,∞) = kM2a2−kLM2a2 log(Ma)
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‣ full integral   
 
     

t → 1/M
M2M4 − M2M4 |a=0 = M2ΔI(0,∞) = kM2a2−kLM2a2 log(Ma)

‣ explicit tree-level computation for tmQCD maximal twist 
 
     k small, kL = 1
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Tree level (free theory)

‣ short distance part:       ΔI(0,t) = a2k+kLa2 log(t/a)

‣ full integral   
 
     

t → 1/M
M2M4 − M2M4 |a=0 = M2ΔI(0,∞) = kM2a2−kLM2a2 log(Ma)

‣ explicit tree-level computation for tmQCD maximal twist 
 
     k small, kL = 1

‣ just dimensional reasoning  
 
                    
 
made it easy to get the general form 
 
 
 

[ΔI(0,t1) − a2kL log(t1/a)] = ka2
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Interacting theory: what changes?

‣ anomalous dimensions  
                            

       
 
   
with a sum over dimensions  and numbering  of the  
 
operators  of Symanzik EFT 

‣ dimensional reasoning becomes  
 
                    
 
and all terms of any power  in the expansion of  contribute to  

‣ in the free theory we could do  to get the  dependence  
 
with the AD’s this gives an infinite sum over . Seems impossible.

G(t,0,0) ∼ 1
t3 [ḡ2(1/t)]−2 ̂γP , ΔG ∼ ad

t3+d [ḡ2(1/t)]−2 ̂γP−Γ̂(d)
i

d = [1(d)
i ] − 4 i

1(d)
i

ΔI(0,t1) + a2F(ḡ2(1/t1)) = a2 K(aΛ)
an G K(aΛ)

∫
t

a
s−1ds a

d, i
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‣ anomalous dimensions  
                            

       
 
   
with a sum over dimensions  and numbering  of the  
 
operators  of Symanzik EFT 

‣ dimensional reasoning becomes  
 
                    
 
and all terms of any power  in the expansion of  contribute to  

‣ in the free theory we could do  to get the  dependence  
 
with the AD’s this gives an infinite sum over . Seems impossible.

G(t,0,0) ∼ 1
t3 [ḡ2(1/t)]−2 ̂γP , ΔG ∼ ad

t3+d [ḡ2(1/t)]−2 ̂γP−Γ̂(d)
i

d = [1(d)
i ] − 4 i

1(d)
i

ΔI(0,t1) + a2F(ḡ2(1/t1)) = a2 K(aΛ)
an G K(aΛ)

∫
t

a
s−1ds a

d, i

dimensional reasoning becomes unpredictive 

(
 and )

Λ QCD

a
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back to the specific problem

‣ Tree-level normalised   
 

                         

‣ denominator:  

‣ numerator: suppression of short distance behavior by anomalous dimension

‣ log-effect left over, dominantly from the denominator

‣ but not dividing by tree-level lattice, yields very large discretisation effects 
                            
 
 
 
 
 
 
   

Rlatnorm
4 (M) = M2M4(M)

M2M4(M) aM≠0

g=0
M2a2 log(Ma)
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Solutions

‣ An integral of the considered type  
   (correlator diverges like  weight function  suppresses the divergence only to  ) 

 
can’t be computed well on the lattice as such

‣ Solutions
• develop theory for a-expansion of integrated functions 

… not yet available

• Instead: Regulate the short distance part  
 
— Explicit example with full numerical demonstration  
    for   from heavy quark moment  
 

∼ t−k ∼ tk−1 ∼ t

αs
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Regulated M4(M) → ρ(M1, M2)

‣ The problematic short distance region is mass-independent. 
—> combine two masses to eliminate it. 
 
 
          
 
    

          
 
 
integrand shifted to larger t, short distance suppressed  
 
 

          

‣ no log-enhancement and generically smaller a-effects

‣ PT from  :  
 
                                                                                     same  as in .  
 
(chosen ren. scale: smaller mass dominates, integrand shifted to larger t  —> choose ) 

ρ(M1, M2) ∝ M2
1[M4(M1) − M4(M2)] , r = M1/M2 > 1.

ρ(M1, M2) = 2π2

3
M4(M1) − r2M4(M2)

1 − r2 , M4(M) = M2M4(M)

ρ(M1, M2) ∝ ∫
∞

−∞
dt t4 [G(t, M1) − G(t, M2)]

t−3[t2(M2
1−M2

2)+O(t4)]

R4 ρ(M1, M2) = 1 + c1α(m2⋆) + …
c1 R4

M2
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Continuum limit for ρ(M1, M2)

‣ dimensionless variable:  

‣ best consider   with  

‣ we choose  with one exception 

‣ expl.  
 
fits 
 
   
 
            
 
0.273 from quenched  
contribution of d=6  
SymEFT Lagrangian  
[N. Husung 2022] 
 
 
 
 

z = M 8t0
ρ(rM2, M2) r = fixed

r = 1.5 r = 1.33...
z1 = 4.5, z2 = 3

ρ = ρ0 +ρ2 a2[2b0ḡ2(1/a)]0.273

[ +ρ4a4 ]
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Continuum limit for ρ(M1, M2)Log-enhanced discretization errors in integrated correlation functions Rainer Sommer

Figure 2: Continuum limit extrapolations of d and its TL improved version, d("1,"2)Latnorm. Masses,
specified in units I8 = "8

p
8C0, are I1 = 4.5, I2 = 3 (left) and I1 = 13.5, I2 = 9 (right).

with

A¢ =
<¢1

<¢2
. (25)

In principle it is important that A¢ is given by the ratio of the masses that appear in 'TL
4 for the

log-term to cancel. But numerically, replacing A¢ ! A makes only a small di�erence. Examples for
how the discretization errors are reduced can be seen in fig:rhoC ;8<?A .�>A0;;>DAE0;D4B> 5M1,"2,
the leading order improved d("1,"2)Latnorm has a rather convincing continuum extrapolation.

After the continuum extrapolation, one straight-forwardly extracts the e�ective ⇤-parameter
and arrives at the red circles in fig:lambda. These values are computed from three-loop perturbation
theory (i.e. including U3 in '4) at finite U(<¢). They then have a residual dependence

⇤e� = ⇤ + O(U2(<¢)) , (26)

on <¢ and we call them “e�ective”. The comparison to the Dalla Brida and Ramos value [14],
extracted at U2 < 0.01 with the help of a finite size step scaling method, shows that ⇤ computed
from d has at most small (on the scale of our uncertainties) corrections at the largest mass. That
mass is given by I = 9 or <¢ ⇡ 2.7 GeV.

6.2 Reconstruction of '4 = 2c2

3 M4(") from d.

From the definition e:rhodef of d it is clear that given d("1,"2) and '4("2) one can
determine '4("1). This can be exploited by using d to go from '4("ref � ⇤), where perturbative
uncertainties are suppressed the most, to smaller masses.4 We insert the known [14] ⇤-parameter
into the three-loop (i.e. including U3) perturbative expression for '4 at our highest mass, Iref = 13.5
and obtain

'reconstructed
4 (") = (1 � A�2) d(" ,"ref) + A�2 '3�loop

4 ("ref) , (27)

A = "/"ref , Iref =
p

8C0"ref = 13.5 . (28)

4In the opposite direction all uncertainties in d get enhanced, quickly leading to uncontrolled results.

7
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Reconstruct R4

‣ from  at large  computed perturbatively to general  
 
 

 

 

‣ perturbative contribution is power suppressed for large                             
    
 
 
 
 
 
 
 
 

RPT
4 (Mref) Mref M

R4(M) = (1 − r−2) ρ(Mref, M)+ r−2
⏟

M22
M2ref

≪1

RPT
4 (Mref)

Mref
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Directly showing ΛMS
Log-enhanced discretization errors in integrated correlation functions Rainer Sommer

Figure 3: ⇤MS computed from UMS (<2¢), where the latter is obtained from the non-perturbative d. The
dotted line is a fit to all points including the Dalla Brida / Ramos one [14]. The reconstructed data points are
described in the text.

Note that perturbative errors are small in '4("ref) as seen in the analysis of d. They get further
suppressed by a factor A�2 ⇡ 1/20 when we go to I = 3. This means that we obtain the non-
perturbative dependence of⇤e� (as of now computed from '4 and therefore with somewhat di�erent
O(U2) terms) on U. We remind the reader that a direct computation of '4 was impossible due to
the 02 log(0") e�ects.

6.3 Proposal for the HVP contribution to the muon 6 � 2

The discussion in the previous section is easily transferred to the case of the muon 6 � 2,
working with di�erences of the HVP integral for di�erent (artificial) muon masses. Additionally,
we would like to advocate a very simple solution for this and similar cases, where the short distance
contribution to the integral is subdominant. In contrast to the M4-case the goal is not to determine
UB or other short-distance parameters.

It is then advisable to split the integral into a short-distance part evaluated by continuum
perturbation theory and a long-distance one to be computed on the lattice:

π 1

0
dC� (C) =

π 1

0
dC [1 � j(C)] � (C)

|                        {z                        }
continuum PT

+ 0
1’
C=0

j(C) � (C)
|              {z              }

continuum limit of lattice results

, j(C) ⇠
(

O(C2) C⇤MS ⌧ 1

1 C⇤MS � 1
.

(29)
For example the function j can be taken as

j(C) = ("cutC):
("cutC): + 1

, "cut � ⇤MS (30)

or also as a step-function, j(C) = \ (C"cut � 1). The smooth version seems advantageous for
perturbation theory as well as for the lattice discretization of the integral. The use of perturbation
theory for the small C-part of the integral has already been anticipated in [2]. Our discussion adds
further motivation and understanding. It suggests a smooth function j such as e:chi.

8
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‣ Nice consistency, but despite tiny lattice spacing not very precise  
              
 
              

Directly showing ΛMS
Log-enhanced discretization errors in integrated correlation functions Rainer Sommer

Figure 3: ⇤MS computed from UMS (<2¢), where the latter is obtained from the non-perturbative d. The
dotted line is a fit to all points including the Dalla Brida / Ramos one [14]. The reconstructed data points are
described in the text.
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perturbative dependence of⇤e� (as of now computed from '4 and therefore with somewhat di�erent
O(U2) terms) on U. We remind the reader that a direct computation of '4 was impossible due to
the 02 log(0") e�ects.

6.3 Proposal for the HVP contribution to the muon 6 � 2

The discussion in the previous section is easily transferred to the case of the muon 6 � 2,
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Results from R6/R8

CHAPTER 6 RESULTS

(a) Fit for LMS as a function of a2
MS, compared with a fit constrained to pass through

LBR of [47], extracted from R6/R8.

(b) Fit for LMS as a function of a2
MS, compared with a fit constrained to pass through

LBR of [47], extracted from R8/R10.

Figure 6.7: Main result of this thesis, namely violations to the asymptotic scaling with aMS in the LMS
parameter for the two main observables studied, built with appropriate ratios of moments. Plotted against a2

MS,
see eq. (6.27). Also reported, the older FLAG19 [5, 92, 96, 27, 72, 35] average of the quenched L-parameter,
which does not contain the very precise result in [47], with which there is some tension.

88

‣  : log-enhancement only at O( )

‣ PhD Thesis by Leonardo Chimirri

R6/R8 an, n > 2

significant corrections  
beyond known PT
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Results from R8/R10

‣  : log-enhancement only at O( )

‣ PhD Thesis by Leonardo Chimirri

R8/R10 an, n > 2

CHAPTER 6 RESULTS

(a) Fit for LMS as a function of a2
MS, compared with a fit constrained to pass through

LBR of [47], extracted from R6/R8.

(b) Fit for LMS as a function of a2
MS, compared with a fit constrained to pass through

LBR of [47], extracted from R8/R10.

Figure 6.7: Main result of this thesis, namely violations to the asymptotic scaling with aMS in the LMS
parameter for the two main observables studied, built with appropriate ratios of moments. Plotted against a2

MS,
see eq. (6.27). Also reported, the older FLAG19 [5, 92, 96, 27, 72, 35] average of the quenched L-parameter,
which does not contain the very precise result in [47], with which there is some tension.

88

significant corrections  
beyond known PT
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Conclusions

‣ log(a)-enhanced discretisation errors are a reality

‣ for tree-level this is easily proven 

‣ for the 4-th moment they show up at very small a

‣ for higher moments the problem is moved to higher powers of a  
continuum extrapolations of numerical results look fine  
but unknown perturbative corrections turn out large 
(they are less short distance dominated)

‣ it is best to avoid 4-th moment entirely 

‣ for precision results this seems mandatory to me  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Thank you for your attention


