On the moments method

based on L.Chimirri, N.Husung, RS: arXiv: 2211.15750 thesis L. Chimirri: <u>https://edoc.hu-berlin.de/handle/18452/28451</u>

Rainer Sommer

John von Neumann Institute for Computing, DESY & Humboldt University, Berlin

 $lpha_{s}$ workshop Trento, Feb 2024

Integrated correlation functions

• Heavy quark moments for the determination of α_s , in particular: time slice correlator:

$$G(x_0, M) = \int d^3 \mathbf{x} \left\langle P^{\text{RGI}}(x) \overline{P}^{\text{RGI}}(0) \right\rangle, \quad P^{\text{RGI}} = Z^{\text{RGI}} \overline{c} \gamma_5 c'$$

4th moment:

$$M_4(M) = \int_{-\infty}^{\infty} \mathrm{d}t \, t^4 \, G(t, M)$$

$$M = M_c = M'_c = \text{RGI mass}$$

[Bochkharev, DeForcrand]

dimensionless, normalized

$$R_4(M) = \frac{M^2 M_4(M)}{M^2 M_4(M)}\Big|_{g=0} = 1 + \sum_{k=1}^3 c_k \,\alpha_{\overline{\text{MS}}}^k(m_\star) + \text{unknown}$$

► large mass: perturbative, determine $\alpha_{\overline{MS}} \rightarrow \Lambda_{\overline{MS}}$ [HPQCD+Karlsruhe group, ...]

Integrated correlation functions

- but: window problem (large scale needs very small lattice spacing)
- and log-enhanced discretisation errors

from small
$$t$$
:
$$\int_0^{\epsilon} \mathrm{d}t \, t^4 \, G(t, M) \sim \int_0^{\epsilon} \mathrm{d}t \, t \, [\bar{g}^2(1/t)]^\eta \to a \sum_t \dots$$

Numerical results from

- quenched -> no numerical estimate of $\alpha_s(M_z)$
- 2fm x 5fm
- open BC (no topology freezing)
- tmQCD at maximal twist + NP clover
- lattice spacings

 $a = 0.01 \text{ fm} \times 2^{n/2}, n = 0...6 : 0.01 \text{ fm} \dots 0.08 \text{ fm}$

[Husung, Krah, Koren, S. 2018]

NIC

moments method

NIC

moments method

NIC

moments method

• on the lattice (Symanzik expansion for $t \gg a$)

$$G(t, M, a) = a^{3} \sum_{\mathbf{x}} \langle P(x)\overline{P}(0) \rangle = [G(t, 0, 0) + k_{L} \frac{a^{2}}{t^{5}}] [1 + O(tM)] + O(\frac{a^{4}}{t^{4}})$$
$$M_{4}(M, a) = a \sum_{t} t^{4} G(t, M)$$

• on the lattice (Symanzik expansion for $t \gg a$)

$$G(t, M, a) = a^{3} \sum_{\mathbf{x}} \langle P(x)\overline{P}(0) \rangle = [G(t, 0, 0) + k_{L} \frac{a^{2}}{t^{5}}] [1 + O(tM)] + O(\frac{a^{4}}{t^{4}})$$
$$M_{4}(M, a) = a \sum_{\mathbf{x}} t^{4} G(t, M)$$

• short distance contribution to discretisation errors ΔI with (w(t) = 1/2 at end points (trapezoidal))

$$\Delta I(t_1, t_2) = 2a \sum_{t=t_1}^{t_2} w(t) t^4 G(t, M, a) - 2 \int_{t_1}^{t_2} dt \ t^4 G(t, M, \mathbf{0}), \quad t_1 M \ll 1, \ t_2 M \ll 1.$$

for $t_2 > t_1 \gg a$: (Symanzik expansion) and $t_1 M \ll 1$, $t_2 M \ll 1$.

$$\Delta I(t_1, t_2) = k_L a^2 \int_{t_1}^{t_2} dt \, t^{-1} + \dots = k_L a^2 \log(t_2/t_1) + \dots = k_L a^2 \left[\log(t_2/a) - \log(t_1/a)\right] + \dots$$

• on the lattice (Symanzik expansion for $t \gg a$)

$$G(t, M, a) = a^{3} \sum_{\mathbf{x}} \langle P(x)\overline{P}(0) \rangle = [G(t, 0, 0) + k_{L} \frac{a^{2}}{t^{5}}] [1 + O(tM)] + O(\frac{a^{4}}{t^{4}})$$
$$M_{4}(M, a) = a \sum_{\mathbf{x}} t^{4} G(t, M)$$

• short distance contribution to discretisation errors ΔI with (w(t) = 1/2 at end points (trapezoidal))

$$\Delta I(t_1, t_2) = 2a \sum_{t=t_1}^{t_2} w(t) t^4 G(t, M, a) - 2 \int_{t_1}^{t_2} dt \ t^4 G(t, M, \mathbf{0}), \quad t_1 M \ll 1, \ t_2 M \ll 1.$$

for $t_2 > t_1 \gg a$: (Symanzik expansion) and $t_1 M \ll 1$, $t_2 M \ll 1$.

 $\Delta I(t_1, t_2) = k_L a^2 \int_{t_1}^{t_2} dt \, t^{-1} + \dots = k_L a^2 \log(t_2/t_1) + \dots = k_L a^2 \left[\log(t_2/a) - \log(t_1/a)\right] + \dots$

 $=ka^2$

• now $\Delta I(0,t) = \Delta I(0,t_1) + \Delta I(t_1,t)$ does not depend on $t_1 =>$

$$\Delta I(0,t) = \Delta I(0,t_1) + \Delta I(t_1,t) = [\Delta I(0,t_1) - a^2 k_L \log(t_1/a)] + k_L a^2 \log(t/a)$$

• short distance part: $\Delta I(0,t) = a^2 k + k_L a^2 \log(t/a)$

- short distance part: $\Delta I(0,t) = a^2 k + k_L a^2 \log(t/a)$
- full integral $t \to 1/M$

 $M^{2}M_{4} - M^{2}M_{4}|_{a=0} = M^{2}\Delta I(0,\infty) = kM^{2}a^{2} - k_{L}M^{2}a^{2}\log(Ma)$

- short distance part: $\Delta I(0,t) = a^2 k + k_L a^2 \log(t/a)$
- Full integral $t \rightarrow 1/M$

 $M^{2}M_{4} - M^{2}M_{4}|_{a=0} = M^{2}\Delta I(0,\infty) = kM^{2}a^{2} - k_{L}M^{2}a^{2}\log(Ma)$

explicit tree-level computation for tmQCD maximal twist

k small, $k_L = 1$

NIC

- short distance part: $\Delta I(0,t) = a^2 k + k_L a^2 \log(t/a)$
- Full integral $t \rightarrow 1/M$

 $M^{2}M_{4} - M^{2}M_{4}|_{a=0} = M^{2}\Delta I(0,\infty) = kM^{2}a^{2} - k_{L}M^{2}a^{2}\log(Ma)$

explicit tree-level computation for tmQCD maximal twist

k small, $k_L = 1$

just dimensional reasoning

 $[\Delta I(0,t_1) - a^2 k_L \log(t_1/a)] = ka^2$

made it easy to get the general form

Interacting theory: what changes?

anomalous dimensions

$$G(t,0,0) \sim \frac{1}{t^3} [\bar{g}^2(1/t)]^{-2\hat{\gamma}_P}, \quad \Delta G \sim \frac{a^d}{t^{3+d}} [\bar{g}^2(1/t)]^{-2\hat{\gamma}_P - \hat{\Gamma}_i^{(d)}}$$

with a sum over dimensions $d = [\mathcal{O}_i^{(d)}] - 4$ and numbering *i* of the operators $\mathcal{O}_i^{(d)}$ of Symanzik EFT

dimensional reasoning becomes

$$\Delta I(0,t_1) + a^2 F(\bar{g}^2(1/t_1)) = a^2 K(a\Lambda)$$

and all terms of any power a^n in the expansion of G contribute to $K(a\Lambda)$

in the free theory we could do $\int_{a}^{t} s^{-1} ds$ to get the *a* dependence

with the AD's this gives an infinite sum over d, i. Seems impossible.

Interacting theory: what changes?

NIC

back to the specific problem

Tree-level normalised

$$R_4^{\text{latnorm}}(M) = \frac{M^2 M_4(M)}{M^2 M_4(M) \Big|_{g=0}^{aM \neq 0}}$$

- denominator: $M^2 a^2 \log(Ma)$
- numerator: suppression of short distance behavior by anomalous dimension
- Iog-effect left over, dominantly from the denominator
- but not dividing by tree-level lattice, yields very large discretisation effects

Solutions

An integral of the considered type

(correlator diverges like $\sim t^{-k}$ weight function $\sim t^{k-1}$ suppresses the divergence only to $\sim t$)

can't be computed well on the lattice as such

Solutions

- develop theory for a-expansion of integrated functions • ... not yet available
- Instead: Regulate the short distance part
 - Explicit example with full numerical demonstration for $\alpha_{\rm s}$ from heavy quark moment

Regulated $M_4(M) \rightarrow \rho(M_1, M_2)$

The problematic short distance region is mass-independent.
—> combine two masses to eliminate it.

 $\rho(M_1, M_2) \propto M_1^2[M_4(M_1) - M_4(M_2)], \quad r = M_1/M_2 > 1.$

$$\rho(M_1, M_2) = \frac{2\pi^2}{3} \frac{\overline{M}_4(M_1) - r^2 \overline{M}_4(M_2)}{1 - r^2}, \quad \overline{M}_4(M) = M^2 M_4(M)$$

integrand shifted to larger t, short distance suppressed

$$\rho(M_1, M_2) \propto \int_{-\infty}^{\infty} dt \, t^4 \, \underbrace{\left[G(t, M_1) - G(t, M_2)\right]}_{t^{-3}[t^2(M_1^2 - M_2^2) + O(t^4)]}$$

- no log-enhancement and generically smaller a-effects
- PT from R_4 : $\rho(M_1, M_2) = 1 + c_1 \alpha(m_{2\star}) + \dots$

```
same c_1 as in R_4.
```

(chosen ren. scale: smaller mass dominates, integrand shifted to larger t \rightarrow choose M_2)

Continuum limit for $\rho(M_1, M_2)$

- dimensionless variable: $z = M \sqrt{8t_0}$
- best consider $\rho(rM_2, M_2)$ with r = fixed
- we choose r = 1.5 with one exception r = 1.33...

Continuum limit for $\rho(M_1, M_2)$

Figure 2: Continuum limit extrapolations of ρ and its TL improved version, $\rho(M_1, M_2)^{\text{Latnorm}}$. Masses, specified in units $z_i = M_i \sqrt{8t_0}$, are $z_1 = 4.5$, $z_2 = 3$ (left) and $z_1 = 13.5$, $z_2 = 9$ (right).

NIC

Reconstruct R_4

From $R_4^{\text{PT}}(M_{\text{ref}})$ at large M_{ref} computed perturbatively to general M

$$R_4(M) = (1 - r^{-2})\rho(M_{\text{ref}}, M) + r^{-2} R_4^{\text{PT}}(M_{\text{ref}})$$
$$\frac{M_2^2}{M_{\text{ref}}^2} \ll 1$$

• perturbative contribution is power suppressed for large $M_{\rm ref}$

Directly showing $\Lambda_{\overline{MS}}$

Directly showing $\Lambda_{\overline{MS}}$

Nice consistency, but despite tiny lattice spacing not very precise

Results from R_6/R_8

- ► R_6/R_8 : log-enhancement only at O(a^n , n > 2)
- PhD Thesis by Leonardo Chimirri

(a) Fit for $\Lambda_{\overline{\text{MS}}}$ as a function of $\alpha_{\overline{\text{MS}}}^2$, compared with a fit constrained to pass through Λ_{DD} of [47] extracted from R_c/R_o

0.8 —

 R_8/R_{10}

Results from R_8/R_{10}

- ► R_8/R_{10} : log-enhancement only at O(a^n , n > 2)
- PhD Thesis by Leonardo Chimirri

(a) Fit for $\Lambda_{\overline{\text{MS}}}$ as a function of $\alpha_{\overline{\text{MS}}}^2$, compared with a fit constrained to pass through Λ_{DD} of [47] extracted from R_c/R_o

0.8 —

 R_8/R_{10}

Conclusions

- log(a)-enhanced discretisation errors are a reality
- for tree-level this is easily proven
- for the 4-th moment they show up at very small a
- for higher moments the problem is moved to higher powers of a continuum extrapolations of numerical results look fine but unknown perturbative corrections turn out large (they are less short distance dominated)
- it is best to avoid 4-th moment entirely
- for precision results this seems mandatory to me

Conclusions

- log(a)-enhanced discretisation errors are a reality
- for tree-level this is easily proven
- for the 4-th moment they show up at very small a
- for higher moments the problem is moved to higher powers of a continuum extrapolations of numerical results look fine but unknown perturbative corrections turn out large (they are less short distance dominated)
- it is best to avoid 4-th moment entirely
- for precision results this seems mandatory to me

Thank you for your attention

