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p=(E,p), p’=(E-𝜈,p-q), q=(𝜈,q)               
ɣ* virtual photons: q2 

Since q2 <0 here, we use Q2 = -q2. 
Inclusive experiments: only the scattered electrons are detected: target or target 
fragments are ignored. 
At high energy, Bjorken scaling variable x= Q2 /2M𝜈 is more convenient than 𝜈.

e-(p)
ɣ*(q)

N(P)

Inclusive lepton-nucleon scattering
e-(p’)
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Cross section: σ = σMott[αF1(x,Q2)+ βF2(x,Q2)+ γg1(x,Q2)+ϖg2(x,Q2)]

F1, F2, g1 and g2: structure functions 
F1 and F2, are obtained with unpolarized beam and target and varying kinematic factors α and β.  
g1 and g2 are obtained with beam and target both polarized, measuring beam spin asymmetries and 
varying the target spin direction. 

pointlike scattering×(spin independent + spin dependent)
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Inclusive lepton-nucleon scattering



Considering the nucleon inclusive spin structure,  can be extracted from: 

• -evolution of . Complex task: involves DGLAP global fit, 
non-perturbative inputs: quark and gluon distributions, possibly higher-twists 
for low-  / large-x data. 

• -evolution of moment ∫ . Simpler: no x-dependence,  
non-perturbative inputs: more-or-less well measured axial charges ,  and 

 (+ possibly higher-twists for low-  data). Issues: unmeasurable low-x 
contribution,  is -dependent and may have contribution from gluon  
pdf (but not the case in ). 

• -evolution of isovector moment ∫ , i.e Bjorken 
sum. Simplest. Axial charge  precisely measured ( ). 
DGLAP-evolution known to higher order than single nucleon case (nowadays, this 

is often the limitation in extracting ). No gluon contribution. But low-x issue and 
demands measurement on polarized p and n.  

αs

Q2 g1(x, Q2)

Q2

Q2 g1(x, Q2)dx
a0 a3

a8 Q2

a0 Q2 ΔG
MS

Q2 gp−n
1 (x, Q2)dx

a3 = gA gA = 1.2762 ± 0.0005

αs

0
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Bjorken sum rule 

pQCD radiative  
corrections (  Scheme.)MS Non-perturbative 1/Q2n  

power corrections.  
(+rad. corr.)

Nucleon axial 
charge. (Value 

of  in the 
 limit)

Γp−n
1 (Q2)

Q2 → ∞

+
M2

Q2 [a2(αs) + 4d2(αs) + 4f2(αs)] + . . .
Nucleon’s 
First spin 
structure 
function

Γp−n
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1 dx =
1
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gA[1 −
αs

π
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π )
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π )
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π )
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  ⇒ Two possibilities to extract : 
•Do an absolute measurement of  and solve the Bj SR for . 

•One  per   experimental data point. 
•Poor systematic accuracy, typically  ~10%high energy ⇒ Not competitive. 

•Measurement of -dependence of  
Need several   points. Only one (or a few) value of αs. 
Good accuracy: 1990’s CERN/SLAC data yielded: =0.120±0.009 

αs(MZ)
Γp−n

1 (Q2) αs(Q2)
αs Γp−n

1
Δαs /αs

Q2 Γp−n
1 (Q2)

Γp−n
1

αs(MZ)
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The Bj SR allows 
to extract  
at any  value! 
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• Jefferson Lab at 12 GeV: EG12 using CLAS12 with 11 GeV. Ran in 2022-2023 
• Electron Ion Collider (EIC) 
• Jefferson Lab at 22 GeV

Possible future extractions of  from αs Γp−n
1 (Q2)
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 from  measured at the EIC αs Γp−n
1 (Q2)

2030s:
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EIC
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Simulated data: -  and -  DIS events generated with DJANGOH event 
generator for 6 collision energies (5×41 GeV, 10×100 GeV & 18×275 GeV for p, 5×41 GeV/nucleon, 

10×100 GeV/nucleon & 18×166 GeV/nucleon for ) and longitudinal & transverse hadron 
polarizations settings. 
Neutron information extracted from  
Tag two spectator protons from - : minimize nuclear corrections for neutron 
information. 

Use 10  luminosity (i.e., about 2×3 years of running at ). 

Monte Carlo simulation of detector effects (resolution, efficiency, acceptance, radiative effects) 

Longitudinal & transverse asymmetries,  generated using 
world data parameterizations.  
Then, , the Bjorken sum.

⃗e ⃗p ⃗e ⃗3He

3He

⃗3He ( ≃ ⃗n )
⃗e ⃗3He

fb−1 ℒ = 5 × 1033cm−2s−1

A||(x, Q2), A⊥(x, Q2)

A|| & A⊥ → A1 ≃ g1/F1 → g1 → Γ1

⇒Very realistic simulation 



Uncertainties

Statistics; 

Systematics:  
• detector effects,  
• beam polarimetries,  
• radiative corrections,  
• missing high- and low-x part,  
• PDF parameterizations; 
• Negligible: neutron information extraction.
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EIC: generated pseudo-data
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Missing  
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Fit and procedure: 
• Main fit function: Bjorken sum approximant at 

N4LO+twist-4, with  at 4-loop (i.e. ), for main 
result. 

• Secondary fit at N4LO+twist-4 and  at 3-loop, 
for pQCD truncation uncertainty. 

• Systematically vary fit  range to minimize total 
uncertainty: Low  points have high  sensitivity but 
larger pQCD truncation error. High  points have 
smaller  sensitivity but smaller pQCD error. May not be 
worth including the lowest and/or highest  points. (Not 
worth using all points for statistics sake since stat. error is 
negligible.) 

• 2-parameter fit: 
1.  is the free parameter of interest. From it, we obtain 

. 
2. Twist-4: free fit parameter.  

αs β3

αs

Q2

Q2 αs
Q2

αs
Q2

Λs
αs(Mz)

Fit and procedure:

Extraction of αs(MZ)
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Fit and procedure: 
• Main fit function: Bjorken integral approximant 

at N4LO  with  at 4-loop (i.e. ), for main 
result. 

• Secondary fit at N4LO+twist-4 and  at 3-loop, 
for pQCD truncation uncertainty. 
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larger pQCD truncation error. High  points have 
smaller  sensitivity but smaller pQCD error. May not be 
worth including the lowest and/or highest  points. (Not 
worth using all points for statistics sake since stat. error is 
negligible.) 
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Fit and procedure: 
• Main fit function: Bjorken integral approximant 

at N4LO  with  at 4-loop (i.e. ), for main 
result. 

• Secondary fit at N5LO and  at 5-loop, for pQCD 
truncation uncertainty. 

• Systematically vary fit  range to minimize total 
uncertainty: Low  points have high  sensitivity but 
larger pQCD truncation error. High  points have 
smaller  sensitivity but smaller pQCD error. May not be 
worth including the lowest and/or highest  points. (Not 
worth using all points for statistics sake since stat. error is 
negligible.) 

• 2-parameter fit: 
1.  is the free parameter of interest. From it, we obtain 

. 
2. Twist-4: free fit parameter.  
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Fit and procedure: 
• Main fit function: Bjorken integral approximant 

at N4LO  with  at 4-loop (i.e. ), for main 
result. 

• Secondary fit at N5LO and  at 5-loop, for pQCD 
truncation uncertainty. 

• Systematically vary fit -range to find the 
optimal range minimizing the uncertainty: Low  
points have high  sensitivity but larger pQCD 
truncation error. High  points have smaller  
sensitivity but smaller pQCD error. May not be worth 
including the low and/or high  points. (Not worth 
using all data for statistics sake since stat. error is small.) 

• 2-parameter fit: 
1.  is the free parameter of interest. From it, we obtain 
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Fit and procedure: 
• Main fit function: Bjorken integral approximant 

at N4LO  with  at 4-loop (i.e. ), for main 
result. 

• Secondary fit at N5LO and  at 5-loop, for pQCD 
truncation uncertainty. 

• Systematically vary fit -range to find the 
optimal range minimizing the uncertainty: Low  
points have high  sensitivity but larger pQCD 
truncation error. High  points have smaller  
sensitivity but smaller pQCD error. May not be worth 
including the low and/or high  points. (Not worth 
using all data for statistics sake since stat. error is small.) 

• 2-parameter fit: 
1.  is the free parameter of interest. From it, we obtain 
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Fit and procedure: 
• Main fit function: Bjorken integral approximant 

at N4LO  with  at 4-loop (i.e. ), for main 
result. 

• Secondary fit at N5LO and  at 5-loop, for pQCD 
truncation uncertainty. 

• Systematically vary fit -range to find the 
optimal range minimizing the uncertainty: Low  
points have high  sensitivity but larger pQCD 
truncation error. High  points have smaller  
sensitivity but smaller pQCD error. May not be worth 
including the low and/or high  points. (Not worth 
using all data for statistics sake since stat. error is small.) 
2-parameter fit: 
1.  is the free parameter of interest. From it, we obtain 

. 
2. . Well-known but left as a free to account for 

normalization uncertainties. 
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Extraction of αs(MZ)

Optimal fit: whole  range. 
Fit yields: =1.3%

Q2

Δαs(MZ)/αs(MZ)
1.31 % = 0.83 % (exp.) ⊕ 0.64 % (truncation) ⊕ 0.78 % (polarimetries)



Compared to other DIS results and world average (from PDG)
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PDG average  
PDF fits

PDG average 
(including lattice)



Compared to other DIS results and world average (from PDG)
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Conclusion:  
•Realistic simulation shows that EIC can yield a competitive measurement. 
•Just one method. Other extractions will be available, e.g.: 
•Global fits (unpolarized and polarized) 
•Inclusive neutral current reactions (EIC+HERA). S. Cerci, et al. EPJC, 83(11):1011, 2023: =0.4%Δαs(MZ)/αs(MZ)



• Jefferson Lab at 12 GeV: EG12 using CLAS12 with 11 GeV. Ran in 2022-2023 
• Electron Ion Collider (EIC) 
• Jefferson Lab at 22 GeV

Possible future extractions of  from αs Γp−n
1 (Q2)
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Bjorken sum rule at JLab@22 GeV 
•Statistical uncertainties are expected to be negligible:  

•JLab is a high-luminosity facility; 
•A JLab@22 GeV program would include polarized DVCS and TMD experiments. Those imply 
long running times compared to those needed for inclusive data gathering; 
•High precision data already available from 6 GeV and 12 GeV for the lower  bins and 
moderate x. 

•Looking at the 6 GeV CLAS EG1dvcs data, required statistics for DVCS and TMD experiments 
imply statistical uncertainties < 0.1% on the Bjorken sum. For the present exercise we will use 0.1% 
on all -points with -bin sizes increasing exponentially with .

Q2

Q2 Q2 Q2
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moderate x. 
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Bjorken sum rule at JLab@22 GeV 

•Use 6% for experimental systematics (i.e. not including the uncertainty on unmeasured low-x). 
•Nuclear corrections: 

•D: negligible assuming we can tag the ~spectator proton 
•3He: 2% (5% on n, which contribute to 1/3 to the Bjorken sum: 5%/3≃2%) 

•Polarimetries: Assume ΔPe-ΔPN = 3%. 
•Radiative corrections: 1% 
•F1 to form g1 from A1: 2% 
•g2 contribution to longitudinal asym: Negligible, assuming it will be measured.  
•Dilution/purity:  

•Bjorken sum from P & D: 4% 
•Bjorken sum from P & 3He: 3%  

•Contamination from particle miss-identification: Assumed negligible.  
•Detector/trigger efficiencies, acceptance, beam currents: Neglected (asym).

Adding in  
quadrature: ~5% 
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•Statistical uncertainties are expected to be negligible:  
•JLab is a high-luminosity facility; 
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moderate x. 
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•Statistical uncertainties are expected to be negligible:  
•JLab is a high-luminosity facility; 
•A JLab@22 GeV program would include polarized DVCS and TMD experiments. Those imply 
long running times compared to those needed for inclusive data gathering; 
•High precision data already available from 6 GeV and 12 GeV for the lower  bins and 
moderate x. 

•Looking at the 6 GeV CLAS EG1dvcs data, required statistics for DVCS and TMD experiments 
imply statistical uncertainties < 0.1% on the Bjorken sum. For the present exercise we will use 0.1% 
on all -points with -bin sizes increasing exponentially with .
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Under these assumptions:
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Comparison with JLab at 6 and 11 GeV 
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Comparison with EIC 
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Low-x uncertainty
•For the  bins covered by EIC, global fits will be available up to the lowest x covered by EIC.   
      ⇒ assume 10% uncertainty on that missing (for the JLab measurement) low-x part. 
      Assume 100% for the very small-x contribution not covered by EIC. 

•For the 5 lowest  bins not covered by EIC:  
•Bin #5 close to the EIC coverage ⇒ Constrained extrapolation, assume 20% uncertainty on missing low-x part. 
•Bin #4, assume 40% uncertainty, Bin #3, assume 60%, Bin #2, assume 80%, Bin #1, assume 100%. 
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Extraction of αs(MZ)

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

1 10 Q2 (GeV2)

Bj
or

ke
n 

Su
m

Expected, 22, with low-x corrected,
assuming no missing high-x strength

Point-to-point uncorrel. uncertainty

Point-to-point correlated uncertainty

Fit and procedure: 
• Main fit function: Bjorken sum approximant at 

N4LO+twist-4, with  at 4-loop (i.e. ), for main 
result. 

• Secondary fit at N5LO+twist-4 and  at 5-loop, 
for pQCD truncation uncertainty. 

• Systematically vary fit  range to minimize total 
uncertainty: Low  points have high  sensitivity but 
produce larger pQCD truncation error. High  points 
have smaller  sensitivity and larger experimental 
systematic uncertainty but smaller pQCD error. ⇒May 
not be worth including the lowest and/or highest  
points. (Using all points for statistics sake is not worth it, 
since stat. error is negligible.) 

• 3-parameter fit: 
1.  is the free parameter of interest. From it, we obtain 

. 
2. Twist-4: free fit parameter.  
3. : free fit parameter (for normalization adjustment)
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Extraction of αs(MZ)

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

0.225

0.25

1 10 Q2 (GeV2)

Bj
or

ke
n 

Su
m

Expected, 22, with low-x corrected,
assuming no missing high-x strength

Point-to-point uncorrel. uncertainty

Point-to-point correlated uncertainty

Fit and procedure: 
• Main fit function: Bjorken sum approximant at 
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result. 
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for pQCD truncation uncertainty. 
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not be worth including the lowest and/or highest  
points. (Using all points for statistics sake is not worth it, 
since stat. error is negligible.) 
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Fit these data

Extraction of αs(MZ)
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Comparison JLab@22 GeV and EIC 
JLab@22 GeV

•Covers region with strong -dependence: best 
sensitivity to . (Up to 50 time more sensitive.) 
•Small Higher-Twist uncertainties. 
•Finer  binning (19 bins (JLab) vs 7 bins (EIC)).

Q2

αs

Q2
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EIC
•Best low-x coverage. 
•No Higher-Twist uncertainties 
•Smaller pQCD uncertainties.



Comparison JLab@22 GeV and EIC 
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EIC
•Best low-x coverage. 
•No Higher-Twist uncertainties 
•Smaller pQCD uncertainties.

 EIC alone. 
Δαs

αs
≃ 1.3 %
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•Covers region with strong -dependence: best 
sensitivity to . (Up to 50 time more sensitive.) 
•Small Higher-Twist uncertainties. 
•Finer  binning (19 bins (JLab) vs 7 bins (EIC)).
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Compared to other DIS results and world average (from PDG)
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PDG average  
PDF fits

PDG average 
(including lattice)

EIC+JLab@22 GeV



EIC+JLab@22 GeV

Compared to other DIS results and world average (from PDG)
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Under reasonable assumptions, EIC+JLab@22 GeV can yield a 
compelling 0.6% measurement of  from the Bjorken sum rule.αs(MZ)



Summary

• The Bjorken sum =∫  offers a simple and competitive method to determine . 

• Realistic simulation shows that EIC can yield a measurement with 1.3% precision. 
• Use only  from inclusive polarized DIS reaction. 

• Preliminary study shows that a JLab@22 GeV upgrade would lower this result to  ~0.6% using the 
same method. 

• Very different data (polarized DIS), simple (⇒clean) extraction, competitive accuracy: valuable 
comparison of  extracted from different processes.  

• Possibilities of further improvement:  
1. Improved knowledge of pQCD series:  at  already available. Estimate for N5LO results for  available. 
2. Improved perturbative methods minimizing pQCD truncation. Some have already been worked out for . 

• This is but one of several ways to determine  at EIC or JLab. Others, e.g., global fits of (un)polarized 
PDFs or inclusive neutral current reactions would also provide competitive measurements.
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