A brief review of Lepton Flavor Violation at the ILC

José I. Illana CAFPE, U. Granada

- 1. Motivation
- 2. Lepton flavor violating processes
- 3. Lepton Flavor Violation from BSM Physics
- 4. Probing LFV at the ILC

Motivation

Motivation

• Evidence of LFV: neutrinos oscillate

 \Rightarrow Neutrinos have a (small) mass and mix:

$$u_{L_{\alpha}} \equiv \mathcal{U}_{\alpha i} \nu_{i} \qquad \alpha = e, \mu, \tau \qquad i = 1, 2, 3$$

 \Rightarrow LFV in the charged sector: **negligible** (one loop, GIM suppressed) in the SM

$$\ell_{\alpha} \to \ell_{\beta}: \qquad \left| \frac{\alpha}{\pi} \sum_{i} \mathcal{U}_{\alpha i}^{*} \mathcal{U}_{\beta i} \frac{m_{\nu_{i}}^{2}}{M_{W}^{2}} \right|^{2} \sim \left| \frac{\alpha}{\pi} \sin 2\theta \frac{\Delta m_{\nu}^{2}}{M_{W}^{2}} \right|^{2} \sim 10^{-54}$$

Motivation

- Evidence of LFV: neutrinos oscillate
 - \Rightarrow Neutrinos have a (small) mass and mix:

$$\nu_{L_{\alpha}} \equiv \mathcal{U}_{\alpha i} \nu_{i} \qquad \alpha = e, \mu, \tau \qquad i = 1, 2, 3$$

 \Rightarrow LFV in the charged sector: **negligible** (one loop, GIM suppressed) in the SM

$$\ell_{\alpha} \to \ell_{\beta}: \qquad \left| \frac{\alpha}{\pi} \sum_{i} \mathcal{U}_{\alpha i}^{*} \mathcal{U}_{\beta i} \frac{m_{\nu_{i}}^{2}}{M_{W}^{2}} \right|^{2} \sim \left| \frac{\alpha}{\pi} \sin 2\theta \frac{\Delta m_{\nu}^{2}}{M_{W}^{2}} \right|^{2} \sim 10^{-54}$$

- Opportunity for New Physics $[m_{\nu_i}^2/M_W^2 \to f(m_{F_i}^2/\Lambda_{NP}^2)]$
 - Most NP models suffer the flavor problem: new sources of flavor mixing
 - Lepton sector is more clean
 - Examples: SUSY, Little Higgs, ...

- Where to look for LFV?
 - Rare lepton decays: [μ : MEGA/MEG, SINDRUM (PSI) | τ : Belle, BaBar, LHC]
 - radiative ($\ell_j \rightarrow \ell_i \gamma$),
 - leptonic $(\ell_j \to \ell_i \ell_k \overline{\ell}_k, \ell_j \to \ell_i \ell_i \overline{\ell}_k),$
 - semileptonic ($\tau \rightarrow \mu \eta, \tau \rightarrow \mu \rho, \tau \rightarrow \mu \pi \pi, ...$)
 - μe conversion in nuclei [SINDRUM2]
 - Decays of other standard particles:
 - $\begin{aligned} -Z &\to \ell_i \overline{\ell}_j & [\dots, \text{LEP}, \text{GigaZ}] \\ -H &\to \ell_i \overline{\ell}_j & [\dots, \text{LHC}, \text{ILC}] \\ -D^0 &\to \ell_i \overline{\ell}_j, B \to \mu e, \dots \end{aligned}$
 - Decays of non-standard particles: [LHC, ILC]
 e.g. charged sleptons, sneutrinos, charginos, neutralinos

• Present and future limits:

LFV process	Present best UL (90% CL)		Future sensitivity	
$\mathcal{B}(\mu o e\gamma)$	1.2×10^{-11}	[MEGA 1999]		
	$2.8 imes 10^{-11}$	[MEG 2010]	$10^{-13} - 10^{-14}$	[MEG]
$\mathcal{B}(au o e \gamma)$	$3.3 imes 10^{-8}$	[BaBar 2010]	3×10^{-9}	[SuperB]
$\mathcal{B}(au o \mu \gamma)$	$4.4 imes 10^{-8}$	[BaBar 2010]	$2.4 imes10^{-9}$	[SuperB]
$\mathcal{B}(\mu \to e e \bar{e})$	1×10^{-12}	[SINDRUM 1988]	$10^{-13} - 10^{-14}$	[MEG]
$\mathcal{B}(au o eear{e})$	2.7×10^{-8}	[Belle 2010]	$10^{-9} - 10^{-10}$	[SuperB]
$\mathcal{B}(au o \mu \mu ar{\mu})$	$2.1 imes 10^{-8}$	[Belle 2010]	$10^{-9} - 10^{-10}$	[SuperB]
$\mathcal{B}(\tau \to e\mu\bar{\mu})$	2.7×10^{-8}	[Belle 2010]	$10^{-9} - 10^{-10}$	[SuperB]
$\mathcal{B}(au o \mu e \overline{e})$	1.8×10^{-8}	[Belle 2010]	$10^{-9} - 10^{-10}$	[SuperB]

• Present and future limits:

LFV process	Present best UL (90% CL)		Future sensitivity	
$\mathcal{R}(\mu \to e, \mathrm{Au})$	$7.0 imes 10^{-13}$	[SINDRUM2 2004]	10^{-16}	[Mu2E (Fermilab)]
$\mathcal{R}(\mu \to e, \mathrm{Al})$			10^{-16}	[COMET (J-PARC)]
$\mathcal{R}(\mu \rightarrow e, \mathrm{Ti})$	4.3×10^{-12}	[SINDRUM2 2004]	10^{-18}	[PRISM/PRIME (J-PARC)]
$\mathcal{B}(Z o \mu^{\pm} e^{\mp})$	$1.7 imes 10^{-6}$	[LEP 1995]	2×10^{-9}	[GigaZ]
$\mathcal{B}(Z \to \tau^{\pm} e^{\mp})$	$9.8 imes 10^{-6}$	[LEP 1993]	$6.5\kappa imes 10^{-8}$	[GigaZ] $\kappa \in [0.2, 1]$
$\mathcal{B}(Z \to \tau^{\pm} \mu^{\mp})$	1.2×10^{-5}	[LEP 1997]	$2.2\kappa imes 10^{-8}$	[GigaZ]

LFV processes

• NP at 1-loop transitions:

	$\Delta F = 2$	
	+	
$\mu ightarrow e \gamma$	$\mu ightarrow eear{e}$	
	$\mu - e$ conversion in nuclei	
$ au ightarrow e \gamma$	$ au o e e ar{e} au o e \mu ar{\mu}$	$ au ightarrow eear\mu$
$ au o \mu \gamma$	$ au o \mu\muar\mu au o \mu ear e$	$ au o \mu \mu ar{e}$
$Z ightarrow \mu \bar{e}$, $e \bar{\mu}$		
$Z ightarrow au ar{e}$, $e ar{ au}$	介	↑
$Z ightarrow auar{\mu}$, $\mu ar{ au}$		
$H ightarrow \mu ar{e}$, $e ar{\mu}$		
$H ightarrow au ar{e}$, $e ar{ au}$	介	介
$H ightarrow auar{\mu}$, $\mu ar{ au}$		
$e^+e^- ightarrow \ell_i \overline{\ell}_j$,	$\gamma\gamma o \ell_i \overline{\ell}_j$	

A brief review on Lepton Flavor Violation at the ILC

Lepton Flavor Violation from BSM Physics

- Origin of LFV: misalignment of fermion and sfermion mass matrices
 - Charged sleptons: $\tilde{\ell}_{L_i}$ and $\tilde{\ell}_{R_i}$ superpartners of ℓ_{L_i} and ℓ_{R_i}

$$\mathbf{M}_{\tilde{\ell}}^{2} = \begin{pmatrix} \mathbf{m}_{LL}^{2} & \mathbf{m}_{LR}^{2\dagger} \\ \mathbf{m}_{LR}^{2} & \mathbf{m}_{RR}^{2\dagger} \end{pmatrix} \qquad \begin{pmatrix} (m_{LL}^{2})_{ij} &= (m_{\tilde{L}}^{2})_{ij} + \left[m_{\ell_{i}}^{2} + \left(-\frac{1}{2} + \sin^{2}\theta_{W} \right) M_{Z}^{2} \cos 2\beta \right] \delta_{ij} \\ (m_{RR}^{2})_{ij} &= (m_{\tilde{e}_{R}}^{2})_{ij} + (m_{\ell_{i}}^{2} - M_{Z}^{2} \sin^{2}\theta_{W} \cos 2\beta) \delta_{ij} \\ (m_{LR}^{2})_{ij} &= (A_{e})_{ij} v \cos \beta / \sqrt{2} - m_{\ell_{i}} \mu^{*} \tan \beta \delta_{ij} \end{cases}$$

Slepton mass eigenstates:

$$\mathbf{S}^{\tilde{\ell}} \mathbf{M}_{\tilde{\ell}}^2 \mathbf{S}^{\tilde{\ell}^{\dagger}} = \mathbf{diag}(m_{\tilde{\ell}_X}^2) \qquad X = 1, \dots, 6$$

$$\tilde{\ell}_X = S_{Xi}^{\tilde{\ell}} \tilde{\ell}_{Li} + S_{X,i+3}^{\tilde{\ell}} \tilde{\ell}_{R_i}$$
 $X = 1, \dots, 6$ $i = 1, 2, 3$

- Origin of LFV: misalignment of fermion and sfermion mass matrices
 - Sneutrinos: $\tilde{\nu}_{L_{\alpha}}$ superpartners of $\nu_{L_{\alpha}}$

$$(M_{\tilde{\nu}}^2)_{\alpha\beta} = (m_{\tilde{L}}^2)_{\alpha\beta} + \frac{1}{2}M_Z^2\cos 2\beta \,\delta_{\alpha\beta}$$

Sneutrino mass eigenstates:

$$\mathbf{S}^{\tilde{\nu}} \mathbf{M}_{\tilde{\nu}}^2 \mathbf{S}^{\tilde{\nu}^{\dagger}} = \mathbf{diag}(m_{\tilde{\nu}_X}^2) \qquad X = 1, 2, 3$$

$$\tilde{\nu}_X = S_{X\alpha}^{\tilde{\nu}} \tilde{\nu}_{L_\alpha} = S_{X\alpha}^{\tilde{\nu}} \mathcal{U}_{\alpha i} \tilde{\nu}_i \qquad X = 1, 2, 3 \qquad \alpha = e, \mu, \tau \qquad i = 1, 2, 3$$

 \Rightarrow Off-diagonal terms are responsible for LFV

• LFV vertices $ig \left(c_{iAX}^L P_L + c_{iAX}^R P_R\right)$ where *iAX* label mass eigenstates

$$\begin{split} \tilde{v}_{X}^{\dagger} \bar{\tilde{\chi}}_{A}^{-} \ell_{i} : & c_{iAX}^{L[C]} = -V_{A1}^{*} S_{X\alpha}^{\tilde{\nu}} \mathcal{U}_{\alpha i} \\ & c_{iAX}^{R[C]} = \frac{m_{\ell_{i}}}{\sqrt{2}M_{W}\cos\beta} U_{A2} S_{X\alpha}^{\tilde{\nu}} \mathcal{U}_{\alpha i} \\ \tilde{\ell}_{X}^{\dagger} \bar{\tilde{\chi}}_{A}^{0} \ell_{i} : & c_{iAX}^{L[N]} = \frac{1}{\sqrt{2}} (\tan\theta_{W} N_{A1}^{*} + N_{A2}^{*}) S_{Xi}^{\tilde{\ell}} - \frac{m_{\ell_{i}}}{\sqrt{2}M_{W}\cos\beta} N_{A3}^{*} S_{X,i+3}^{\tilde{\ell}} \\ & c_{iAX}^{R[N]} = -\sqrt{2} \tan\theta_{W} N_{A1} S_{X,i+3}^{\tilde{\ell}} - \frac{m_{\ell_{i}}}{\sqrt{2}M_{W}\cos\beta} N_{A3} S_{Xi}^{\tilde{\ell}} \end{split}$$

Lepton Flavor ViolationSupersymmetry

• One-loop transitions: bubbles and triangles ($\Delta F = 1$)

 $[\mu \rightarrow e\gamma]$

Lepton Flavor ViolationSupersymmetry

• One-loop transitions: boxes ($\Delta F = 1$ and $\Delta F = 2$)

Lepton Flavor ViolationSupersymmetry

• Tree level chain decays:

Production and decay of charged sleptons, sneutrinos, charginos and neutralinos

$$\begin{array}{rcccc} e^+e^- \to & \tilde{\ell}_X^+\tilde{\ell}_Y^- \to & \tau^\pm\mu^\mp\tilde{\chi}_1^0\tilde{\chi}_1^0 \\ & \tilde{\nu}_X\tilde{\nu}_Y \to & \tau^\pm\mu^\mp\tilde{\chi}_1^+\tilde{\chi}_1^- \\ & \tilde{\chi}_A^0\tilde{\chi}_B^0 \to & \tau^\pm\mu^\mp\tilde{\chi}_1^0\tilde{\chi}_1^0 \\ & \tilde{\chi}_A^+\tilde{\chi}_B^- \to & \tau^\pm\mu^\mp\tilde{\chi}_1^\pm\tilde{\chi}_1^+ \end{array}$$

- The model(s)
 - The Higgs is a pseudo-Goldstone boson of an approximate global symmetry broken at a scale $f \sim$ TeV
 - The global symmetry (partly gauged) gets explicitly broken by gauge and Yukawa interactions, giving the Higgs a mass and non-derivative couplings, still preserving the cancellation of one-loop quadratic corrections (collective breaking)
 - This introduces extra fermions and gauge fields (and extra Higgses): new source of flavor mixing

Assume the most popular model: Littlest Higgs with T Parity

The SM spectrum (T-even) is supplemented with: \star T-odd fermion SU(2)_L doublets $l_{HL} \equiv (\nu_{HL}, \ell_{HL})$ and $l_{HR} \equiv (\nu_{HR}, \ell_{HR})$ \star T-odd gauge bosons W_H , A_H , Z_H

• Origin of LFV: missalignment of T-even and T-odd fermion mass matrices \mathcal{L}_{Y_H} generates heavy masses inducing heavy-light mixings:

$$\sqrt{2}f \,\overline{l}_{HL}^{0} \mathbf{Y}_{\mathbf{H}} l_{HR}^{0} \stackrel{\text{diag}}{\longrightarrow} l_{HL}^{0} = V_{H} l_{HL} \quad l_{HR}^{0} = U_{H} l_{HR}$$

$$\Rightarrow \mathcal{L}_{\text{LHT}} \sim g \,\overline{l}_{HL}^{0} \mathcal{G}_{H}^{\dagger} l_{L}^{0} = g \,(\overline{\nu}_{HL} V_{H}^{\dagger}, \,\overline{\ell}_{HL} V_{H}^{\dagger}) \,\mathcal{G}_{H}^{\dagger} \begin{pmatrix} \mathcal{U} \,\nu_{L} \\ \ell_{L} \end{pmatrix} \quad V_{H}^{\dagger} \mathcal{U} \equiv V_{H\nu} \\ V_{H}^{\dagger} \equiv V_{H\ell} \quad V_{H}^{\dagger} \equiv V_{H\ell} \end{pmatrix}$$

$$\Rightarrow \frac{V_{H\ell}^{i\alpha} \,\overline{\nu}_{HL}^{i} W_{H}^{\dagger} \ell_{L}^{\alpha}}{V_{L}^{\alpha} \,\mathbb{C}C} \text{ and } \frac{V_{H\ell}^{i\alpha} \,\overline{\ell}_{HL}^{i} \{\mathcal{A}_{H}, \mathcal{Z}_{H}\} \ell_{L}^{\alpha}}{NC}$$

Lepton Flavor Violation Littlest Higgs with T Parity

• LFV vertices $ig (g_L P_L + g_R P_R)$

Identical to SM with heavy neutrinos, replacing $V_{H\ell}$ by \mathcal{U} and W_H by W

Lepton Flavor Violation Littlest Higgs with T Parity

• One-loop transitions: bubbles and triangles ($\Delta F = 1$)

 $[\mu \rightarrow e\gamma]$

 $[Z \rightarrow e\bar{\mu}]$

Lepton Flavor Violation Littlest Higgs with T Parity

• One-loop transitions: boxes ($\Delta F = 1$ and $\Delta F = 2$)

Probing LFV at the ILC

Guchait, Kalinowski, Roy [EPJC 21 (2001) 163]
 Deppisch, Päs, Redelbach, Rückl, Shimizu [PRD 69 (2004) 054014]
 Production and decay of sleptons, charginos and neutralinos (SUSY seesaw)

$$e^{+}e^{-} \rightarrow \qquad \tilde{\ell}_{i}^{+}\tilde{\ell}_{j}^{-} \rightarrow \ell_{\alpha}^{+}\ell_{\beta}^{-}\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \qquad \begin{array}{l} \text{Signal} = \ell_{\alpha}^{+}\ell_{\beta}^{-} + \not{E}_{T} \\ \\ \tilde{\nu}_{i}\tilde{\nu}_{j}^{c} \rightarrow \ell_{\alpha}^{+}\ell_{\beta}^{-}\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-} \qquad \ell_{\alpha}^{+}\ell_{\beta}^{-} + 4jets + \not{E}_{T} \\ \\ \tilde{\chi}_{a}^{0}\tilde{\chi}_{b}^{0} \rightarrow \ell_{\alpha}^{+}\ell_{\beta}^{-}\tilde{\chi}_{1}^{0}\tilde{\chi}_{1}^{0} \qquad \ell_{\alpha}^{+}\ell_{\beta}^{-} + \ell + 2jets + \not{E}_{T} \\ \\ \tilde{\chi}_{a}^{+}\tilde{\chi}_{b}^{-} \rightarrow \ell_{\alpha}^{+}\ell_{\beta}^{-}\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp} \qquad (\text{purely leptonic overwhelmed by bkgd}) \end{array}$$

(Background from $e^+e^- \rightarrow t\bar{t}g$ reduced by appropriate cuts)

• Hohenwater-Sodek, Kernreiter [JHEP 06 (2007) 071]

Effects of LFV on chargino production

- $\sigma(e^+e^- \rightarrow \chi_a^+ \chi_b^-)$ at $\sqrt{s} = 500$ GeV and assuming beam polarization enhanced up to a factor 2 within limits from $\tau \rightarrow \mu \gamma$ due to LFV $\tilde{\nu}_X$ exchange (*t*-channel)

• Ibarra, Roy [JHEP 05 (2007) 059]

Sensitivity of future e^+e and e^-e^- colliders to LFV in scenarios with a stau NLSP

- Signal: two heavily ionizing tracks due to the long-lived staus accompanied by two (LFV in production) or four (LFV in selectron decay) charged leptons
- Sensitivity (better e^-e^- than e^+e^-) competitive with the present and projected sensitivities to LFV from rare tau decays, although not from $\mu \rightarrow e\gamma$

• Kanemura et al [PLB 599 (2004) 2004]

Search for LFV in Higgs boson decay at a Linear Collider

 $e^+e^- \rightarrow Z^* \rightarrow Z h^0 \rightarrow Z \tau^{\pm} \mu^{\mp}$

After taking appropriate kinematic cuts, the number of background events is considerably reduced, so that the signal can be visible when the branching ratio of h⁰ → τ[±]μ[∓] is larger than about 10⁻⁴ (10⁻³ in the 2HDM) (Energy tuned to optimize Higgsstrahlung (√s = M_Z + 2m_h) and L = 1 ab⁻¹)

• Canoni, Panella, Kolb [LCWS 04]

Majorana neutrino and light sneutrino contributions to $e^-e^- \rightarrow \mu e, \tau e$ Majorana $\nu \leq 2-3$ TeV feasible, and $\sigma \sim 10^{-2}$ fb in SUSY reachable (polariz.) • JI, Masip [PRD 67 (2003) 035004]

LFV Z decays from SUSY

- GigaZ: $Z \rightarrow \mu e$ invisible due to $\mu \rightarrow e\gamma$ constraint, but $Z \rightarrow \mu e$ at reach

Probing LFV at the ILC Heavy neutrinos

• JI, Riemann [PRD 63 (2001) 053004]

LFV Z decays from heavy neutrinos

– GigaZ: $Z \rightarrow \ell_i^{\pm} \ell_j^{\mp}$ visible if heavy neutrinos are lighter than the TeV and mix enough to light neutrinos

Probing LFV at the ILC Little Higgs

Wei Ma, Chong-Xing Yue, Jiao Zhang, and Yan-Bin Sun [1010.0052] Jinzhong Han, Xuelei Wang, Bingfang Yang [1101.3598]
e⁺e⁻ → ℓ_i[±]ℓ_j[∓] and γγ → ℓ_i[±]ℓ_j[∓] and in the LHT at the ILC (mediated by LFV in γℓ_iℓ_j and Zℓ_iℓ_j and constrained by rare lepton decays)
− σ(e⁺e⁻ → ℓ_i[±]ℓ_j[∓]) can reach several fb
− σ(γγ → ℓ_i[±]ℓ_j[∓]) can reach 0.1 − 1 fb

Probing LFV at the ILC Little Higgs

- Chong-Xing Yue and Shuang Zhao [EPJ C50 (2007) 897]
 Signals of the LHT doubly charged scalar triplet Φ from e⁺e⁻ → ℓ_i[±]ℓ_j[∓]
 (mediated by the tree level subprocess e⁻e⁻ → Φ⁻⁻ → ℓ_i⁻ℓ_j⁻)
 - At $\sqrt{s} = 500$ GeV the LFV contribution is small but Φ can give a significant contribution to $e^+e^- \rightarrow \ell_i^{\pm}\ell_i^{\mp}$

Probing LFV at the ILC Model independent

• Ferreira, Guedes, Santos [PRD 75 (2007) 055015]

Different LFV decay widths and the cross sections $\sigma(e^+e^- \rightarrow \ell_i^{\pm}\ell_j^{\mp})$ are compared using dimension-six effective operators

- ILC ($\sqrt{s} = 1$ TeV, $\mathcal{L} = 1$ ab⁻¹) explores $\Lambda \lesssim 100$ TeV.
- Limits from $Z \to \ell_i^{\pm} \ell_j^{\mp}$ allow enough events in $e^+e^- \to \ell_i^{\pm} \ell_j^{\mp}$ even from future bounds, but if the four-fermion coupling is dominant $\mathcal{B}(\mu \to ee\bar{e}) < 10^{-12}$ already kills $e^+e^- \to e^{\pm}\mu^{\mp}$
- $\sigma(\gamma\gamma \to \ell_i^{\pm}\ell_j^{\mp})$ exceedingly small from constraints on $\ell_j \to \ell_i\gamma$
- GigaZ will improve the limits on the LFV Z decays but is insensitive to the four-fermion operators