

Advances towards a tracker based on APD sensors

<u>E. Vilella¹</u>, O. Alonso¹, J. Trenado², M. Vos³, A. Vilà¹, A. Montiel¹, R. Casanova¹, L. Garrido² and A. Diéguez¹

¹Systems Instrumentation and Communications (SIC) – Dept. of Electronics ²Dept. of Structure and Constituents of Matter University of Barcelona (UB), Barcelona, Spain ³IFIC – University of Valencia (UV), Valencia, Spain

evilella@el.ub.es

• SiLC timeline and current personnel responsible

O DEPFETs timeline and current personnel responsible

VI Jornadas Futuros Aceleradores Lineales Granada 16-17 May 2011

Department of Electronics Universitat de Barcelona

Outline

- \circ AMS R2 APDs Chip 2010
 - Readout electronics for low noise pixel detectors
 - 3 x 3 GAPD array
 - Results
- AMS R3 FLC_APD_v1 2011
 - Submitted chip and circuits
 - 1mm x 1mm GAPD array
- o Test beam preparation
- \circ Conclusions

AMS R2 - APDs Chip 2010 (1)

- Geiger mode Avalanche Photodiodes (GAPDs) 0
 - **Pros** •
 - High intrinsic gain \checkmark

- Accurate time response with possible single BX detection \checkmark
- Compatible with standard CMOS processes \checkmark
- Cons
 - × Afterpulses× Dark counts
 - \rightarrow Noise hits, indistinguishable from real events

 - Reduction of detector performance X
 - Increase of memory area to store the total hits X

It is mandatory to reduce noise hits! How? 0

- Using HV-AMS 0.35µm technology •
- Introducing readout electronics for low noise GAPD pixels ۲

Intrinsic noise sources

o Intrinsic noise sources

Afterpulses.

- Correlated pulses due to the random release of carriers that were trapped during a previous avalanche.
- \bullet Depends on the trap density and $I_{\text{diode}}.$

Dark counts.

- Spurious avalanches caused by thermal or tunnel carriers.
- \bullet Depends on the technology, the sensitive area, $V_{\rm OV}$ and T.

AMS R2 - APDs Chip 2010 (2)

GAPD & readout circuit

FF

CLK

CLK2

CLK2

V_{DD} CLK1

• We developed readout circuits for low noise GAPD pixels

- Monolithically integrated with the sensor
- Comprised of quenching transistor
 and 3 different readout circuits

 $V_{BD} + V_{OV}$

Vs

GNDA (2G) V_{ss} (LS & TL)

 V_{DD}

INH

RŠT

• Digital output

Vov

count

GNDA (2G)

VSS (LS, TL)

Vs 1

VI Jornadas Futuros Aceleradores Lineales Granada 16-17 May 2011

V_{bias}

→t

Gated operation

- Free running
 - The APD is always active.

o Gated operation

- The APD is active for short periods of time by using a triggering signal.
- Avoids afterpulsing
- Reduces dark count Good!
- Improves detector performance

AMS R2 - APDs Chip 2010 (3)

- It is possible to eliminate the afterpulsing probability by means of the gated operation.
 - Leaving long enough t 'off' periods of 300ns.

AMS R2 - APDs Chip 2010 (4)

- Dark counts are reduced by using low overvoltages and short t_{obs.}
- Reducing noise hits, the dynamic range is extended.

Dynamic range increased rom 9 to 14 bits

ICCUB

E. Vilella

Department

of Electronics

Universitat de Barcelona

Noise disparities in GAPD arrays

• Presence of dead pixels in GAPD arrays.

E. Vilella

C. Niclass et al., "Design and characterization of a CMOS 3-D image sensor based on single photon avalanche diodes", IEEE Journal of Solid-State Circuits, vol. 40, no. 9, 2005.

VI Jornadas Futuros Aceleradores Lineales Granada 16-17 May 2011

Department of Electronics Universitat de Barcelona

AMS R2 - APDs Chip 2010 (5)

- The gated operation is also effective in reducing pixel-to-pixel disparities in GAPD arrays.
 - 3 x 3 GAPD array with level-shifter sensing circuit.
 - Sequential reading by columns (CLK2 acts as a row selector).

Jornadas Futuros Aceleradores Lineale Granada 16-17 May 2011

of Electronics

Iniversitat de Barcelon

FLC_APD_v1 - AMS R3 (1)

o 10 x 43 GAPD array

- Total occupied area = $1025\mu m \times 1400\mu m$.
- **Pixel** comprised of GAPD, quenching transistor, sensing element (2-grounds scheme), storage element (latch) and pass-gate to allow sequential reading.
- GAPD mode of operation is gated acquisition.

VI Jornadas Futuros Aceleradores Lineales Granada 16-17 May 2011

Department

Electronics

Universitat de Barcelona

FLC_APD_v1 - AMS R3 (2)

Sequential reading by columns (CLK2 acts as a row selector). 0

VI Jornadas Futuros Aceleradores Lineales Granada 16-17 May 2011

Department of Electronics Universitat de Barcelona

Vilella

FLC_APD_v1 - AMS R3 (3)

- 1. 10 x 43 GAPD array
- 2. Test photodiode
- 3. Test pixel
- 4. Control signal generation circuit
- 5. Pad LVDS
- 6. Active inhibit pixel
- 7. Current mode pixel

8.1 x 5 GAPD array with PAD layer

VI Jornadas Futuros Aceleradores Lineales Granada 16-17 May 2011

Department of Electronics Universitat de Barcelona

FLC_APD_v1 - AMS R3 (4)

o GAPD array particle detection efficiency?

Test beam at **DESY** with 6GeV electrons (2011) ⁷ Distinguish detection between **neighbour pixels**

Next steps <

Test beam at CERN with 120GeV pions (2012) Distinguish detection in an specific region of the pixel

• Meanwhile working on the test set-up...

- Main worries \rightarrow Distortion in the particle path caused by test set-up materials
- Different ideas to reduce total material thickness
 - FLC_APD_v1 with thin silicon wafer of 250µm
 - No chip package & wire bond the chip directly to the PCB
 - PCB perforated under the chip
- Running simulations with **Geant4**
 - Software to simulate the passage of particles through matter

VI Jornadas Futuros Aceleradores Lineales Granada 16-17 May 2011

Department of Electronics Universitat de Barcelona

Test beam preparation (2)

• Geant4 studies

- Performed using 2 silicon wafers, 2 aluminum layers and 2 or 4 scintillators (test beam set-up)
- Sources \rightarrow electrons (6GeV) and pions (120GeV)

o Results so far

	Detector at 2cm	X-Mean (µm)	X-Sigma (µm)	Y-Mean (µm)	Y-Sigma (µm)	Peak (µm)	R-Sigma (µm)
electrons	T.B. with 2 Sc.	-0.0801	16.2	0.008922	16.2	13	12.48
	T.B. with 4 Sc.	0.1474	17.6	0.07584	17.68	13	13.34
pions	T.B. with 2 Sc.	0.008092	0.7767	0.001725	0.7814	0.7	0.5769
	T.B. with 4 Sc.	0.0001457	0.8606	0.003204	0.8625	0.8	0.6955
	Detector at 10cm	X-Mean (µm)	X-Sigma (µm)	Y-Mean (µm)	Y-Sigma (µm)	Peak (µm)	R-Sigma (µm)
electrons	T.B. with 2 Sc.	-0.2033	16.91	0.18	46.88	35	39.25
	T.B. with 4 Sc.	0.3413	50.18	-0.06107	50.39	37	41.75
pions	T.B. with 2 Sc.	0.004929	2.092	0.00374	2.1	1.8	1.614
	T.B. with 4 Sc.	0.000984	2.301	0.00865	2.308	1.9	1.749

• We need distortion lower than pixel width (20µm)!

- T.B. at DESY (electrons) \rightarrow distortion is ~16µm
- Complicated to characterize (further studies are needed)
- T.B. at CERN (pions) \rightarrow distortion is ~0.5µm
- To measure detector resolution and active regions we need 1-2µm precision

• Conclusions

- The gated acquisition is the best mode of operation for synchronized systems.
 - Avoids afterpulses and reduces dark count.
 - Eliminates dead pixels.
 - Uniformzes noise characteristics.
- We expect to receive the 1mm x 1mm GAPD array next August.
 - It will allow us to test if GAPD arrays with HV-AMS 0.35µm standard technology are efficient in particle detection.

Thank you for your attention

Questions and comments are welcome

