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Introduction: tensions in standard cosmology

I Modern cosmology based on a maximally symmetric spacetime (FLRW)
X Homogeneous: all regions of space look alike, no preferred positions
X Isotropic: no preferred directions
X Perfect-fluid assumptions

I The isotropy assumption is valid only on very large scales, i.e. on scales bigger
than galaxy clusters

I Recent cosmological observations have shown that the universe is currently
undergoing accelerated expansion

I Not conclusively known what caused this acceleration, the prevailing argument
being that dark energy caused it

I Among the most widely considered candidates of dark energy is the vacuum
energy of the cosmological constant Λ

I Some serious problems (tensions)
X Cosmological Constant Problem 1(vacuum catastrophe): measured energy density of

the vacuum over 120 orders of magnitude less than the theoretical prediction
• Worst prediction in the history of physics (and of science in general)
• Casts doubt on dark energy being a cosmological constant

X Cosmic Coincidence Problem 2: dark matter and dark energy densities have the same
order of magnitude at the present moment of cosmic history, while differing with many
orders of magnitude in the past and the predicted future

1Weinberg, S. Rev. Mod. Phys, 61 (1), 1 (1989)
2Velten, H. E. et al. Eur. Phys. J. C, 74 (11), 1 (2014)
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Tensions. . .
I Latest tensions vis-à-vis precise theoretical predictions and observational

measurements:
X H0 CMB vs local measurements, more than 3σ discrepancy

• Planck2018, ΛCDM model
H0 = 67.27± 0.60 km/s/Mpc

• Estimate using SNIa measurements (2016)

H0 = 73.24± 1.74 km/s/Mpc
• Parallax measurements of Milky Way Cepheids (2018)

H0 = 73.48± 1.66 km/s/Mpc

X S8 vs cosmic shear data, more than 2.5σ discrepancy between Planck data and local
measurements of

S8 = σ8

√
Ωm/0.3

where σ8 measures the amplitude of the linear power spectrum on the 8h−1Mpc scale
X ΩK , zero or not zero? ΛCDM assumes flat universe, but Planck temperature and

polarisation power spectra give an above 3σ deviation:

ΩK ≈ −0.044+0.018
−0.015

I Several alternatives proposed, such as:
X Interacting vacuum, Λ = Λ(t) ,G = G(t)
X Interacting dark matter and dark energy → non-gravitational interactions

I Of particular interest for us here are those anisotropic models filled with viscous
matter and with changing gravitational and cosmological ‘constants’ - G(t) and
Λ(t)
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Bianchi solutions
I Since the isotropy assumption is only an approximation on large scales, and not

something explained from first principles, there is the possibility that the spatially
homogeneous and anisotropic cosmological modes play a significant role in
explaining the evolution of the universe at its early stages when it was full of
anisotropies with a highly irregular mechanism that isotropized later

I In fact, there are several claims regarding some degree of anisotropy in the
observed universe that necessitates the consideration of a non-FLRW geometry

I Bianchi models to the rescue: homogenous but not [necessarily] isotropic
cosmological models - 9 possible cosmological solutions
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Evolving Λ and G solutions

I Dirac’s hypothesis 3 that the gravitational constant decreases with time has been
a matter of scrutiny for some time, but recent attempts to consider both Λ and
the universal gravitational constant G as dynamical quantities, and therefore not
as constants, has gained more attention due to the aforementioned
not-so-well-explained cosmic acceleration.

I Different forms of changing Λ and G assumptions exist in the literature, such as:

Λ =
α

a2
+ βH2 , G = G0aδ

X Constants α , β , δ etc to be determined from both theoretical and observational
considerations

3G ∝ 1
t ; physical constants depend on the age of the universe t.
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Viscous fluids
I One normally assumes the universe is filled with a perfect-fluid medium described

by a divergence-free total EMT:

Tµν = (ρ+ p)uµuν + pgµν , Tµν
;µ = 0

where ρ and p are the energy density and isotropic pressure of matter,
respectively, often related by the barotropic equation of state p = wρ

I Increased interest of late in viscous fluids for the many obvious reasons (dark
energy, dark matter, tensions. . . )

I Viscous effects are quite ubiquitous in ordinary hydrodynamics, cosmic fluids no
exception 4

I Two viscosity coefficients most commonly considered, corresponding to first-order
deviation from thermal equilibrium: the shear viscosity η and the bulk viscosity ξ

I Generalised EMT for imperfect fluids 5

Tµν = ρuµuν + (p − 3Hξ)(gµν + uµuν) + Σµν (1)

I Shear viscosity often omitted due to assumption of spatial isotropy of fluid

Σµν = −ησµν

4Brevik,I and Normann, B.D. Symmetry 12, 1085 (2020)
5Baumann, D., Nicolis, A., Senatore, L., and Zaldarriaga, M. JCAP, 07, 051 (2012)
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Bianchi-V viscous cosmology

I Here we consider the Bianchi type−V with spacetime metric of the form6

ds2 = dt2 − A2dx2 − e2mx [B2dy2 + C2dz2]

where m is constant
I We assume that the universe is filled by a viscous fluid whose distribution in

space is represented by the following energy momentum tensor:

Tµν = (ρ+ p̄)uµuν + p̄gµν−2ησµν , p̄ = p− (3ξ − 2η) H (2)

where η and ξ are coefficients of shear and bulk viscosity respectively, σij is the
shear and p̄ is the effective pressure

I Assume a linear equation of state

p = wρ , −1 ≤ w ≤ 1

I The shear tensor is given by

σµν =
(

uµ;λhλν + u̇ν;λhλµ
)
−

1
3
θhµν ,where hµν ≡ gµν + uµuν

6Tiwari, R.K., Alfedeel, A. H., Sofuoğlu, D., AA, Eltagani, I.H., & Shukla, B. H. Front. Astron. Space Sci. 9
965652 (2022)
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I The Einstein field equations with time-varying cosmological parameter Λ(t) in
geometrical units where c = 1 are given by 7

Rµν −
1
2

gµνR = −κGTµν + Λgµν (3)

I For the Bianchi-V metric, the EFEs in (3) for a viscous fluid distribution reduce
to the following set of pdes:

m2

A2 −
B̈
B
−

C̈
C
−

Ḃ
B

Ċ
C

+ 2η
Ȧ
A

= κG
[

p −
(
ξ −

2
3
η

)
θ

]
− Λ

m2

A2 −
Ä
A
−

C̈
C
−

Ȧ
A

Ċ
C

+ 2η
Ḃ
B

= κG
[

p −
(
ξ −

2
3
η

)
θ

]
− Λ

m2

A2 −
Ä
A
−

B̈
B
−

Ȧ
A

Ḃ
B

+ 2η
Ċ
C

= κG
[

p −
(
ξ −

2
3
η

)
θ

]
− Λ

−
3m2

A2 +
Ȧ
A

Ḃ
B

+
Ȧ
A

Ċ
C

+
Ḃ
B

Ċ
C

= κGρ+ Λ

Ḃ
B

+
Ċ
C
− 2

Ȧ
A

= 0

(4)

7But 8π ≡ κ in this work
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I The ∇µTµν = 0 equation leads to the fluid continuity equation:

κG
[
ρ̇+ (p + ρ)

(
Ȧ
A

+
Ḃ
B

+
Ċ
C

)]
+ κρĠ + Λ̇− 4κGησ2 = 0

I Split this into the following two equations (total matter content conserved):

ρ̇+ 3H [p + ρ− (3ξ − 2η)H]− 4ησ2 = 0
κρĠ + Λ̇ = 0

I Meanwhile, the EFEs can be written in terms of H, σ and q as

κGp − Λ = H2(2q − 1)− σ2 +
m2

A2

κGρ+ Λ = 3H2 − σ2 −
3m2

A2

with

a ≡ (ABC)1/3 , H ≡
ȧ
a

=
1
3

(
Ȧ
A

+
Ḃ
B

+
Ċ
C

)
, q ≡ −

aä
ȧ2

σ2 ≡
1
6

[(
Ȧ
A
−

Ḃ
B

)2

+
(

Ḃ
B
−

Ċ
C

)2

+
(

Ċ
C
−

Ȧ
A

)2
]

I The generalized Raychaudhuri equation reads:

Ḣ + 3H2 −
2m2

a2
− Λ +

κG
2

(p − ρ)− κG
(3ξ

2
− η
)

H = 0
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The background solutions

I To find the solution by introducing extra information in the form of initial
conditions and a constraint, we consider the following form of the Friedmann
Equation:

1 = Ωm + ΩΛ + Ωσ + Ωχ
where the density parameters are defined as:

Ωm ≡
κGρm

3H2 , ΩΛ ≡
κGρΛ
3H2 , Ωσ ≡

σ2

3H2 , Ωχ ≡
K2

H2a2

I The current values of these dimensionless density parameters are given in terms
of the current values of the quantities that describe them, as

Ωm0 =
κG0ρm0

3H2
0

, ΩΛ0 =
κG0ρΛ0

3H2
0

, Ωσ0 =
σ20
3H2

0
, Ωχ0 =

K2

H2
0a20

I We also define the following dimensionless parameters:

h ≡
H
H0

, a =
1

(1 + z)
, ξ = αH0(ρm/ρm0)n , η = βH

with α, β and 0 ≤ n ≤ 1
2 introduced as dimensionless constants
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I We assume the ansatz, in accordance with Dirac’s hypothesis

G(t) = G0aδ

I Here, δ = −1/60 is a constant obtained from observational constraints8 9

I The conservation equations in terms of the dimensionless density parameters:

h′ =
h

(1 + z)

[
3− 2Ωχ − 3ΩΛ −

3
2

(1− wm)Ωm

]
−

κG0
(1 + z)1+δ

[
3α
2

(
h2Ωm(1 + z)δ

Ωm0

)n

− βh
]

Ω′m = −
2h′

h
Ωm +

1
1 + z

(−δ + 3 + 3wm) Ωm

−
κG0

(1 + z)1+δ

[
3α
h

(
h2Ωm(1 + z)δ

Ωm0

)n

− 2β + 4βΩσ

]
Ω′Λ = −

2h′

h
ΩΛ−

δ

1 + z
Ωm

Ω′χ = −
2h′

h
Ωχ +

2Ωχ
1 + z

,

Ω′σ = −
2h′

h
Ωσ +

6Ωσ
1 + z

(5)
8Williams, J.G.; Turyshev, S.G.; Boggs, D.H. Int. J. Mod. Phys. D 2009, 18, 1129–1175
9Copi, C.J.; Davis, A.N.; Krauss, L.M. Phys. Rev. Lett. 2004, 92, 171301

10 / 32



11 / 32



12 / 32



13 / 32



More results for different values of n. . .
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Covariant Gauge-invariant Perturbations 10

I We define covariant and gauge-invariant gradient variables that describe
perturbations in the matter energy density, expansion and shear, as per the 1 + 3
covariant perturbation formalism:

Da ≡
a∇̃aρ

ρ
, Za ≡ a∇̃aΘ , Σa ≡ a∇̃aσ

I Generally believed that large-scale structure formation follows spherical clustering
I Take the spherically symmetric components of the gradient vectors by writing:

∆ ≡ a∇̃aDa , Z ≡ a∇̃aZa , Σ ≡ a∇̃aΣa

I Dimensionless quantities:

γ ≡
k2

H2
0
, Z ≡

Z
H0

, S ≡
Σ
H0

with wavenumber k ≡ 2πa
λ

, λ is the comoving wavelength of the perturbations

10AA, Alfedeel, A. H., Sofuoğlu, D., Eltagani, I.H., & Tiwari, R.K. Universe 9, 61 (2023)
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Evolution of the perturbations

Evolution of the matter perturbations:

∆′ +
3

(1 + z)

{
w−

κG0
Ωmh(1 + z)δ

[
α

(
h2Ωm(1 + z)δ

Ωm0

)n

−
2β
3

h
]
−

4βκG0
3(1 + z)δ

Ωσ
Ωm

+
4βΩσ
3Ωm

κG0
(1 + z)δ

[ αn
(

h2Ωm(1+z)δ
Ωm0

)n
− whΩm
κG0(1+z)−δ

(1+w)hΩm
κG0(1+z)−δ −

[
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
]]}∆

−
1

h(1 + z)

{
1 + w−

κG0
Ωmh(1 + z)δ

[
α

(
h2Ωm(1 + z)δ

Ωm0

)n

−
2β
3

h
]
−

4βκG0
3(1 + z)δ

Ωσ
Ωm

+
4βΩσ
3Ωm

κG0
h(1 + z)δ

[ α

(
h2Ωm(1+z)δ

Ωm0

)n
− 4β

3 h

(1+w)hΩm
κG0(1+z)−δ −

[
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
]]}Z

−
8βκG0

3h(1 + z)δ+1

√
3Ωσ
Ωm

S = 0 (6)
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Evolution of the perturbations. . .

Evolution of the perturbations in the expansion:

Z′ −
1

(1 + z) h

{
2h−

3
2

κG0

(1 + z)δ

[
α

(
h2Ωm(1 + z)δ

Ωm0

)n

−
4β
3

h
]

−
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 4β

3 h

(1+w)h2Ωm
κG0(1+z)−δ

− h
[
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
] [−hh′(1 + z) +

2
3

h2Ωχ −
γ

3
(1 + z)2

]]}
Z

+
3

(1 + z)

[
Ωmh
2

(1 + 3w)−
3
2
αnκG0

(1 + z)δ

(
h2Ωm(1 + z)δ

Ωm0

)n

+
αn
(

h2Ωm(1+z)δ
Ωm0

)n
− whΩm
κG0(1+z)−δ

(1+w)h2Ωm
κG0(1+z)−δ

− h
{
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
} [−hh′(1 + z) +

2
3

h2Ωχ −
γ

3
(1 + z)2

]]
∆

−
4
√

Ωσ
(1 + z)

S = 0 (7)
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Evolution of the perturbations. . .

Evolution of the shear perturbations 11:

S′ −
3

(1 + z)
S −

√
3Ωσ

(1 + z)

1 +
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 4β

3 h

(1+w)hΩm
κG0(1+z)−δ −

[
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
]
Z

−
3h
√
3Ωσ

(1 + z)

 αn
(

h2Ωm(1+z)δ
Ωm0

)n
− whΩm
κG0(1+z)−δ

(1+w)hΩm
κG0(1+z)−δ −

[
α

(
h2Ωm(1+z)δ

Ωm0

)n
− 2β

3 h
]
∆ = 0 (8)

11From here onwards, we will set κG0 = 1 for simplicity
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Solutions of the matter perturbations
I Fix the background expansion history
I Set initial conditions at some redshift zin, solve the system of perturbation

equations for ∆(z) and compare it with that of standard GR/ΛCDM

∆(zin) = 10−5 , Z(zin) = 10−5 , Σ(zin) = 10−5

I Let’s first define the normalized matter density contrast

δ(z) ≡
∆(z)

∆(zin)
(9)

with zin = 20 in both GR/ΛCDM and our current models
I We have also used the following dimensionless viscosity parameters:
α = 0.312, β = 1, n = 0.2, as well as the current values from PLANCK2018:

Ωm0 = 0.3111 , ΩΛ0 = 0.6889 , Ωχ0 = −0.0007 , Ωσ0 = 1−Ωm0−ΩΛ0−Ωχ0

I The following are some of the highlights of our observations:
X Increasing α decreases the late-time perturbation amplitude in the short-wavelength

regime, but this effect is reversed for z & 0.65
X Increasing α increases the perturbation amplitude in the long-wavelength regime
X Increasing β increases the perturbation amplitudes in both the short- and

long-wavelength regimes
X Increasing n increases the perturbation amplitudes in both the short- and

long-wavelength regimes
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Growth of matter density perturbations δ(z) vs z for ΛCDM and GR without Λ (Ωm = 1, ΩΛ = 0)
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Growth of matter density perturbations δ(z) vs z for the Bianchi type-V model for non-viscous
(α = 0 = β) fluid, but with changing G and Λ
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Growth of matter density perturbations δ(z) vs z for the viscous Bianchi type-V cosmological
model in long-wavelength regimes
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Growth of matter density perturbations δ(z) vs z for the viscous Bianchi type-V cosmological
mode in short-wavelength regimes
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Growth of matter density perturbations δ(z) vs z for the viscous Bianchi type-V cosmological
model for varying values of α
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Growth of matter density perturbations δ(z) vs z for the viscous Bianchi type-V cosmological
model for varying values of β
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The variation of the matter density perturbations δ(z) for a viscous Bianchi type-V cosmological
model vs. redshift for γ = 50, α = 0.3, β = 1 and different values of n.
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Summary
I The Bianchi type−V cosmological model in the presence of shear η and bulk ξ

viscosities in the cosmic fluids for time-varying G and Λ
X Describes a universe that starts off with some anisotropic universe in the past, and

isotropic at late times, possibly indistinguishable from the FLRW universe.
X Also describes a universe that starts off with a negative cosmological term, dominated

by non-relativistic matter and decelerated, that eventually becomes dark
energy-dominated and hence expanding with acceleration, in concordance with current
observations

I Introducing viscosity to the cosmic fluid not only affects the background
expansion history, but also the rate at which structures grow
X Demonstrated this by first looking at the rate of structure growth in pure GR with and

without the cosmological constant (and assuming a gravitational constant G)
X The amplitudes’ comparison shows structure growth in ΛCDM is slower compared to

pure GR, as structures have less time to coalesce and grow in an accelerated background
X More structures can be expected in a Bianchi-V universe with evolving Λ and G

compared to both ΛCDM and pure GR cases
X Introduced the viscosity, and showed that structures grow even faster in this case,

perhaps even suggesting nonlinear effects in the perturbations
I Our results suggest that the longer the wavelength, the larger the perturbation

amplitudes, ceteris paribus
I In the short-wavelength regime, the perturbation amplitudes peak at about the

same redshift that the fractional background matter density peaked
X Not observed in the long-wavelength regime, and this may be because the

wavelength-dependent contributions to the perturbations are negligible compared to the
other terms in the equation

I Future directions: putting more stringent constraints on the values of the defining
parameters of the model, with more rigorous data and statistical analysis – using
existing and upcoming cosmological data– including large-scale structure data
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