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Introduction and Motivation
Dark matter

Rotation curve of spiral galaxy Messier 33

(Credit: NASA/CXC/K.Divona)

• CMB and Type Ia determine 
the ΩDM

• Galaxy rotation curve
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Introduction and Motivation
Dark matter models
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• WIMP; ULDM; …


• Most evidence are from gravitational effects, leaving the nature of DM unclear.


• Small-scale behavior?



Introduction and Motivation
Structure formation

Springel et al., Virgo Consortium (simulation)The 2dF Galaxy Redshift Survey

Andrey Kravtsov, Anatoly Klypin, National Center for Supercomputer Applications (NCSA)
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Introduction and Motivation
CDM crisis
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• CDM meets challenges in recent observations. e.g. small-scale curiosities.Λ

‣ Missing satellites (or “Too big to 
fail” problem)

‣ Cusp-core problem (NFW v.s. core)

• CDM: cosmological standard modelΛ

S.-H. Oh et al. 1011.2777 J. S. Bullock1 and M. Boylan-Kolchin 1707.04256



Introduction and Motivation
ULDM

• Ultra-light DM: small mass, wave nature, 
condensate structure


• Axion models (and ALPs) can produce 
FDM.


• Fuzzy DM (FDM): quantum pressure v.s. 
gravitational attraction.


• Differ from CDM at small scales.
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Introduction and Motivation
Small-scale suppression

• CDM: a perfect fluid with   
and sound speed .


• FDM:  and the effective 

sound speed .


• Small-scale suppression

w ≈ 0
cs ≈ 0

⟨w⟩ ≈ 0

⟨c2
s ⟩eff ≃

k2

4a2m2

k2

4a2m2 + 1
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Introduction and Motivation
Addressing small-scale challenges

‣ Cusp-core: 


BE condensate (soliton solution). DM 
halo density profile is changed to





with a central core instead of a cusp.

ρhalo ≃ { ρc r < rc
ρNFW r > rc

,

• Small-scale suppression (wave nature) ⇒
‣ Missing satellite: 


A suppression of FDM halo formation, 
giving a bound





a large suppression of small halos with 
.

Mlin = 4 × 1010M ( m
10−22eV )

3

( Ωmh2

0.14 )
M < Mlin

• FDM with m ∼ 10−22 eV
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Introduction and Motivation
Closing window on FDM

• Mass “tension” of FDM 
between missing satellite 
solution and Lyα
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J. Flitter, E. D. Kovetz 2207.05083

T. Kobayashi et al. 1708.00015



Introduction and Motivation
Closing window on FDM
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V. Iršič et al. 1703.04683

‣ Flux power spectrum from Lyα 
measurement (z ≈ 3 ∼ 5.4)

• CDM preferred than FDM (  eV)？10−22 • FDM (  eV) preferred than CDM?


‣ Missing satellite problem: THINGS (The 
HI Nearby Galaxy Survey). 


‣ Cusp-core problem: MW and the Local 
group.


‣ .

10−22

z ≈ 0



Redshift dependence?

Introduction and Motivation



Introduction and Motivation
A Delayed suppression?

• An example to delay the suppression.• Suppression period for FDM.
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⇒

k
k J

k 1

k 2

suppression

aa eq J (k 2)a J (k 1)a

k

suppression

a

k J

k 1



Ultra-Light Dark Matter



ULDM
Axions serving as DM

• The action for FDM





• Axion during Inflation: 


PQ symmetry broken during inflation (if ), giving an initial misalignment angle for our 
patch, so 





• Background evolution after inflation


S = SEH + Sϕ = ∫ d4x −g [ R
16πG

+
1
2

gμν∂μϕ∂νϕ −
1
2

m2ϕ2] ,

fa ≳ HI /2π

⟨ϕ2
i ⟩ = f2

aθ2
i + ⟨δϕ2⟩ ,

··ϕ0 + (3H + Γ) ·ϕ0 + m2
aϕ0 = 0 .
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ULDM
Axions serving as DM

• When , 


‣  background rolls down very slowly . 


‣ , like DE.


• When , 


‣ axion background begins oscillating.


• Some time after oscillation begins, , 


‣ , as DM (fuzzy).

H ≫ ma

ϕ0
·ϕ0 ≃ −

m2
a

3H
ϕ0

wa ≃ − 1

H ≈ ma

H ≪ ma

ρa ∼ a−3

David J. E. Marsh 1510.07633
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ULDM
Structure growth
• From 1st PT of , e.o.m for fluids





, , , gauge-dependent , and . 


• For axions 


‣  originated from inflation  all to isocurvature perturbations;


‣ The adiabatic mode  initially; can grow (from  during RD) only when .

∇μTμν = 0
·δ + 3H(c2

s,g − w)δ = − (1 + w)(θ + ·h/2) ,

·θ + [
·w

1 + w
+ (2 − 3w)H] θ =

k2

a2 ( c2
s,g

1 + w
δ + Φ) ,

δ ≡ δρ/ρ θ ≡ −
k2

a2

δq
p + ρ

w ≡ p/ρ c2
s,g ≡

δp
δρ

·h/2 = − 3 ·Ψ + k2(B/a − ·E)

δa

δϕ ⇒

δa = 0 δr wa ≠ − 1

17



ULDM
Structure growth

• For FDM (axions after ), antasz by WKB 


 ,


• , so we can average over the oscillations , and


 , 


in axion comoving gauge that .

tosc

ϕ(t) = a(t)−3/2(ϕ0 cos(mt + φ))

H ≪ ma ⟨ρa⟩ ∼ a−3

c2
s,eff = ⟨δp

δρ ⟩ =
k2

4m2a2

1 + k2

4m2a2

≃
k2

4m2a2
 when k < 2am

1  when k > 2am

⟨δq⟩ = 0
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ULDM
Structure growth
• To linear order, e.o.m of axion overdensities during MD (after )





,


defining a Jeans scale . 


‣ For , gravitational term  dominates, same as CDM.   (growing mode);


‣ For , sound speed term  dominates, showing the wave nature.  . 

tosc

··δa + 2H ·δa + (k2

a2
c2

s,g − 4πGρa)δa = 0 ,

k2

a2
c2

s,g ≃
k2

a2

k2

4a2m2
  v.s.  4πGρa ∝ a−3

kJ = 66.5 ( Ωah2

0.12 )
1/4

a1/4 ( ma

10−22eV )
1/2

Mpc−1

k < kJ 4πGρa → δa ∼ a

k > kJ k2c2
s,g/a2 → |δa | ∼ a0
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ULDM
Structure growth

• Overdensity evolution of FDM with  
( ) compared to standard CDM. 


• Structure is suppressed for . 
(or .)

ma = 10−22eV
Ωa/Ωd = 1

k > kJ(a) = 66.5a1/4Mpc−1

kJ(a = a0) ≃ maH0 = 105.5H0

20

k/H0=10-5*105.5
k/H0=0.1*105.5
k/H0=0.5*105.5

10010-110-210-310-410-510-610-7

105

1

10-5

10-10

10-15

a/a0

δ a

a(ma=3H) aeq

• Scale comparison for k-modes. (  
during MD.)


• Suppression is integrated when  
(earlier time).

kJ ∝ a1/4

k > kJ(a)

k
k J

k 1

k 2

suppression

aa eq J (k 2)a J (k 1)a



ULDM
Structure growth

• Late time z-dependence is often ignored in FDM 
study.  


• By numerical method, there is an approximation of 
, ( ).


• The half-mode is .

T2
FDM = cos(x3

J (k))/(1 + x8
J (k)) xJ = 1.61k/(9Mpc−1)

k1/2 ≈ 5.1 ( ma

10−22eV )
4/9

Mpc−1

k/H0=10-5*105.5

k/H0=0.1*105.5

k/H0=0.5*105.5

1101102103104105106107 0

1

10-2

10-4

10-6

10-8

10-10

10-12

z

T F
D
M

2

  for FDM with  eV.T2
FDM(k, z) ma = 10−22

• Transfer function defined from the suppression of linear matter power spectrum


PFDM(k, z) = T2
FDM(k, z)PΛCDM(k, z)
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ULDM
Structure growth
• The linear suppression at small scale is accumulated when  (or when the “quantum 

pressure” term dominates: ). 


• The observation prefers CDM at high z but FDM at low z, expecting new ULDM model: 
modified sound speed (or )  an earlier structure grow (a delayed suppression)

k > kJ
k2c2

s,g/a2 ≫ 4πGρa

kJ →

22

⇒

k
k J

k 1

k 2

suppression

aa eq J (k 2)a J (k 1)a

k

suppression

a

k J

k 1



ULDM with Non-Canonical Kinetics



ULDM with Non-Canonical Kinetics
Modified  from Theorycs

• For canonical scalar field,  defined from Mukhanov-Sasaki variables  should be 1 
(gauge-invariant);


•  is gauge-dependent (discussed in comoving gauge or synchronous gauge).

c2
s ν = zζ

c2
s,g ≡ δp/δρ

24

• Example of non-canonical scalar: k-essence


 ,  ,


has equation of state , and non-trivial sound speed 


 .

ℒ = V(ϕ)F(X) X = (∂ϕ)2/2

w = F/(2XFX − F)

c2
s =

∂X p
∂Xρ

=
FX

FX + 2XFXX



ULDM with Non-Canonical Kinetics
Modified  from DBIcs

• As an example to change , we use DBI theory to construct DM with modified  (by )


 ,


where . So


with sound speed 


.

kJ cs f(ϕ)

S = ∫ d4x −g[f(ϕ)−1(1 − 1 − 2f(ϕ)X) −
1
2

m2ϕ2]
X = − gμν ∇μϕ∇νϕ/2

c2
s =

∂X p
∂Xρ

= 1 − f(ϕ) ·ϕ2

25

 

ρ =
1
cs

1
cs + 1

·ϕ2 +
1
2

m2ϕ2 ,

p =
1

cs + 1
·ϕ2 −

1
2

m2ϕ2 ,



ULDM with Non-Canonical Kinetics
DM-like DBI

• Trivial case (canonical scalar): , so . 


‣ Background evolution determined by  v.s. , like in axion model.


‣ After , , the structure formation is like FDM.


• Small  case (“relativistic limit”): . 


‣ , and the kinetic term  dominates .


‣ , so the structure formation can be similar to CDM.

f(ϕ) = 0 cs = 1

H m

tosc c2
s,g =

k2

4m2a2 /(1 +
k2

4m2a2 )
cs c−1

s = (1 − f ·ϕ2)−1/2 ≫ 1

w = p/ρ ≃ cs → 0 1
cs

1
cs + 1

·ϕ2 ρ

c2
s,g = c2

s
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ULDM with Non-Canonical Kinetics
Our k-ULDM: example 1 (“Phase transition” case)

• Solving e.o.m of DBI scalar


 ,


‣ Before , we have . The oscillation is 
switched off by .


‣ After , as long as the small enough  keep 
 when the oscillation resumes, 


the CDM-like field   FDM-like afterwards.

··ϕ + 3Hc2
s

·ϕ + c3
s V′￼(ϕ) +

f′￼(ϕ)
2f(ϕ) (1 −

2c2
s

1 + cs ) ·ϕ2 = 0

tc cs ≪ 1
f(ϕ)

tc f(ϕ)
f(ϕ) ·ϕ2 ≪ 1

ϕ ⇒

27

;  is the time today.ϕi = ϕ(ti) t0

f(ϕ) =

1
(m /H0)2

ϕ−2(ϕ/ϕi)−8/3 for ti < t < teq ,

( 4m
3H0 )

−3/2

(teq/t0)1/2ϕ−2(ϕ/ϕi)−2 for teq < t < tc ,

0 for t > tc ,

10010-110-210-310-410-510-610-7
a

1

10-5

ϕ/ϕi

a(m=3H) aeq ac



ULDM with Non-Canonical Kinetics
Our k-ULDM: example 1 (“Phase transition” case)

• . CDM-like (blue lines) transit to FDM-like (yellow lines) at .


• . Late time suppression by switching to FDM-like phase. 


• (Discontinuity from the inconsistency by our treatment of  at  (sudden transition from RD to MD).)

ρ ∝ a−3 tc

cs ≪ 1 ⇒ cs = 1

H(t) teq

28

10010-110-210-310-410-510-610-7
a

1

10-5

10-10

10-15

ρ/(ϕi2m2/2)

a(m=3H) aeq ac

(H/m)2

10010-110-210-310-410-510-610-7
a

1

10-5

10-10

10-15

10-20

cs

a(m=3H) aeq ac



ULDM with Non-Canonical Kinetics
Our k-ULDM: example 1 (“Phase transition” case)
• The modified sound speed then writes

c2
s,g =

1 t < tosc

∼ (t/to)−4 tosc < t < tc
k2

4a2m2

1 + k2

4a2m2

t > tc

.
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10-5 0.001 0.100
a

10-17

10-7

1000

1013

1023

m=3H aeq ac

gr
qp

k /H0 = 3 × 104.5

• A comparison of gravitational term 
and sound speed term when 
taking  and .


•          
(  eV FDM)

m = 10−24eV a(tc) = 0.1

k = 0.1 × 105.5H0 ∼ 6 Mpc−1∼
k1/2 10−22

• Structure formation is determined by the competition. For example

10-5 0.001 0.100
a

10-13

0.001

107

1017

1027

m=3H aeq ac

gr
qp

k /H0 = 1 × 104.5



ULDM with Non-Canonical Kinetics
Our k-ULDM: example 1 (“Phase transition” case)

• To interpret cusp-core (missing satellite) & 
Ly  at the same time: 


‣  at ;


‣  at  (Ly ).


• The k-ULDM in “Phase transition” case can 
alleviate the Ly  problem, 


compared to a z-indpendent  at late time 
(in FDM).

α

T2(k = 4.5 Mpc−1) ∼ 0.5 z = 0

T2(k = 20h Mpc−1) > 0.7 z ≈ 2 ∼ 6 α

α

T2

30

 and .m = 10−24eV a(tc) = 0.1

k/H0=0.1*105.5

k/H0=0.14*105.5

k/H0=0.3*105.5

1101102103 0

1

0.1

10-2

10-3

10-4

z

T k
-D
M

2

zc



ULDM with Non-Canonical Kinetics
Our k-ULDM: example 2 (“Chaplygin-like” case)

• . . DM-like. 


 (during MD).


• We get an increasing , without 
a hand-set .  for 

 .


• Late time suppression by 
increasing .

ρ ∝ a−3 |p | ≪ ρ

p ∝ ρ2/3

cs
tc cs = cs,i(a/ai)

t > ti

cs

31

;  here.ϕi = ϕ(ti) tc > t0

f(ϕ) =
(1 − c2

s,i(ϕ/ϕi)2) (2tiϕ−1
i (ϕ/ϕi))2 for ti < t < teq during RD

(1 − c2
s,eq(ϕ/ϕeq)4) (3teqϕ−1

eq (ϕ/ϕeq)2)
2

for teq < t < tc during MD
,

10010-110-210-310-4
a

1

10-3

10-6

10-9

10-12

ρ/ρi

aeq

cs

(H/m)2

10010-110-210-3
a

1

10-2

10-4

10-6

10-8
aeq

• Then (taking  and )cs,i = cs(ai = 6.5 × 10−5) = 1.09 × 10−8 m/H0 = 29.0



ULDM with Non-Canonical Kinetics
Our k-ULDM: example 2 (“Chaplygin-like” case)

32

• A comparison of gravitational 
term and sound speed term when 
taking 

 
and  .


• . Late time 
suppression.


• The mass of  should be light 
enough to guarantee the large 
enough  at late time.

cs,i = cs(ai = 6.5 × 10−5) = 1.09 × 10−8

m/H0 = 29.0

cs,g = cs = cs,i(a/ai)

ϕ

k2

a2
c2

s,g

10-4 0.001 0.010 0.100 1
a

1

1000

106

109

1012

aeq

gr
qp

10010-110-210-310-410-510-610-7

105

1

10-5

10-10

a
δ k

aeq

k /H0 = 1 × 104.5

10-4 0.001 0.010 0.100 1
a

1000

107

1011

aeq

gr
qp

10010-110-210-310-410-510-610-7

105

1

10-5

10-10

a

δ k

aeq

k /H0 = 3 × 104.5



ULDM with Non-Canonical Kinetics
Our k-ULDM: example 2 (“Chaplygin-like” case)

33

, cs,i = cs(ai = 6.5 × 10−5) = 1.09 × 10−8 m/H0 = 29.0

• To interpret cusp-core (missing 
satellite) & Ly  at the same time: 


‣  at ;


‣  at  
(Ly ).


• Such k-ULDM can truly reopen the 
window of ULDM constrained by Ly .


α

T2(k = 4.5 Mpc−1) ∼ 0.5 z = 0

T2(k = 20h Mpc−1) > 0.7 z ≈ 2 ∼ 6
α

α1101102103 0

1

0.1

10-2

10-3

10-4

z

T k
-D
M

2

k/H0=0.1*105.5

k/H0=0.3*105.5

k/H0=0.5*105.5

k/H0=10*105.5



Summary

• We have reviewed the small-scale challenges of CDM model. Then we reviewed how 
the wave nature can hopefully solve the problems in CDM models. 


• However, the preferred FDM mass solving CDM crisis are seemingly disfavored by 
recent observations. This is the motivation of our work.  


• We noticed that the problem comes from observations at different redshift, and came 
to the thought that the small-scale suppression for FDM may be delayed. 


• We found that, ULDM with non-canonical kinetic with modified sound speed can 
hopefully serve as the expected model. 


• We found that examples of DM constructed from DBI theory can alleviate or even solve 
the constraint.

Λ



Thank you!


