

Ultra-Light Dark Matter with Non-Canonical Kinetics

September 11, 2023

Based on the work with Yi-Fu Cai, Elisa G. M. Ferreira et al. arXiv: Coming very soon

Lu Shiyun

Introduction and Motivation

Introduction and Motivation **Dark matter**

• CMB and Type Ia determine the Ω_{DM}

(Credit: NASA/CXC/K.Divona)

Galaxy rotation curve

Rotation curve of spiral galaxy Messier 33

Introduction and Motivation **Dark matter models**

- WIMP; ULDM; ...
- Small-scale behavior?

Most evidence are from gravitational effects, leaving the nature of DM unclear.

Introduction and Motivation Structure formation

Andrey Kravtsov, Anatoly Klypin, National Center for Supercomputer Applications (NCSA)

The 2dF Galaxy Redshift Survey

Springel et al., Virgo Consortium (simulation)

Introduction and Motivation **CDM crisis**

- Λ CDM: cosmological standard model
- Λ CDM meets challenges in recent observations. e.g. small-scale curiosities.
 - Cusp-core problem (NFW v.s. core)

Missing satellites (or "Too big to fail" problem)

Introduction and Motivation

 Ultra-light DM: small mass, wave nature, condensate structure

- Axion models (and ALPs) can produce FDM.
- Fuzzy DM (FDM): quantum pressure v.s. gravitational attraction.
- Differ from CDM at small scales.

Introduction and Motivation **Small-scale suppression**

CDM WDM $\sim 10 \, \mathrm{keV}$ 10^{2}

- CDM: a perfect fluid with $w \approx 0$ and sound speed $c_s \approx 0$.
- FDM: $\langle w \rangle \approx 0$ and the effective sound speed $\langle c_s^2 \rangle_{\text{eff}} \simeq \frac{4a^2 m^2}{k^2}$

Small-scale suppression

Introduction and Motivation Addressing small-scale challenges

- Small-scale suppression (wave nature) \Rightarrow
 - Cusp-core:

BE condensate (soliton solution). DM halo density profile is changed to

$$\rho_{\text{halo}} \simeq \begin{cases} \rho_c & r < r_c \\ \rho_{\text{NFW}} & r > r_c \end{cases}$$

with a central core instead of a cusp.

• FDM with $m \sim 10^{-22} \text{ eV}$

Missing satellite:

A suppression of FDM halo formation, giving a bound

$$M_{\rm lin} = 4 \times 10^{10} M_{\odot} \left(\frac{m}{10^{-22} {\rm eV}}\right)^3 \left(\frac{\Omega_m h^2}{0.14}\right)$$

a large suppression of small halos with $M < M_{\text{lin}}$

Introduction and Motivation

J. Flitter, E. D. Kovetz 2207.05083

between missing satellite solution and Ly α

Introduction and Motivation **Closing window on FDM**

Flux power spectrum from Lya measurement ($z \approx 3 \sim 5.4$)

• CDM preferred than FDM (10^{-22} eV)? • FDM (10^{-22} eV) preferred than CDM?

- Missing satellite problem: THINGS (The HI Nearby Galaxy Survey).
- Cusp-core problem: MW and the Local group.
- $z \approx 0$.

Introduction and Motivation

Redshift dependence?

Introduction and Motivation A Delayed suppression?

• An example to delay the suppression.

 \Rightarrow

Ultra-Light Dark Matter

ULDM Axions serving as DM

• The action for FDM

$$S = S_{EH} + S_{\phi} = \int d^4 x \sqrt{-g} \left[\frac{R}{16\pi G} + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \frac{1}{2} m^2 \phi^2 \right]$$

• Axion during Inflation:

PQ symmetry broken during inflation (if $f_a \gtrsim H_I/2\pi$), giving an initial misalignment angle for our patch, so

$$\langle \phi_i^2 \rangle =$$

Background evolution after inflation

$$\ddot{\phi}_0 + (3H +$$

 $= f_a^2 \theta_i^2 + \langle \delta \phi^2 \rangle ,$

 $\Gamma)\dot{\phi}_0 + m_a^2\phi_0 = 0 \ .$

ULDM Axions serving as DM

When $H \gg m_a$,

- ϕ_0 background rolls down very slowly $\dot{\phi}_0 \simeq -\frac{m_a^2}{3H}\phi_0$.
- $w_a \simeq -1$, like DE.

When $H \approx m_a$,

axion background begins oscillating.

• Some time after oscillation begins, $H \ll m_a$,

•
$$\rho_a \sim a^{-3}$$
, as DM (fuzzy).

• From 1st PT of $\nabla_{\mu}T^{\mu\nu} = 0$, e.o.m for fluids

 $\begin{cases} \dot{\delta} + 3H(c_{s,g}^2 - w)\delta = \\ \dot{\theta} + \left[\frac{\dot{w}}{1 + w} + (2 - 3)\right] \end{cases}$

 $\delta \equiv \delta \rho / \rho, \theta \equiv -\frac{k^2}{a^2} \frac{\delta q}{p+\rho}, w \equiv p / \rho, \text{ gauge-definition}$

- For axions δ_a
 - $\delta\phi$ originated from inflation \Rightarrow all to isocurvature perturbations;

$$= -(1+w)(\theta + \dot{h}/2) ,$$

$$3w)H \bigg] \theta = \frac{k^2}{a^2} \bigg(\frac{c_{s,g}^2}{1+w} \delta + \Phi \bigg) ,$$
ependent $c_{s,g}^2 \equiv \frac{\delta p}{\delta \rho}$, and $\dot{h}/2 = -3\dot{\Psi} + k^2(B/a - \dot{E})$.

• The adiabatic mode $\delta_a = 0$ initially; can grow (from δ_r during RD) only when $w_a \neq -1$.

- For FDM (axions after t_{osc}), antasz by WKB $\phi(t) = a(t)^{-3/2}$
- $H \ll m_a$, so we can average over the os

$$c_{s,\text{eff}}^2 = \left\langle \frac{\delta p}{\delta \rho} \right\rangle = \frac{\frac{k^2}{4m^2 a^2}}{1 + \frac{k^2}{4m^2 a^2}} \simeq \begin{cases} \frac{k^2}{4m^2 a^2} \\ 1 \end{cases}$$

in axion comoving gauge that $\langle \delta q \rangle = 0$.

$$^{/2}(\phi_0\cos(mt+\varphi))$$
,

scillations
$$\langle \rho_a \rangle \sim a^{-3}$$
, and

when k < 2amwhen k > 2am

To linear order, e.o.m of axion overdensities during MD (after t_{osc})

$$\begin{split} \ddot{\delta}_{a} + 2H\dot{\delta}_{a} + \underbrace{\left(\frac{k^{2}}{a^{2}}c_{s,g}^{2} - 4\pi G\rho_{a}\right)}_{k^{2}} \delta_{a} &= 0 \\ \frac{k^{2}}{a^{2}}c_{s,g}^{2} &\simeq \frac{k^{2}}{a^{2}}\frac{k^{2}}{4a^{2}m^{2}} \stackrel{\downarrow}{\text{v.s.}} 4\pi G\rho_{a} \propto a^{-3} , \end{split}$$

defining a Jeans scale $k_J = 66.5 \left(\frac{\Omega_a h^2}{0.12}\right)^{1/4} a^{1/4}$

$$^{\prime 4} \left(\frac{m_a}{10^{-22} \text{eV}} \right)^{1/2} \text{Mpc}^{-1}.$$

• For $k < k_J$, gravitational term $4\pi G\rho_a$ dominates, same as CDM. $\rightarrow \delta_a \sim a$ (growing mode);

• For $k > k_J$, sound speed term $k^2 c_{s,g}^2 / a^2$ dominates, showing the wave nature. $\rightarrow |\delta_a| \sim a^0$.

- Overdensity evolution of FDM with $m_a = 10^{-22} \text{eV}$ $(\Omega_a/\Omega_d = 1)$ compared to standard CDM.
- Structure is suppressed for $k > k_I(a) = 66.5a^{1/4} Mpc^{-1}$. (or $k_J(a = a_0) \simeq \sqrt{m_a H_0} = 10^{5.5} H_0$.)
 - Suppression is integrated when $k > k_I(a)$ (earlier time).

Transfer function defined from the suppression of linear matter power spectrum

 $P_{\rm FDM}(k,z) = T_{\rm FDM}^2(k,z)P_{\Lambda \rm CDM}(k,z)$

Late time z-dependence is often ignored in FDM study.

• By numerical method, there is an approximation of $T_{\rm FDM}^{2} = \cos(x_{I}^{3}(k))/(1 + x_{I}^{8}(k)), (x_{I} = 1.61k/(9 \,{\rm Mpc}^{-1})).$

The half-mode is
$$k_{1/2} \approx 5.1 \left(\frac{m_a}{10^{-22} {\rm eV}} \right)^{4/9} {\rm Mpc}^{-1}.$$

- The linear suppression at small scale is accumulated when $k > k_J$ (or when the "quantum pressure" term dominates: $k^2 c_{s,g}^2 / a^2 \gg 4\pi G \rho_a$).
- The observation prefers CDM at high z but FDM at low z, expecting new ULDM model: modified sound speed (or k_J) \rightarrow an earlier structure grow (a delayed suppression)

 \Rightarrow

ULDM with Non-Canonical Kinetics

ULDM with Non-Canonical Kinetics Modified c_s from Theory

- For canonical scalar field, c_s^2 defined from Mukhanov-Sasaki variables $\nu = z\zeta$ should be 1 (gauge-invariant);
- $c_{s,\varrho}^2 \equiv \delta p / \delta \rho$ is gauge-dependent (discussed in comoving gauge or synchronous gauge).
- Example of non-canonical scalar: k-essence

$$\mathscr{L} = V(\phi)F(X)$$
, $X = (\partial\phi)^2/2$,

has equation of state $w = F/(2XF_X - F)$, and non-trivial sound speed

$$c_s^2 = \frac{\partial_x p}{\partial_x \rho} = \frac{F_x}{F_x + 2XF_{xx}}$$

ULDM with Non-Canonical Kinetics Modified c_s from DBI

• As an example to change k_I , we use DBI theory to construct DM with modified c_s (by $f(\phi)$)

$$S = \int d^4x \sqrt{-g} \left[f(\phi)^{-1} (1 - \sqrt{1 - 2f(\phi)X}) - \frac{1}{2}m^2\phi^2 \right] ,$$

where $X = -g^{\mu\nu} \nabla_{\mu} \phi \nabla_{\nu} \phi/2$. So $\rho = \frac{1}{c_s c_s}$ $p = \frac{1}{c_s + 1}$

with sound speed

S 0

$$\frac{1}{s+1}\dot{\phi}^2 + \frac{1}{2}m^2\phi^2$$
$$-\frac{1}{2}\dot{\phi}^2 - \frac{1}{2}m^2\phi^2,$$

$$\frac{p}{x\rho} = 1 - f(\phi)\dot{\phi}^2$$

ULDM with Non-Canonical Kinetics DM-like DBI

- Trivial case (canonical scalar): $f(\phi) = 0$, so $c_s = 1$.
 - Background evolution determined by H v.s. m, like in axion model.

• After
$$t_{\text{osc}}$$
, $c_{s,g}^2 = \frac{k^2}{4m^2a^2} \left/ \left(1 + \frac{k^2}{4m^2a^2} \right) \right|$

• Small c_s case ("relativistic limit"): $c_s^{-1} = (1$

• $w = p/\rho \simeq c_s \rightarrow 0$, and the kinetic term $\frac{1}{c_s} \frac{1}{c_s + 1} \dot{\phi}^2$ dominates ρ .

• $c_{s,\varrho}^2 = c_s^2$, so the structure formation can be similar to CDM.

the structure formation is like FDM.

$$(1 - f\dot{\phi}^2)^{-1/2} \gg 1.$$

$$f(\phi) = \begin{cases} \frac{1}{(m/H_0)^2} \phi^{-2} (\phi/\phi_i)^{-8/3} & \text{for } t_i < t < t_{eq} ,\\ \left(\frac{4m}{3H_0}\right)^{-3/2} (t_{eq}/t_0)^{1/2} \phi^{-2} (\phi/\phi_i)^{-2} & \text{for } t_{eq} < t < t_c ,\\ 0 & \text{for } t > t_c , \end{cases}$$

 $\phi_i = \phi(t_i)$; t_0 is the time today.

Solving e.o.m of DBI scalar

$$\ddot{\phi} + 3Hc_s^2 \dot{\phi} + c_s^3 V'(\phi) + \frac{f'(\phi)}{2f(\phi)} \left(1 - \frac{2c_s^2}{1 + c_s}\right) \dot{\phi}^2 = 0,$$

- Before t_c , we have $c_s \ll 1$. The oscillation is switched off by $f(\phi)$.
- After t_c , as long as the small enough $f(\phi)$ keep $f(\phi)\dot{\phi}^2 \ll 1$ when the oscillation resumes,

the CDM-like field $\phi \Rightarrow$ FDM-like afterwards.

- $\rho \propto a^{-3}$. CDM-like (blue lines) transit to FDM-like (yellow lines) at t_c .
- $c_s \ll 1 \Rightarrow c_s = 1$. Late time suppression by switching to FDM-like phase.

(Discontinuity from the inconsistency by our treatment of H(t) at t_{eq} (sudden transition from RD to MD).)

The modified sound speed then writes

Structure formation is determined by the competition. For example

$$t < t_{osc}$$

$$t < t_{osc}$$

$$t < t_{c}$$

$$\frac{1}{2}$$

$$t > t_{c}$$

- A comparison of gravitational term and sound speed term when taking $m = 10^{-24}$ eV and $a(t_c) = 0.1$.
- $k = 0.1 \times 10^{5.5} H_0 \sim 6 \,\mathrm{Mpc}^{-1} \sim$ $k_{1/2}$ (10⁻²² eV FDM)

 $m = 10^{-24}$ eV and $a(t_c) = 0.1$.

To interpret cusp-core (missing satellite) &
 Lyα at the same time:

•
$$T^2(k = 4.5 \text{ Mpc}^{-1}) \sim 0.5 \text{ at } z = 0;$$

→ $T^2(k = 20h \text{ Mpc}^{-1}) > 0.7 \text{ at } z \approx 2 \sim 6 \text{ (Ly}\alpha).$

• The k-ULDM in "Phase transition" case can alleviate the Ly α problem,

compared to a z-indpendent T^2 at late time (in FDM).

ULDM with Non-Canonical Kinetics Our k-ULDM: example 2 ("Chaplygin-like" case)

$$f(\phi) = \begin{cases} \left(1 - c_{s,i}^2 (\phi/\phi_i)^2\right) \left(2t_i \phi_i^{-1}(\phi/\phi_i)^2\right) \\ \left(1 - c_{s,eq}^2 (\phi/\phi_{eq})^4\right) \left(3t_{eq} \phi_{eq}^{-1}\right) \end{cases}$$

ULDM with Non-Canonical Kinetics Our k-ULDM: example 2 ("Chaplygin-like" case)

- A comparison of gravitational • term and sound speed term when taking $c_{s,i} = c_s(a_i = 6.5 \times 10^{-5}) = 1.09 \times 10^{-8}$ and $m/H_0 = 29.0$.
- $c_{s,g} = c_s = c_{s,i}(a/a_i)$. Late time suppression.
- The mass of ϕ should be light enough to guarantee the large enough $\frac{\kappa}{a^2}c_{s,g}^2$ at late time. K

ULDM with Non-Canonical Kinetics Our k-ULDM: example 2 ("Chaplygin-like" case)

 $c_{s,i} = c_s(a_i = 6.5 \times 10^{-5}) = 1.09 \times 10^{-8}, m/H_0 = 29.0$

• To interpret cusp-core (missing) satellite) & Ly α at the same time:

$$T^2(k = 4.5 \text{ Mpc}^{-1}) \sim 0.5 \text{ at } z = 0;$$

- $T^2(k = 20h \text{ Mpc}^{-1}) > 0.7 \text{ at } z \approx 2 \sim 6$ (Ly α).
- Such k-ULDM can truly reopen the window of ULDM constrained by Ly α .

Summary

- the wave nature can hopefully solve the problems in CDM models.
- recent observations. This is the motivation of our work.
- to the thought that the small-scale suppression for FDM may be delayed.
- We found that, ULDM with non-canonical kinetic with modified sound speed can hopefully serve as the expected model.
- the constraint.

• We have reviewed the small-scale challenges of ΛCDM model. Then we reviewed how

However, the preferred FDM mass solving CDM crisis are seemingly disfavored by

• We noticed that the problem comes from observations at different redshift, and came

We found that examples of DM constructed from DBI theory can alleviate or even solve

Thank you!