Based on the work with Yi-Fu Cai, Elisa G. M. Ferreira et al. **arXiv:** Coming very soon

Ultra-Light Dark Matter with Non-Canonical Kinetics

- **Lu Shiyun**
- **September 11, 2023**
	-

Introduction and Motivation

Introduction and Motivation Dark matter

• CMB and Type Ia determine the $\Omega_{\rm DM}$

Rotation curve of spiral galaxy Messier 33

(Credit: NASA/CXC/K.Divona)

• Galaxy rotation curve

Introduction and Motivation Dark matter models

• Most evidence are from gravitational effects, leaving the nature of DM unclear.

- WIMP; ULDM; …
-
- Small-scale behavior?

Introduction and Motivation Structure formation

The 2dF Galaxy Redshift Survey extending the 2dF Galaxy Redshift Survey Springel et al., Virgo Consortium (simulation)

Introduction and Motivation CDM crisis

‣ Missing satellites (or "Too big to fail" problem)

- ΛCDM: cosmological standard model
- ACDM meets challenges in recent observations. e.g. small-scale curiosities.
	- ‣ Cusp-core problem (NFW v.s. core)

Introduction and Motivation ULDM

• Ultra-light DM: small mass, wave nature, condensate structure

- Axion models (and ALPs) can produce FDM.
- Fuzzy DM (FDM): quantum pressure v.s. gravitational attraction.
- Differ from CDM at small scales.

Introduction and Motivation Small-scale suppression

CDM WDM \cdot , 10 keV $10²$

- CDM: a perfect fluid with $w \approx 0$ and sound speed $c_s \approx 0$.
- FDM: $\langle w \rangle \approx 0$ and the effective sound speed $\langle c_s^2 \rangle_{\text{eff}} \simeq \frac{4a^2m^2}{k^2}$. $k²$ 4*a*2*m*² *k*2 $\frac{\kappa^2}{4a^2m^2}+1$

• Small-scale suppression

Introduction and Motivation Addressing small-scale challenges

BE condensate (soliton solution). DM halo density profile is changed to

- Small-scale suppression (wave nature) ⇒
	- ‣ Cusp-core:

with a central core instead of a cusp.

• FDM with $m \sim 10^{-22}$ eV

a large suppression of small halos with $M < M$ _{lin}.

$$
\rho_{\text{halo}} \simeq \begin{cases} \rho_c & r < r_c \\ \rho_{\text{NFW}} & r > r_c \end{cases}
$$

‣ Missing satellite:

A suppression of FDM halo formation, giving a bound

$$
M_{\text{lin}} = 4 \times 10^{10} M_{\odot} \left(\frac{m}{10^{-22} \text{eV}} \right)^3 \left(\frac{\Omega_m h^2}{0.14} \right)
$$

between missing satellite solution and Ly*α*

J. Flitter, E. D. Kovetz 2207.05083

Introduction and Motivation Closing window on FDM

‣ Flux power spectrum from Lyα measurement ($z \approx 3 \sim 5.4$)

• CDM preferred than FDM $(10^{-22} eV)$? • FDM $(10^{-22} eV)$ preferred than CDM?

- ‣ Missing satellite problem: THINGS (The HI Nearby Galaxy Survey).
- ‣ Cusp-core problem: MW and the Local group.
- $\sim z \approx 0$.

Redshift dependence?

Introduction and Motivation

Introduction and Motivation A Delayed suppression?

⇒

• Suppression period for FDM. • An example to delay the suppression.

Ultra-Light Dark Matter

ULDM Axions serving as DM

• The action for FDM

• Axion during Inflation:

PQ symmetry broken during inflation (if $f_a \geq H_I/2\pi$), giving an initial misalignment angle for our patch, so

• Background evolution after inflation

$$
\ddot{\phi}_0 + (3H +
$$

 f_i^2 $\rangle = f_a^2 \theta_i^2 + \langle \delta \phi^2 \rangle$ $\Big\rangle$,

 $\ddot{\phi}_0 + (3H + \Gamma)\dot{\phi}_0 + m_a^2 \phi_0 = 0$.

$$
S = S_{EH} + S_{\phi} = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi - \frac{1}{2} m^2 \phi^2 \right] ,
$$

$$
\langle \phi_i^2 \rangle =
$$

ULDM Axions serving as DM

‣ axion background begins oscillating.

• Some time after oscillation begins, $H \ll m_a$,

$$
\leftarrow \rho_a \sim a^{-3}
$$
, as DM (fuzzy).

• When $H \gg m_a$,

- ϕ_0 background rolls down very slowly $\dot{\phi}_0 \simeq -\frac{m_a}{3H}\phi_0$. .
,
, $\dot{\phi}_0 \simeq -\frac{m_a^2}{3H}$ *a* $\frac{a}{3H}\phi_0$
- \rightarrow *w_a* ≃ − 1, like DE.

• When $H \approx m_a$,

• From 1st PT of $\nabla_{\mu}T^{\mu\nu} = 0$, e.o.m for fluids

。

く $\dot{\delta} + 3H(c_{s,g}^2 - w)\delta = -(1 + w)(\theta + h)$.
1 *^θ* ⁺ [\dot{W} $1 + w$

- For axions *δa*
	- \triangleright $\delta\phi$ originated from inflation \Rightarrow all to isocurvature perturbations;
	-

*a*2 *δq p* + *ρ* $w \equiv p/\rho$, gauge-dependent c_s^2

$$
\begin{cases}\n\dot{\delta} + 3H(c_{s,g}^2 - w)\delta = -(1+w)(\theta + \dot{h}/2) ,\\ \n\dot{\theta} + \left[\frac{\dot{w}}{1+w} + (2-3w)H \right] \theta = \frac{k^2}{a^2} \left(\frac{c_{s,g}^2}{1+w} \delta + \Phi \right) ,\\
\delta \equiv \delta \rho / \rho, \theta \equiv -\frac{k^2}{a^2} \frac{\delta q}{p+\rho}, \ w \equiv p/\rho, \text{ gauge-dependent } c_{s,g}^2 \equiv \frac{\delta p}{\delta \rho}, \text{ and } \dot{h}/2 = -3\dot{\Psi} + k^2(B/a - \dot{E}).\n\end{cases}
$$

• The adiabatic mode $\delta_a = 0$ initially; can grow (from δ_r during RD) only when $w_a \neq -1$.

- For FDM (axions after $t_{\rm osc}$), antasz by WKB osc $\phi(t) = a(t)^{-3/2}$
- $H \ll m_a$, so we can average over the oscillations $\langle \rho_a \rangle \sim a^{-3}$, and

 , when $k < 2am$

when $k > 2am$

$$
^{12}(\phi _{0}\cos (mt+\varphi))\ ,
$$

scillations
$$
\langle \rho_a \rangle \sim a^{-3}
$$
, and

$$
c_{s, \text{eff}}^2 = \left\langle \frac{\delta p}{\delta \rho} \right\rangle = \frac{\frac{k^2}{4m^2 a^2}}{1 + \frac{k^2}{4m^2 a^2}} \simeq \left\{ \frac{k^2}{4m^2 a^2} \right\}
$$

in axion comoving gauge that $\langle \delta q \rangle = 0.$

• To linear order, e.o.m of axion overdensities during MD (after $t_{\rm osc}$)

defining a Jeans scale $k_J = 66.5 \left(\frac{2a^2}{0.12} \right)$ $a^{1/4} \left(\frac{m_a}{10^{-22} \text{eV}} \right)$ Mpc⁻¹. $\Omega_a h^2$ 0.12) 1/4 *a*1/4

-
-

$$
\ddot{\delta}_a + 2H\dot{\delta}_a + \left(\frac{k^2}{a^2}c_{s,g}^2 - 4\pi G\rho_a\right)\delta_a = 0,
$$

$$
\frac{k^2}{a^2}c_{s,g}^2 \simeq \frac{k^2}{a^2}\frac{k^2}{4a^2m^2} \oint_{\text{v.s.}} 4\pi G\rho_a \propto a^{-3},
$$

$$
{}^{4}\left(\frac{m_a}{10^{-22} \text{eV}}\right)^{1/2} \text{Mpc}^{-1}.
$$

 \cdot For $k < k_J$, gravitational term $4\pi G\rho_a$ dominates, same as CDM. $\rightarrow \delta_a \sim a$ (growing mode);

► For $k > k_j$, sound speed term $k^2 c_{s,g}^2/a^2$ dominates, showing the wave nature. $\rightarrow |\delta_a| \sim a^0$

- Overdensity evolution of FDM with $m_a = 10^{-22}$ eV $(\Omega_a/\Omega_d = 1)$ compared to standard CDM.
- Structure is suppressed for $k > k_J(a) = 66.5a^{1/4} \text{Mpc}^{-1}$. $\left(\text{or } k_J(a = a_0) \simeq \sqrt{m_a H_0} = 10^{5.5} H_0.\right)$
-
- Suppression is integrated when $k > k_J(a)$ (earlier time).

• By numerical method, there is an approximation of $T_{\text{FDM}}^2 = \cos(x_J^3(k))/(1 + x_J^8(k)), (x_J = 1.61k/(9\text{Mpc}^{-1})).$

• Late time z-dependence is often ignored in FDM study.

• The half-mode is
$$
k_{1/2} \approx 5.1 \left(\frac{m_a}{10^{-22} \text{eV}}\right)^{4/9} \text{Mpc}^{-1}
$$
.

 $P_{\text{FDM}}(k, z) = T_{\text{FDM}}^2(k, z) P_{\Lambda \text{CDM}}(k, z)$

• Transfer function defined from the suppression of linear matter power spectrum

- The linear suppression at small scale is accumulated when $k > k_J$ (or when the "quantum β pressure" term dominates: $k^2 c_{s,g}^2 / a^2 \gg 4 \pi G \rho_a$).
- The observation prefers CDM at high z but FDM at low z, expecting new ULDM model: modified sound speed (or k_J) \rightarrow an earlier structure grow (a delayed suppression)

⇒

ULDM with Non-Canonical Kinetics

ULDM with Non-Canonical Kinetics Modified c, from Theory

- For canonical scalar field, c_s^2 defined from Mukhanov-Sasaki variables $\nu = z\zeta$ should be 1 (gauge-invariant);
- $c_{s,g}^2 \equiv \delta p/\delta \rho$ is gauge-dependent (discussed in comoving gauge or synchronous gauge).
- Example of non-canonical scalar: k-essence

$$
\mathscr{L}=V(\phi)F(X), X=(\partial\phi)^2/2,
$$

has equation of state $w = F/(2XF_X - F)$, and non-trivial sound speed

$$
c_s^2 = \frac{\partial_x p}{\partial_x \rho} = \frac{F_x}{F_x + 2XF_{xx}}.
$$

ULDM with Non-Canonical Kinetics Modified *c*_{*s*} from DBI

• As an example to change k_j , we use DBI theory to construct DM with modified $c_{\overline{s}}$ (by $f(\boldsymbol\phi)$)

with sound speed

$$
S = \int d^4x \sqrt{-g} \left[f(\phi)^{-1} (1 - \sqrt{1 - 2f(\phi)X}) - \frac{1}{2} m^2 \phi^2 \right],
$$

where $X = -g^{\mu\nu}\nabla_{\mu}\phi\nabla_{\nu}\phi/2$. So

 $\rho =$ 1 $p =$ 1 $c_s + 1$

 c_s^2

$$
\frac{\partial_x p}{\partial_x \rho} = 1 - f(\phi) \dot{\phi}^2.
$$

=

∂*^X ρ*

,

$$
\frac{1}{c_s} \frac{1}{c_s+1} \dot{\phi}^2 + \frac{1}{2} m^2 \phi^2
$$

$$
\frac{1}{c_s+1} \dot{\phi}^2 - \frac{1}{2} m^2 \phi^2,
$$

ULDM with Non-Canonical Kinetics DM-like DBI

- Trivial case (canonical scalar): $f(\phi) = 0$, so $c_s = 1$.
	- \triangleright Background evolution determined by H v.s. m , like in axion model.

After
$$
t_{osc}
$$
, $c_{s,g}^2 = \frac{k^2}{4m^2a^2} / \left(1 + \frac{k^2}{4m^2a^2}\right)$,

• Small c_s case ("relativistic limit"): $c_s^{-1} = (1 - f\dot{\phi}^2)^{-1/2} \gg 1$.

 \cdot *w* = *p*/*ρ* ≃ *c_s* → 0 , and the kinetic term $\frac{1}{c}$ $\frac{1}{c}$ $\frac{1}{c}$ ϕ^2 dominates *ρ*. c_s 1 $c_s + 1$.
,
ሐ $\dot{\phi}^2$ dominates ρ

 $\epsilon \quad c_{s,g}^2 = c_s^2$, so the structure formation can be similar to CDM.

the structure formation is like FDM.

$$
1 - f\dot{\phi}^2 \rangle^{-1/2} \gg 1.
$$

• Solving e.o.m of DBI scalar

$$
\ddot{\phi} + 3Hc_s^2 \dot{\phi} + c_s^3 V'(\phi) + \frac{f'(\phi)}{2f(\phi)} \left(1 - \frac{2c_s^2}{1 + c_s}\right) \dot{\phi}^2 = 0,
$$

- Before t_c , we have $c_s \ll 1$. The oscillation is switched off by f $(\boldsymbol\phi)$.
- After t_c , as long as the small enough $f(\phi)$ keep when the oscillation resumes, t_c , as long as the small enough $f(\phi)$ $f(\phi)\dot{\phi}^2 \ll 1$

the CDM-like field $\phi \Rightarrow$ FDM-like afterwards.

$$
f(\phi) = \begin{cases} \frac{1}{(m/H_0)^2} \phi^{-2} (\phi/\phi_i)^{-8/3} & \text{for } t_i < t < t_{\text{eq}} \\ \left(\frac{4m}{3H_0}\right)^{-3/2} & (t_{\text{eq}}/t_0)^{1/2} \phi^{-2} (\phi/\phi_i)^{-2} & \text{for } t_{\text{eq}} < t < t_{\text{c}} \\ 0 & \text{for } t > t_{\text{c}} \end{cases}
$$

 $\phi_i = \phi(t_i)$; t_0 is the time today.

- $\rho \propto a^{-3}$. CDM-like (blue lines) transit to FDM-like (yellow lines) at t_c .
- $c_s \ll 1 \Rightarrow c_s = 1$. Late time suppression by switching to FDM-like phase.
-

• (Discontinuity from the inconsistency by our treatment of $H(t)$ at t_{eq} (sudden transition from RD to MD).)

The modified sound speed then writes

- A comparison of gravitational term and sound speed term when taking $m = 10^{-24}$ eV and $a(t_c) = 0.1$.
- $k = 0.1 \times 10^{5.5} H_0 \sim 6 \text{ Mpc}^{-1} \sim$ $k_{1/2}$ (10^{−22} eV FDM)

Structure formation is determined by the competition. For example

1
\n
$$
t < t_{osc}
$$
\n
$$
\sim (t/t_o)^{-4}
$$
\n
$$
t_{osc} < t < t_c
$$
\n
$$
\frac{k^2}{4a^2m^2}
$$
\n
$$
t > t_c
$$
\n
$$
1 + \frac{k^2}{2}
$$
\n
$$
t > t_c
$$

• To interpret cusp-core (missing satellite) & Ly α at the same time:

• The k-ULDM in "Phase transition" case can alleviate the Ly α problem,

compared to a z-indpendent T^2 at late time (in FDM).

•
$$
T^2(k = 4.5 \text{ Mpc}^{-1}) \sim 0.5 \text{ at } z = 0;
$$

 \blacktriangleright $T^2(k = 20h \text{ Mpc}^{-1}) > 0.7$ at $z \approx 2 \sim 6$ (Lyα).

ULDM with Non-Canonical Kinetics Our k-ULDM: example 2 ("Chaplygin-like" case)

$$
f(\phi) = \begin{cases} \left(1 - c_{s,i}^2 (\phi/\phi_i)^2\right) \left(2t_i \phi_i^{-1} (\phi/\phi_i)^2\right) & \text{(2)} \\ \left(1 - c_{s,\text{eq}}^2 (\phi/\phi_{\text{eq}})^4\right) & \text{(3)} \\ t_{\text{eq}} \phi_{\text{eq}} & \text{(4)} \end{cases}
$$

• $\rho \propto a^{-3}$. $|p| \ll \rho$. DM-like. $p \propto \rho^{2/3}$ (during MD). • We get an increasing c_s , without a hand-set t_c . $c_s = c_{s,i}(a/a_i)$ for $t > t_i$. Late time suppression by increasing c_s . $t_{eq} \phi_{eq}^{-1} (\phi/\phi_{eq})^2$ *for* $t_{eq} < t < t_c$ during MD $\phi_i = \phi(t_i)$; $t_c > t_0$ here. $\int_{i}^{-1} (\phi / \phi_i) \big)^2$ for *t* $t_i < t < t_{eq}$ during RD) 2 for $t_{eq} < t < t_c$ during MD , 1 10^{-3} 10^{-6} 10^{-9} $|10^{-12}|$ $ρ$ | $ρ$ _| $\overline{}$ eq C_S $(H/m)^2$ $\frac{10^{-3}}{10^{-2}}$ $\frac{10^{-1}}{10^{-1}}$ $\frac{10^{0}}{10^{0}}$ a 1 10^{-2} 10^{-4} 10^{-6} 10^{-8} $\frac{1}{2}a_{\text{eq}}$ • [Then](#page-25-0) (taking $c_{s,i} = c_s(a_i = 6.5 \times 10^{-5}) = 1.09 \times 10^{-8}$ and $m/H_0 = 29.0$)

ULDM with Non-Canonical Kinetics Our k-ULDM: example 2 ("Chaplygin-like" case)

- A comparison of gravitational term and sound speed term when taking and $m/H_0 = 29.0$. $c_{s,i} = c_s (a_i = 6.5 \times 10^{-5}) = 1.09 \times 10^{-8}$
- $c_{s,g} = c_s = c_{s,i}(a/a_i)$. Late time suppression.
- The mass of ϕ should be light enough to guarantee the large enough $\frac{1}{2}c_s^2$ at late time. $k²$ *a*2 $c_{s,g}^2$

ULDM with Non-Canonical Kinetics Our k-ULDM: example 2 ("Chaplygin-like" case)

• To interpret cusp-core (missing satellite) & Ly α at the same time:

• Such k-ULDM can truly reopen the

$$
T^2(k = 4.5 \text{ Mpc}^{-1}) \sim 0.5 \text{ at } z = 0;
$$

•
$$
T^2(k = 20h \text{ Mpc}^{-1}) > 0.7 \text{ at } z \approx 2 \sim 6
$$

(Ly α).

 $c_{s,i} = c_s (a_i = 6.5 \times 10^{-5}) = 1.09 \times 10^{-8}$, $m/H_0 = 29.0$

Summary

• However, the preferred FDM mass solving CDM crisis are seemingly disfavored by

• We noticed that the problem comes from observations at different redshift, and came

We found that examples of DM constructed from DBI theory can alleviate or even solve

- the wave nature can hopefully solve the problems in CDM models.
- recent observations. This is the motivation of our work.
- to the thought that the small-scale suppression for FDM may be delayed.
- We found that, ULDM with non-canonical kinetic with modified sound speed can hopefully serve as the expected model.
- the constraint.

• We have reviewed the small-scale challenges of Λ CDM model. Then we reviewed how

Thank you!